
A Mobility Management Framework for
Optimizing the Trajectory of a Mobile

Base-station

Madhu Mudigonda1, Trisul Kanipakam1, Adam Dutko1, Manohar Bathula1,
Nigamanth Sridhar1, Srinivasan Seetharaman2, Jason O. Hallstrom3

1 Electrical & Computer Engineering, Cleveland State University
2 Deutsche Telekom Labs

3 School of Computing, Clemson University

Abstract. We describe a software framework for prescribing the trajec-
tory path of a mobile sink in a wireless sensor network under an extensible
set of optimization criteria. The framework relies on an integrated mobil-
ity manager that continuously advises the sink using application-specific
network statistics. We focus on a reference implementation for TinyOS.
Through extensive physical experimentation, we show that the mobility
manager significantly improves network performance under a range of
optimization scenarios.

1 Introduction

Wireless sensor networks afford the promise of ultra-dense instrumentation of the
natural and built environment for purposes of observation and control. For these
networks to become integrated as part of a permanent planetary monitoring
fabric, network longevity obstacles must be overcome. Several methods have
been proposed to extend the lifetime of multi-hop networks, including the use
of multiple sinks, improved sensor distribution, energy-balanced clustering, data
mules, and other strategies. In this paper, we focus on the use of mobile base-
stations, which periodically alter the routing structure to avoid the possibility
of static bottlenecks. While introducing a mobile sink is not always possible, a
number of existing applications inherently rely on mobile sinks.

Sink mobility introduces a number of questions: When should a sink move?
Where should it move? How is its location shared with the routing network? How
are multi-hop routes maintained in the presence of mobility? Our objective is to
design a generalized framework that provides answers to these questions. To our
knowledge, we are the first to consider an intelligent mobile sink that requires
no a priori scheduling. Instead, a distributed mobility manager collects salient
network statistics and uses these statistics to drive mobility decisions. While
others have considered the problem of sink mobility in sensor networks, all but a
few [7, 9] have relied exclusively on simulations. In contrast, we have developed
an integrated hardware/software testbed to conduct experiments. The testbed
includes a programmable mobile element and a network of 30 TelosB nodes.

2 M. Mudigonda et al

We report three contributions: (Sects. 2 and 4) A generalized framework and
reference architecture to support mobility decisions in sensor networks. (Sect. 3)
A collection of decision metrics to support sink mobility, including (i) residual
node energy, (ii) regional network congestion, and (iii) average relay distance.
We also describe how new metrics are readily integrated into the framework.
(Sect. 5) A prototype implementation of the framework for TinyOS.

Problem Definition. We consider a sensor network consisting of an arbi-
trary number of nodes, deployed arbitrarily. Each node participates in a spanning
tree routing layer rooted at a base-station (sink) and communicates sampled data
over this layer. Hence, the load on each device comprises (i) sampling sensors,
(ii) transmitting sampled data toward the sink, (iii) relaying received data to-
ward the sink, and (iv) updating the routing path when needed (e.g., , due to
node death). For nodes closest to the base-station, (iii) quickly becomes the
dominating factor; a small set of nodes must relay all sampled network data,
creating a lifetime bottleneck.

While there is substantial prior work focused on introducing sink mobility
to mitigate this bottleneck (detailed in Sect. 7), questions concerning the tra-
jectory of the sink have not been completely addressed. Examples of simplifying
assumptions adopted in prior work include time invariance of battery and ra-
dio performance, uniform radio propagation range, and independence of MAC
delays on energy consumption [7, 11, 21]. In contrast, our work makes only two
basic assumptions: The target network must provide time synchronization, and
the geographic extent of the network must be known to the mobile sink.

While the most important mobility goal is ensuring uniform energy con-
sumption across the network, other optimization metrics are also possible. A
base-station might, for instance, attempt to locate itself to reduce network con-
gestion or to overhear an interesting data stream. Hence, we define the problem
as follows: the design of a generalized framework for prescribing a sink
mobility path under an extensible set of optimization criteria, in a
manner responsive to real-time network conditions.

2 System Architecture

The architecture is illustrated in Fig. 1; the corresponding component interfaces,
expressed in nesC, are shown in Fig. 2.

Metric Generator. An implementation of the MetricGenerator interface runs on
each node, monitoring its runtime behavior and recording a set of statistics
material to the relevant optimization goal. For example, ResidualEnergyMonitor,
discussed later, is a specialization of MetricGenerator that computes a real-time
estimate of available device energy. This value (obtained through a call to getCur-

rentValue()) is then transmitted over the routing layer to the sink to support its
mobility decision. In many cases, the metric data can be piggybacked on stan-
dard application data packets. In Sect. 3, we describe three different metrics for
which we have built generators. The descriptions there roughly correspond to
implementations of getCurrentValue().

Managing Mobile Base-Stations 3

! !
"#$!%#$&'!()'&*&++!,&-+#'!.#/0*&!

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 1 of 28

!

!
!

"#$%&!#'(!)'(*%!+,,,!-./01203!4'5)#6&7$!
(6%*#*88!8*78'%!5'9:#*!
!"#$%$&'()*$+,&()-.%)/0#102-&"20)30.3423)5$&,)678)
)

Product Description
Tmote Sky is an ultra low power wireless
module for use in sensor networks,
monitoring applications, and rapid
application prototyping. Tmote Sky
leverages industry standards like USB and
IEEE 802.15.4 to interoperate seamlessly
with other devices. By using industry
standards, integrating humidity,
temperature, and light sensors, and
providing flexible interconnection with
peripherals, Tmote Sky enables a wide
range of mesh network applications. Tmote
Sky is a drop-in replacement for Moteiv’s successful Telos design. Tmote Sky includes
increased performance, functionality, and expansion. With TinyOS support out-of-the-box,
Tmote Sky leverages emerging wireless protocols and the open source software movement.
Tmote Sky is part of a line of modules featuring on-board sensors to increase robustness while
decreasing cost and package size.

Key Features
! 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver

! Interoperability with other IEEE 802.15.4 devices

! 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash)

! Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller

! Integrated onboard antenna with 50m range indoors / 125m range outdoors

! Integrated Humidity, Temperature, and Light sensors

! Ultra low current consumption

! Fast wakeup from sleep (<6"s)

! Hardware link-layer encryption and authentication

! Programming and data collection via USB

! 16-pin expansion support and optional SMA antenna connector

! TinyOS support : mesh networking and communication implementation

! Complies with FCC Part 15 and Industry Canada regulations

! Environmentally friendly – complies with RoHS regulations

Metric
Generator

! !
"#$!%#$&'!()'&*&++!,&-+#'!.#/0*&!

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 1 of 28

!

!
!

"#$%&!#'(!)'(*%!+,,,!-./01203!4'5)#6&7$!
(6%*#*88!8*78'%!5'9:#*!
!"#$%$&'()*$+,&()-.%)/0#102-&"20)30.3423)5$&,)678)
)

Product Description
Tmote Sky is an ultra low power wireless
module for use in sensor networks,
monitoring applications, and rapid
application prototyping. Tmote Sky
leverages industry standards like USB and
IEEE 802.15.4 to interoperate seamlessly
with other devices. By using industry
standards, integrating humidity,
temperature, and light sensors, and
providing flexible interconnection with
peripherals, Tmote Sky enables a wide
range of mesh network applications. Tmote
Sky is a drop-in replacement for Moteiv’s successful Telos design. Tmote Sky includes
increased performance, functionality, and expansion. With TinyOS support out-of-the-box,
Tmote Sky leverages emerging wireless protocols and the open source software movement.
Tmote Sky is part of a line of modules featuring on-board sensors to increase robustness while
decreasing cost and package size.

Key Features
! 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver

! Interoperability with other IEEE 802.15.4 devices

! 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash)

! Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller

! Integrated onboard antenna with 50m range indoors / 125m range outdoors

! Integrated Humidity, Temperature, and Light sensors

! Ultra low current consumption

! Fast wakeup from sleep (<6"s)

! Hardware link-layer encryption and authentication

! Programming and data collection via USB

! 16-pin expansion support and optional SMA antenna connector

! TinyOS support : mesh networking and communication implementation

! Complies with FCC Part 15 and Industry Canada regulations

! Environmentally friendly – complies with RoHS regulations

Metric
Generator

! !
"#$!%#$&'!()'&*&++!,&-+#'!.#/0*&!

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 1 of 28

!

!
!

"#$%&!#'(!)'(*%!+,,,!-./01203!4'5)#6&7$!
(6%*#*88!8*78'%!5'9:#*!
!"#$%$&'()*$+,&()-.%)/0#102-&"20)30.3423)5$&,)678)
)

Product Description
Tmote Sky is an ultra low power wireless
module for use in sensor networks,
monitoring applications, and rapid
application prototyping. Tmote Sky
leverages industry standards like USB and
IEEE 802.15.4 to interoperate seamlessly
with other devices. By using industry
standards, integrating humidity,
temperature, and light sensors, and
providing flexible interconnection with
peripherals, Tmote Sky enables a wide
range of mesh network applications. Tmote
Sky is a drop-in replacement for Moteiv’s successful Telos design. Tmote Sky includes
increased performance, functionality, and expansion. With TinyOS support out-of-the-box,
Tmote Sky leverages emerging wireless protocols and the open source software movement.
Tmote Sky is part of a line of modules featuring on-board sensors to increase robustness while
decreasing cost and package size.

Key Features
! 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver

! Interoperability with other IEEE 802.15.4 devices

! 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash)

! Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller

! Integrated onboard antenna with 50m range indoors / 125m range outdoors

! Integrated Humidity, Temperature, and Light sensors

! Ultra low current consumption

! Fast wakeup from sleep (<6"s)

! Hardware link-layer encryption and authentication

! Programming and data collection via USB

! 16-pin expansion support and optional SMA antenna connector

! TinyOS support : mesh networking and communication implementation

! Complies with FCC Part 15 and Industry Canada regulations

! Environmentally friendly – complies with RoHS regulations

Metric
Generator

! !
"#$!%#$&'!()'&*&++!,&-+#'!.#/0*&!

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 1 of 28

!

!
!

"#$%&!#'(!)'(*%!+,,,!-./01203!4'5)#6&7$!
(6%*#*88!8*78'%!5'9:#*!
!"#$%$&'()*$+,&()-.%)/0#102-&"20)30.3423)5$&,)678)
)

Product Description
Tmote Sky is an ultra low power wireless
module for use in sensor networks,
monitoring applications, and rapid
application prototyping. Tmote Sky
leverages industry standards like USB and
IEEE 802.15.4 to interoperate seamlessly
with other devices. By using industry
standards, integrating humidity,
temperature, and light sensors, and
providing flexible interconnection with
peripherals, Tmote Sky enables a wide
range of mesh network applications. Tmote
Sky is a drop-in replacement for Moteiv’s successful Telos design. Tmote Sky includes
increased performance, functionality, and expansion. With TinyOS support out-of-the-box,
Tmote Sky leverages emerging wireless protocols and the open source software movement.
Tmote Sky is part of a line of modules featuring on-board sensors to increase robustness while
decreasing cost and package size.

Key Features
! 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver

! Interoperability with other IEEE 802.15.4 devices

! 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash)

! Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller

! Integrated onboard antenna with 50m range indoors / 125m range outdoors

! Integrated Humidity, Temperature, and Light sensors

! Ultra low current consumption

! Fast wakeup from sleep (<6"s)

! Hardware link-layer encryption and authentication

! Programming and data collection via USB

! 16-pin expansion support and optional SMA antenna connector

! TinyOS support : mesh networking and communication implementation

! Complies with FCC Part 15 and Industry Canada regulations

! Environmentally friendly – complies with RoHS regulations

Metric
Generator

Mobility
Manager

Metric
Analyzer

Route Manager

Fig. 1. Framework Architecture

interface MetricGenerator {
command int getCurrentValue();

}
interface MetricAnalyzer {
command int compare(int m1, int m2);

}
interface RouteManager {
command void formRoute();
command void cancelRoute();
command int getParent();
command int getDistance();

}
interface MobilityManager {
command bool isMoveNecessary();
command int getNewRegion();
command void moveToRegion(int target);

}

Fig. 2. Framework Interfaces

Metric Analyzer. The sink must be able to impose an ordering on this data for
purposes of comparison. In the case of residual energy, the sink should move
to the region where the average residual energy is highest, whereas in the case
of network congestion, the sink should move to the region where congestion is
lowest. To support relative valuation, an implementation of the MetricAnalyzer

interface is used on the mobile device. The interface provides a compare() oper-
ation that returns 1 if m1 is better than m2, −1 if m2 is better than m1, and 0 if
the values are indistinguishable — where the definition of better depends on the
optimization goal. The mobility manager relies on MetricAnalyzer to determine
when the local-area average of collected metric values dictates a move, and to
perform pairwise area comparisons when determining where to move.

Route Manager. When the sink moves from one position to another, the routing
topology must be updated to ensure node-to-sink connectivity. This process is
supported by an implementation of the RouteManager interface, used both at the
sensing end-points and the sink. When a move begins, the sink invokes cancel-

Route() to initiate route cancelation. When the move is complete, formRoute() is
invoked to reestablish the routing tree. Each end-point records its position using
two state variables, the node’s parent and distance from the root. RouteManager

is intentionally general. Several strategies have been proposed to dynamically
modify the structure of a routing tree [2,4,11,12,18]. Any of these may be used
to implement the RouteManager interface.

Mobility Manager. An implementation of MobilityManager is used by the sink to
signal the need for movement and identify the new target location. The sink pe-
riodically polls for a movement signal using isMoveNecessary(). If a true response
is received, getNewRegion() is used to compute the new sink location. This de-
cision is based on a pairwise comparison of the metric values associated with
all movement alternatives (using MetricGenerator and MetricAnalyzer). Finally,
moveToRegion() directs the mobile platform to its new location.

4 M. Mudigonda et al

0 1 2 3 4 5 6 7
!5

0

5

10

15

20

25

Time in milliseconds

M
il
li
v
o
lt
s

M
C

U
 A

sl
e

e
p

M
C

U
 A

ct
iv

e

S
e

n
so

r
S

a
m

p
li

n
g

R
a

d
io

 i
n

 R
e

ce
iv

e
 M

o
d

e

R
a

d
io

 S
w

it
ch

in
g

 M
o

d
e

s

R
a

d
io

 i
n

 T
ra

n
sm

it
 M

o
d

e

M
ill
ia
m
p
s

Fig. 3. TelosB Current Draw

Term Notation Current

Radio in transmit mode ITx 17.4675 mA
Radio in receive mode IRx 21.0675 mA
MCU active IMcuActive 1.9325 mA
MCU sleep IMcuSleep 0.0437 mA
Sensor use ISensor 0.0061 mA

Fig. 4. Tmote Sky Current Draw

3 Decision Metrics

Residual Energy. The first decision point we consider relates directly to net-
work longevity — the residual energy available to each device. We adopt the
Credit-Point (CREP) system [23] for estimating residual energy: Emax = Vb ×
Ib × 3600 Joules. Here Vb and Ib correspond to battery voltage and capacity,
respectively. Borrowing from [23], for a pair of AA batteries, the capacity is 2.2
A-Hr, with an effective voltage of 3V; we can compute the maximum energy as
Emax = 3×2.2×3600 = 23760 J. Based on this initial energy budget, the CREP
system deducts “energy points” from Emax for each action on the device.

The CREP model assumes a constant battery voltage, which is invalid for
most, if not all, battery chemistries. To lift this assumption, we periodically sam-
ple the battery voltage using VoltageC, provided by TinyOS. The results are used
to compute the energy consumed during a given period based on (1), substituting
the actual battery voltage for Vb. To deduct “energy points”, the monitor records
the actions performed by a node during each activity period, along with the du-
ration of each activity, focusing only on the most energy-intensive activities. For
example, the monitor records the time the microcontroller was active, the time
the radio spent in transmit and receive modes, the particular sensors activated,
etc. Energy points are assigned empirically by measuring the current draw during
each activity/configuration (a priori). A sample current plot is shown in Fig. 3;
mean values are used as energy points, as summarized in Table 4. Using these
values, energy points are deducted for each activity performed. No additional
hardware is required to support this metric.

Network Congestion. The second metric is designed to minimize network conges-
tion, and thus avoid message loss and energy depletion through retransmissions.
To compute the level of network congestion in a given region, we aggregate mul-
tiple measures. Specifically, our congestion monitor measures the average packet
reception rate (PRR), the average received signal strength (RSSI), and the aver-
age link quality indicator (LQI) along all incoming links at each node. In many
cases, PRR can be measured directly. In particular, if messages are transmitted
at a specific period in a given application, receiving nodes can measure the packet
reception rate directly. Alternatively, in [16], the authors study the correlation

Managing Mobile Base-Stations 5

between RSSI and PRR. They conclude that when RSSI values are higher than
the radio sensitivity threshold (about −90dBm for the CC2420 radio), they are
strongly correlated with the packet reception rate.

It is important to note that radio-level metrics, like RSSI and LQI, provide
information beyond what can be gleaned from the packet reception rate alone.
RSSI, for instance, is useful in measuring the noise floor within the vicinity of
a node. A high noise floor increases the likelihood of congestion(-like scenarios).
Bluetooth devices, when operated near a CC2420 radio, can cause the noise
floor to rise as high as −25dBm. Providing access to this information enables
the mobile sink to avoid such regions during intermittent periods of interference.

Average Distance to Sink. The final metric is designed to reduce the average
number of transmission hops. If, for instance, the base-station is located far
from the principal data source (which may vary over time), the sink should
relocate closer to the source to reduce the workload on intermediate nodes. The
implementation approach is straightforward. It assumes that each data packet
is tagged with the distance-to-root value maintained by the publishing device.
This information is then used by each node to compute a moving average over
the distances of the nodes contained within its respective routing subtree.

4 Managing Mobility

Discovery Phase. We assume that the mobile base-station has no a priori knowl-
edge of the network deployment. Instead, the sink uses the assumed network
extent information to divide the deployment area into a regular grid of a desired
granularity. It then proceeds to tour the region, using a beacon-based discovery
process to define the membership of each grid cell. If a node is “contained” in
multiple cells, it is assigned to the cell that offers the best link quality. This
discovery phase may be repeated if network characteristics are fundamentally
changed — if, for instance, nodes are inserted or removed.

Mobility Management Phase. Throughout the life of the network, the mobility
manager is responsible for signaling the need for sink movement and determining
the new target location. But the travel trajectory is not without constraints.

How far can the sink go? The maximum travel distance in a single move
is limited by the duty cycle of the application. More specifically, the best per-
formance will be achieved if the time required to complete a move is less than
the application reporting period. Otherwise, the movement of the base-station
will interfere with data collection (since the routing tree will be in transition).
More important, stationary nodes are required to remain active during the tran-
sition to ensure route reconstruction. Hence, long moves can degrade system
performance and limit the lifetime of the network.

To limit the reach of the sink, the mobility manager estimates the travel time
associated with each path candidate based on the speed of the mobile device.
The manager culls candidate paths that require travel time significantly beyond

6 M. Mudigonda et al

procedure MobilityManager
While collecting metrics:

if (alarmExpires) then call MetricAnalyzer
end MobilityManager
procedure MetricAnalyzer

Calculate average metric for Rcurrent

if compare(avg metric(Rcurrent), threshold) < 0 then call Move
end MetricAnalyzer
procedure Move

Rnew := (r ∈ R : (∀r′ ∈ Rreach : compare(avg metric(r), avg metric(r′)) ≥ 0)
Calculate route from Rcurrent to Rnew

Broadcast cancel route message
Perform move
Advertise current location to initiate route reconstruction

end Move

Fig. 5. Mobility Management Algorithm

that of the application reporting period. This includes subtracting, from the
allowable time, the time spent ranking the target candidates based on collected
metric data, as well as the estimated time to reconstruct the routing tree.

Where should the sink go? We now consider the details of the mobility
algorithm summarized in Fig. 5. While the sink is stationary, the mobility man-
ager receives a continuous stream of metric data from across the network. At a
fixed period, an analysis alarm is signaled to activate the metric analyzer. To
synchronize sink movement with the application sleep cycle, the alarm period is
a multiple of the application sleep period. The analyzer in turn compares the av-
erage of the decision metrics from its current region (Rcurrent) to its movement
threshold and determines whether to move.

If a move is required, the sink identifies the best target location (Rnew)
by comparing the metric averages of all regions within its single-step reach
(Rreach). This comparison is realized using an implementation of compare() ap-
propriate to the desired optimization goal. It next computes the route to the
new location and broadcasts a cancel route message to alert the network that
it has become unrooted. The stationary nodes wait in an active state during
the move and wait for the base-station’s location advertisement to begin route
reconstruction.

The metric analyzer may require history data to achieve optimal perfor-
mance. If the analyzer simply selects the best target location within its reach
during each step, it could become trapped within a set of local maxima/min-
ima. A more sophisticated analyzer can overcome this problem. Given that the
analyzer has access to network-wide metric data, it can compute the optimal
target location and factor this information into the movement decision in each
step. Hence, the analyzer can select, in each step, the region within its reach
that brings the sink closer to the network-wide optimum.

Managing Mobile Base-Stations 7

25

19

1610

41

22

28

23

17

13

11

5

26

72

29

24

20

14

12

18

6

30

27

21

15

9

83

Region 1 Region 2 Region 3 Region 4 Region 5

(a) Testbed Layout (b) Testbed Realization

Tmote Sky

USB external
storage

NSLU2Battery

Robot

Mote
connected
using serial

interface

(c) Mobility Platform

Fig. 6. Testbed Infrastructure

5 Evaluation and Results

We developed a prototype implementation for TinyOS 2.x and conducted exten-
sive experimental studies using a physical testbed. Given that our primary opti-
mization goal was network lifetime, we compared the lifetime benefits achieved
using our sink manager to other mobility management strategies.

Testbed Infrastructure. Our studies were conducted using a testbed of 30 ceiling-
mounted Tmote Sky nodes placed in a pseudo-random fashion throughout a 1500
sq. ft. (60’ x 25’) area, as shown in Figs. 6(a) and 6(b). To ensure multi-hop
connectivity, radio power was reduced, and each node was required to select a
parent outside its grid cell. The motes were powered using standard consumer
batteries; each experiment used a fresh set. The base-station uses a Tmote Sky
linked to a Linksys NSLU2 device. The NSLU2 is in turn connected to an iRobot
CreateTM, shown in Fig. 6(c). As shown in Fig. 6(a), the testbed is partitioned
into 5 regions. The sink’s reach is limited to one region transition per step.

5.1 Energy Consumption and Lifetime

We characterize the network lifetime increase enabled by a sink under four mo-
bility strategies: (a) no movement, (b) a fixed arbitrary path, (c) a fixed path
computed using a linear programming formulation, and (d) a dynamic path
guided by our mobility manager. The experiments were conducted using an ap-
plication with a sleep period of 10 minutes. Each time a node wakes, it samples
its local sensors and transmits the sampled data to its parent. It then waits to
receive and relay each data point from its subtree before returning to sleep.

Static Base-Station. We ran two experiments with a static sink. The two
were identical, except for the sink location. In the first run, the base-station was
placed near the center of the network. In the second, it was placed near one end
of the network. Each run was executed for a duration of ten hours. We measured
the residual energy of each node before and after each run. Figs. 7(a) and 7(b),
summarize the energy consumed by each node in the network, in Joules.

As shown in Fig. 7(a), nodes near the center of the network consumed consid-
erably more energy than nodes near the edges of the network. The situation in
the second experiment is similar, except that the peak is shifted to the network’s

8 M. Mudigonda et al

1 2 3
4 5

0
5

10
15

20
25

0

0.5

1

1.5

2

2.5

3

Jo
ul
es

(a) Sink (near the middle)

1
2 3

4
5

0

5

10

15

20

25

0

0.5

1

1.5

2

2.5

3

J
o
u
le
s

Location of sink

(b) Sink (near one end)

Fig. 7. Energy Usage (static base-station)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

(a) Base-station Path

1 2 3 4 5

0
5

10
15

20
25

0

0.2

0.4

0.6

0.8

1
En

er
gy

 in
 J

ou
le

s

(b) Epoch 1

1 2 3 4 5

0
5

10
15

20
25

0

0.2

0.4

0.6

0.8

1

En
er

gy
 in

 J
ou

le
s

(c) Epoch 2

1 2 3 4 5

0
5

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

En
er

gy
 in

 J
ou

le
s

(d) Epoch 3

1 2 3 4 5

0
5

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

En
er

gy
 in

 J
ou

le
s

(e) Epoch 4

1 2 3 4 5

0
5

10
15

20
25

0

0.5

1

1.5

2

2.5

En
er

gy
 in

 J
ou

le
s

(f) Epochs 1-4 (total)

Fig. 8. Energy Usage (mobile, arbitrary path)

edge, as shown in Fig. 7(b). The results are not surprising: The activity period
of nodes closer to the base-station is longer since these nodes must forward all
of the messages from their respective subtrees. Since the base-station is static,
nodes near the base-station consume more energy over the run.

Mobile Base-Station on Arbitrary Path. We next consider a mobile
base-station that traverses a pre-determined path spanning each of the regions
within the deployment area. The device remains stationary at four points for an
epoch of 2.5 hours each. The results are summarized in Fig. 8.

As the sink moves from region to region, the energy consumption trend is
clearly visible in Figs. 8(b)–8(e). The combined total consumption is shown
in Fig. 8(f). Although the consumption pattern is not completely uniform, it
is improved over the static case. Comparing Figs. 8(f) and 7(a), the average
difference between the maximum and minimum consumption across nodes is

Managing Mobile Base-Stations 9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

(a) Base-station Path

1 2 3 4 5

0
5

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

En
er

gy
 in

 J
ou

le
s

(b) Epoch 1

1 2 3 4 5

0
5

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

En
er

gy
 in

 J
ou

le
s

(c) Epoch 2

1 2 3 4 5

0
5

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

En
er

gy
 in

 J
ou

le
s

(d) Epoch 3

1 2 3 4 5

0
5

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

En
er

gy
 in

 J
ou

le
s

(e) Epoch 4

1 2 3 4 5

0
5

10
15

20
25

0

0.5

1

1.5

2

2.5

En
er

gy
 in

 J
ou

le
s

(f) Epochs 1-4 (total)

Fig. 9. Energy Usage (mobile, linear programming)

approximately 1.5J in the static sink case, and approximately 1J in the mobile
case. While the result is far from optimal, it demonstrates the lifetime extension
opportunities afforded by a mobile sink. The limiting factor is that the movement
path ignores the residual energy available across the network. It offers no way
to adapt to consumption conditions.

Mobile Sink on Pre-Computed Path using LP. Prior work in route
management relies on linear programming (LP) to derive an optimal path for the
mobile sink [3]. An important characteristic of the LP approach is an underlying
assumption that radio behavior is time-invariant. This enables pre-calculation
of the complete base-station route and corresponding sojourn times based on
the transmission range of each sensor and the sink, respectively. We applied a
standard LP formulation to our setup to obtain a pre-calculated sink path and
compared the performance of the LP approach to our algorithm. Here we de-
scribe the important elements of the LP formulation, beginning with two possible
objective functions:

1. maximize { minNodei {residual energy at node i} }
2. maximize {

∑
Sitek

{sojourn time at site k} }

We adopt the first objective function because the depletion rate of each
mote is insignificant compared to its initial energy. Hence, the second objective
function would be too time-consuming to experiment with. By contrast, for the
first objective function, the residual energy of each mote can be computed as
the difference between the initial energy and the energy consumed during each
sojourn period of the mobile sink. Thus, given the energy consumed at each node
while the sink is at a location k, it is easy to compute the optimal sink path.

10 M. Mudigonda et al

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

(a) Base-station Path

1 2 3 4 5

0
5

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

En
er

gy
 in

 J
ou

le
s

(b) Epoch 1

1 2 3 4 5

0
5

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

En
er

gy
 in

 J
ou

le
s

(c) Epoch 2

1 2 3 4 5

0
5

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

En
er

gy
 in

 J
ou

le
s

(d) Epoch 3

1 2 3 4 5

0
5

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

En
er

gy
 in

 J
ou

le
s

(e) Epoch 4

1 2 3 4 5

0
5

10
15

20
25

0

0.5

1

1.5

2

2.5

En
er

gy
 in

 J
ou

le
s

(f) Epochs 1-4 (total)

Fig. 10. Energy Usage (mobile, mobility manager)

However, computing the energy consumed at each sensor node is non-trivial.
The residual energy available at a given device depends on its data relay activity.
Simultaneously solving for the optimal inter-node routes and the sink traversal
path is generally not possible in a linear program. Hence, we partition the pro-
gram into two components and run them serially. The behavior of each node
is assumed to be time-invariant; we pre-compute the optimal multi-hop routes
from each node to every potential sink location. For each sink site k, determining
the multi-hop route that yields the least energy consumption involves solving a
supplementary LP with an objective of minimize { maximum {energy consumed
at each node i when sink is at site k} }. On solving the supplementary LP and
passing the output to the primary residual energy maximization LP, we obtain
the desired route, which is optimal when radio behavior is time-invariant. Note
that the ordering of the target locations is only influenced by the reach constraint
imposed on the sink in each step. Thus, using the observed energy depletion rate
and the reach information in our testbed, we compute the LP-based sink route.

Figure 9 shows the results across four epochs, each of 2.5 hours in dura-
tion, when the sink uses this computed path. Figures 9(b)–9(e) show the energy
consumed in each epoch; Fig. 9(f) shows the total energy consumed.

Mobile Base-Station on Dynamic Path. Finally, we study the perfor-
mance of the mobility management framework. In this set of experiments, the
base-station is deployed at an arbitrary initial location without a pre-defined
traversal path. The mobility management framework is used to collect residual
energy data and to inform the sink’s trajectory to maximize residual energy
across the network. Every hour, the sink determines whether the regional resid-

Managing Mobile Base-Stations 11

Sink Location Mean (J) Std Deviation (J)

Static (Middle) 1.62 0.4393
Static (End) 1.75 0.5981
Mobile (Arbitrary) 1.56 0.3270
Mobile (LP-computed) 1.49 0.2330
Mobile (Dynamic) 1.43 0.1329
Table 1. Standard Deviation of Power Consumption

ual energy has fallen below the required threshold. If so, the mobile sink initiates
a move. It first computes the average amount of residual energy available in each
region within its reach. The sink then determines the new target location and
directs the robot to move to the corresponding coordinate location.

Again, the experiment was executed for ten hours. Note that it does not
matter where the sink is placed since the mobility manager uses network mea-
surements to guide its path. The experiment resulted in a total of three moves,
dividing the run into four epochs. The results are summarized in Fig. 10. It is
important to emphasize the low degree of variability across the network.

Comparing Mobility Strategies. To quantify the uniformity of energy
consumption across mobility strategies, we compare standard deviations in Ta-
ble 1. When the static sink is placed at the center of the network, the standard
deviation in residual energy is low. Perhaps surprisingly, the opposite is true
when the sink is placed at one end of the testbed. The explanation is straight-
forward: The nodes in the testbed form their routing paths based on network
connectivity. When the static sink is placed at one end of the network, the nodes
that are at the other end are at a distance of five hops from the sink. However,
when the sink is at the center, the nodes that are furthest away are only three
hops; the resulting difference in load is smaller.

The standard deviation in energy consumption is smallest in the case of the
dynamically computed path. This shows that our mobility decision engine is
effective in achieving the intended goal — ensuring that all nodes in a sensor
network deplete their energy reserves at approximately equal rates. Further, the
mean energy consumption is also reduced when the sink is moved along the path
computed by our mobility manager.

Effective Lifetime. The goal of engineering an intelligent sink is to extend
effective network lifetime. Figure 11 shows a comparison of expected node life-
times using various mobility management strategies. These are estimates of how
long each device will stay active based on battery capacity and average consump-
tion rates; network dynamics will obviously play a role in determining the actual
lifetimes. The arbitrary path strategy does a poor job of ensuring uniformity.
As expected, the LP-computed path reduces variability, as does our dynamic
strategy. Notice, however, the expected lifetime of the first node to die in each
of these cases; there is a significant difference. With a pre-defined path, the first
node dies in 42 hours, whereas with the LP-computed path, the first node dies
at 63 hours. Using our mobility manager, the first node dies after 68 hours.

12 M. Mudigonda et al

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 5 10 15 20 25 30

E
x
p
e
c
te

d
 L

if
e
ti
m

e
 (

H
o
u
rs

)

Node ID

Predefined path (average=57 hrs; minimum=42 hrs)
LP-computed path (average=72 hrs; minimum=62 hrs)

Dynamic path (average=73 hrs; minimum=68 hrs)

Fig. 11. Lifetime Extensions across
Strategies

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

%
 o

f
m

e
s
s
a
g
e
s
 r

e
c
e
iv

e
d
 a

t
s
in

k

Node ID

Predefined path
LP-computed path

Dynamic path

Fig. 12. Network Throughput

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

%
 o

f
m

e
s
s
a

g
e

s
 r

e
c
e

iv
e

d
 a

t
s
in

k

Node ID

Energy metric (average 66%)
Congestion metric (average 85%)

Both metrics (average 78%)

Fig. 13. Network Throughput (lifetime, congestion)

Mobility Overhead. There is a cost associated with each transition. When
the sink moves from one location to another, routes from the stationary nodes to
the sink must be recomputed. In our case, we use a näıve strategy, canceling all
routes and reforming the tree. Over the experiments we ran, we observed that
the energy cost for the stationary nodes is about 0.1 J for each sink transition.
Further, our protocol introduces an extra cost for sending residual energy data
(4 bytes per message). The overhead is justified by the significant benefit that
changes in the network topology can offer.

Throughput. Finally, we consider the throughput of the network as a vali-
dation measure to ensure that the application is functioning properly. While our
initial experiments exhibited poor yield, we were able to improve the yield using
a supplementary radio layer focused on reducing link quality variation among
nodes [6]. Figure 12 shows that most nodes deliver 60% to 80% of their messages.

5.2 Network Congestion

We also studied the impact of the network congestion decision metric. The ex-
perimental setup (length, application) was the same, except that the mobility
manager used NetworkCongestionMonitor as the metric generator. In Fig. 13, we
compare the average throughput from each node when using the network conges-
tion metric as compared to the residual energy metric. When the sink makes mo-
bility decisions based on network congestion, the average throughput increases
from 66% to 85%. Note that we did not consider network longevity, focusing
exclusively on improving network throughput.

We next repeated the experiments, applying both metrics. The primary met-
ric was network congestion; residual energy was used as a secondary metric in

Managing Mobile Base-Stations 13

the event of ties. In this case, the average throughput was approximately 79%,
and the lifetime of the first node to die was 59 hours. In the future, we expect to
further investigate simultaneous optimization strategies using multiple metrics.

6 Discussion

Extending to Other Metrics. The prototype implementation of the mobility man-
agement framework demonstrates the utility of our approach in managing a
mobile sink. Using this implementation, we have conducted significant evalua-
tion studies to verify that the approach achieves uniform energy consumption
across the network. The primary extension point for using the implementation
in settings other than a testbed environment is the use of other decision metric
components. Although we have not presented complete evaluation results here
(primarily for lack of space), we have experimented with this possibility using
the network congestion monitor and the message distance monitor. The benefit
afforded by these metrics is easy to see: If the sink is located in a congested area,
the throughput of the network is bound to suffer; and if a majority of messages
must travel a long distance, throughput is again going to be affected.

Our mobility management framework can be viewed as a harness for devel-
oping specific strategies for controlling a mobile sink. For example, in [9], the
authors use a mobile sink to collect data from a sensor network with the aim
of reducing the number of multi-hop data transmissions. The sink can travel at
varying speeds depending upon how much data it can buffer. This system can
be implemented using our framework by designing a metric analyzer component
sensitive to buffer size, which determines both a target speed and location for
the sink. One of the directions for our future development is to develop a generic
testbed that can be available for testing such mobility protocols.

Sophistication in Metric Analysis. A potential problem with performing simple
pair-wise analysis in the metric analyzer is network partitioning. Consider a
scenario in which the sink is in a given region of the network, and a small
number of nodes bridge its current reach with the rest of the network. If these
nodes die, the sink may deplete the regions in its current reach and declare the
lifetime of the sensor network to be over. With a more careful analysis, the sink
can detect that the throughput has dropped in an unpredictable manner. This
recognition can trigger another discovery traversal to rebuild the sink’s view of
the available nodes.

As another example, we observe that there is a correlation between the in-
degree of the sink and network congestion. The larger the number of adjacent
(gateway) nodes, the higher the level of congestion and associated retransmis-
sions near the sink. Thus, it may be in the best interest of both the sink and
the network to limit the number of gateways it associates with. However, if the
number of gateways is too small, they will become overloaded by the network
traffic being routed to the sink. Hence, it may be valuable to limit the between-
ness of the gateway nodes (i.e., the number of multi-hop routes passing through
each node) [10]. Our framework is capable of accounting for such constraints.

14 M. Mudigonda et al

Algorithm Algorithm
execution

Metric Platform mobility Metric
generation

Joint Mobility and Rout-
ing [11]

Offline Load distribution Low Simulated
Model

Greedy Maximum Residual
Energy (GMRE) [3]

Online Residual energy Variable Simulated
Model

Adaptive Sink Mobility [19] Online Data events Variable Observed

Deterministic/Random
Walk Models [5]

None N/A Pre-defined N/A

Our Dynamic Mobility Man-
agement Framework

Online Parameterizable: Residual
energy, network congestion,
distance to sink

Variable depending
on network condi-
tions

Observed

Table 2. Comparison of Related Schemes for Managing Mobile Sinks

7 Related Work

The literature is rich with work focused on extending the lifetime of sensor
networks [13, 14, 17, 24]. Here we present an overview of related research and
identify the novelty of our contributions (summary in Table 2).

Mathematical Sink Trajectory Models. Luo et al. [11] show, using a mathemati-
cal model, that when nodes are distributed according to a Poisson distribution
within a circle, the (near-) optimal mobility strategy is for the sink to travel
along the periphery of the circle. They argue that using such a path will improve
lifetime by approximately 500% over using a static sink. They also propose an
algorithm for routing to the sink. As the sink moves along the network boundary,
message flows from the network “follow” the sink.

Wang et al. [21] present an LP formulation for determining an optimal sink
trajectory parameterized by sojourn time. Their model makes several simplifying
assumptions, limiting its use. Basagni et al. [3] improve upon the LP model pre-
sented in [21] by lifting some of these assumptions. They also present a new path
planning scheme, Greedy Maximum Residual Energy: rather than pre-computing
the sojourn times at different nodes in the network, the mobile sink greedily se-
lects a neighboring node as its new location based on residual energy.

Efficient Message Routing Protocols. Baruah et al. [2] present an approach to
maintaining node-to-sink routes within a network. They do not address the prob-
lem of determining an optimal mobility pattern, instead focusing on how to
maintain usable data routes. Urgaonkar et al. [18] present an approach that
allows static nodes to learn a sink’s mobility pattern. Some nodes (“moles”)
statistically characterize the sink’s (random) movements using a probability dis-
tribution function; the result is used to inform message forwarding decisions.

Luo et al. [12] extend MintRoute [22] by adding steps to account for (i) link
breakage, (ii) topological changes, and (iii) packet loss. They test their routing
protocol using TOSSIM and illustrate the energy savings associated with using
a mobile, time-synchronized sink. Chakrabarti et al. [4] use a pre-defined path to
bring the mobile sink close to each node in the network to minimize long-range
radio transmissions, thus reducing transmission energy.

Managing Mobile Base-Stations 15

Data Ferrying/Relaying. Jea et al. [8] present a load-balanced data collection
algorithm that uses multiple mobile elements (“mules”) to collect data. The
authors provide evidence supporting the use of large storage buffers on both the
static nodes and mules to ensure data integrity. Shah et al. [15] provide insight
into buffer requirements for nodes and mules within a sensor network and the
effects of various buffer sizes on transmission success rates.

Somasundara et al. [1] and Kansal et al. [9] prove that mobile-sink-based
sensor networks transmit fewer packets of data when compared to their static
counterparts. They propose a model for calculating a data-complete trajectory
for a mobile sink. Wang et al. [20] discuss two alternatives to using a mobile sink
for sensor network lifetime extension in cases where utilizing a mobile sink might
be infeasible. The first method uses extra static nodes near the sink. These extra
nodes act like “sleeper” nodes within the network, and sleep for long durations,
but once other nodes around the gateway begin to fail, they wake up to continue
servicing the network. The second method uses additional resource-rich nodes
near the sink, which together provide a rudimentary load balancing service by
distributing the workload of the other gateway nodes.

8 Conclusion

We presented the design of an extensible, generalized framework for managing
the trajectory of a mobile sink within a static sensor network. The framework
supports objective-specific mobility decision metrics, based on which the path of
a mobile sink can be computed dynamically. The framework does not require any
a priori information about the sensor network, except for the extent of the area it
covers. The framework periodically calculates the quality of each region within
the network using dynamic measurements, based on an optimization-specific
notion of quality (e.g., maximum residual node energy). This global portrait is
used to drive sink mobility decisions without any assumptions of constancy or
uniformity in radio reach or power consumption.

We also presented a reference implementation of the framework for TinyOS,
with an emphasis on decision metrics aimed at ensuring uniform energy con-
sumption across devices. The goal was to maximize network longevity. We eval-
uated this implementation using experiments on a testbed of TelosB motes. The
dynamic base-station path computed by our mobility manager achieved a lower
mean and standard deviation in energy consumption (1.43J and 0.13J) compared
to an arbitrary path (1.56J and 0.33J), and a path computed using a typical LP
formulation (1.49J and 0.23J). This means that the rate of consumption was
more uniform, and consequently, the effective lifetime of the network was longer.
Although the energy savings look modest, the lifetime extension was substantial.

Acknowledgments. This work was supported in part by the National Science
Foundation (CNS-0746632, CNS-0745846). The authors gratefully acknowledge
the NSF for its support.

16 M. Mudigonda et al

References

1. A. Somasundara et al. Controllably mobile infrastructure for low energy embedded
networks. IEEE Trans. on Mobile Computing, 05(8):958–973, 2006.

2. P. Baruah et al. Learning-enforced time domain routing to mobile sinks in wireless
sensor fields. In LCN ’04, pages 525–532, Washington, DC, USA, 2004. IEEE.

3. S. Basagni et al. Controlled sink mobility for prolonging wireless sensor networks
lifetime. Wireless Networks, 14(6):831–858, December 2008.

4. Chakrabarti et al. Communication power optimization in a sensor network with a
path-constrained mobile observer. ACM TOSN, 2(3):297–324, 2006.

5. I. Chatzigiannakis et al. Sink mobility protocols for data collection in wireless
sensor networks. In MobiWac ’06, pages 52–59, New York, NY, USA, 2006. ACM.

6. A. R. Dalton et al. Reducing the impact of link quality variation in embedded
wireless networks. Int. J. of Ad Hoc & Sensor Networks (AHSWN).

7. E. Ekici, Y. Gu, and D. Bozdag. Mobility-based communication in wireless sensor
networks. IEEE Communications Magazine, 44(6):56–62, jul 2006.

8. D. Jea et al. Multiple controlled mobile elements (data mules) for data collection
in sensor networks. In DCOSS’05, pages 244–257, June 2005. Springer.

9. A. Kansal et al. Intelligent fluid infrastructure for embedded networks. In MobiSys
’04, pages 111–124, New York, NY, USA, 2004. ACM.

10. L.C. Freeman et al. Centrality in Valued Graphs: A Measure of Betweeness Based
on Network Flow. Social Networks, 13(141):141–154, 1991.

11. J. Luo and J.-P. Hubaux. Joint mobility and routing for lifetime elongation in
wireless sensor networks. In INFOCOM’05, pages 1735–1746, New York, 2005.

12. J. Luo et al. Mobiroute: Routing towards a mobile sink for improving lifetime in
sensor networks. In DCOSS ’06, pages 480–497, Berlin/Heidelberg, 2006. Springer.

13. I. Papadimitriou and L. Georgiadis. Maximum lifetime routing to mobile sink in
wireless sensor networks. In Proc. IEEE SoftCOM, New York, September 2005.

14. S. Jain et al. Exploiting mobility for energy efficient data collection in wireless
sensor networks. Mob. Netw. Appl., 11(3):327–339, 2006.

15. R. Shah et al. Data mules: modeling a three-tier architecture for sparse sensor
networks. In WSNA’03, pages 30–41, New York, 11 May 2003. IEEE Press.

16. K. Srinivasan and P. Levis. RSSI is under appreciated. In EmNets’06, Boston,
MA, May’06.

17. L. Tong, Q. Zhao, and S. Adireddy. Sensor networks with mobile agents. In
MILCOM 2003, pages 688–693, New York, October 2003. IEEE.

18. R. Urgaonkar and B. Krishnamachari. FLOW: An efficient forwarding scheme to
mobile sink in wireless sensor networks. In SECON ’04, Washington, DC, 2004.

19. Z. Vincze et al. Adaptive sink mobility in event-driven multi-hop wireless sensor
networks. In InterSense ’06, page 13, New York, NY, USA, 2006. ACM.

20. W. Wang et al. Using mobile relays to prolong the lifetime of wireless sensor
networks. In MobiCom ’05, pages 270–283, New York, NY, USA, 2005. ACM.

21. Z. M. Wang et al. Exploiting sink mobility for maximizing sensor networks lifetime.
In HICSS ’05, page 287.1, Washington, DC, USA, 2005. IEEE Computer Society.

22. A. Woo et al. Taming the underlying challenges of reliable multihop routing in
sensor networks. In SenSys ’03, pages 14–27, New York, NY, USA, 2003. ACM.

23. O. Younis and S. Fahmy. An experimental study of routing and data aggregation
in sensor networks. In LOCAN ’05, Washington, DC, USA, November 2005.

24. W. Zhao et al. A message ferrying approach for data delivery in sparse mobile ad
hoc networks. In MobiHoc ’04, pages 187–198, New York, NY, USA, 2004. ACM.

