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a  b  s  t  r  a  c  t

The  Atmosphere–Land  Exchange  Surface  Energy  (ALEX)  balance  model  is an  analytical  formulation  of
the  energy  and  mass  transport  within  the  soil  and  the  vegetation  canopy  used  for  simulating  energy,
evapotranspiration,  and  CO2 fluxes  in  a wide  range  of vegetation  environments.  The  objective  of  this
study  was  to  evaluate  the ability  of ALEX  to simulate  the  effect  of  soil-surface  leaf  litter  residue  on soil
heat  conduction  (G),  sensible  heat  (H),  evapotranspiration  (ET)  (or  latent  heat (LE)  when  expressed  as
rate of  energy  loss)  and  CO2 fluxes  in  a deciduous  forest.  The  model  was evaluated  in  a deciduous  forest
in  Oak  Ridge,  Tennessee  where  about  550  g  m−2 of  dry weight  of  slow  decomposing  leaf  litter  is produced
annually  during  the  fall season.  Incorporating  an  explicit  formulation  of  water  and  energy  exchanges
within  the residue  layer  in  ALEX  improved  the  performance  of  the model  against  eddy  covariance  and  G
measurements.  The  discrepancies  between  model  simulations  made  with  and  without  leaf  litter  residue
were  largest  during  the  spring  and  fall, when  soil  contributions  dominated  the  energy  budget  of  the  forest.

During these  periods,  particularly  during  the spring,  without  the  inclusion  of the  residue  layer  the model
overpredicted  LE,  G,  soil  temperature  and  soil  moisture,  and underpredicted  H.  The  model  showed  no
differences  in  simulating  above-canopy  net  radiation  (RN),  with  a slight  difference  in  the  above-canopy
CO2 flux.  The  largest  model  improvement  for residue  effects  was  in  the simulation  of G,  with  the slope
of  the  regression  line  between  predicted  and  measured  values  reduced  from  2.28  for  the  model  without
residue  effects  to 1.07  when  the  residue  effect  was  considered.
. Introduction

Copious amounts of undecomposed leaf litter persist on the floor
f deciduous forests in Tennesseee and across the south eastern
nited States (Hanson et al., 2003a). This heavy leaf litter residue
ffects all aspects of the energy balance, temperature, moisture,
nd CO2 flux processes in the forest environment (Caprio et al.,
985; Enz et al., 1988; Sauer et al., 1998; Shen and Tanner, 1990;
anner and Shen, 1990; Aase and Siddoway, 1980; Aiken et al.,
997; Grant et al., 1995; Bussiere and Cellier, 1994; Wu et al.,
996). Accurate knowledge of the impact of the residue cover on
he soil energy and water budgets is important in evaluating the
nergy, water, and CO2 budgets that are routinely monitored by
ux tower networks in deciduous forest environments (Turnipseed
t al., 2002; Oliphant et al., 2004; Arain et al., 2003). Models

escribing the soil–plant–atmosphere interactions represent the
ost attractive modeling framework to incorporate formulations

or exchange processes of energy and mass within residue cover

∗ Corresponding author. Tel. +1 865 576 1249; fax: +1 865 576 1327
E-mail address: tim.wilson@noaa.gov (T.B. Wilson).

168-1923/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.agrformet.2012.03.013
© 2012 Elsevier B.V. All rights reserved.

below vegetation stands. Unlike empirical or statistical methods
that need constant parameter calibrations, soil–plant–atmosphere
models are process-based plant–environment models that attempt
to explicitly formulate the important energy and mass exchange
processes to provide a priori predictions of energy, water, and
CO2 fluxes. Soil–plant–atmosphere models vary widely, and
examples range from the simple bulk-canopy “big-leaf” types
(Monteith, 1965; Priestley and Taylor, 1972), the intermedi-
ate two-source (soil + canopy) types with either single-layer
or multi-layer soil profile (Shuttleworth and Wallace, 1985;
Norman et al., 1995; Anderson et al., 2000, 2003), to detailed,
multi-layer process models of the soil–plant–atmosphere sys-
tem (Baldocchi and Wilson, 2001; Norman and Campbell, 1983;
Dickinson et al., 1993). Despite significant progress in understand-
ing soil–plant–atmosphere interactions, only a few models include
explicit formulations of residue effects on the soil surface below
growing vegetation.

Ogee and Brunet (2002) performed one of the few studies that

evaluated how residue cover affects the microclimate below a veg-
etation canopy during the growing season. They added a heat and
water leaf litter sub-model to a soil vegetation atmosphere transfer
(SVAT) model and successfully predicted the soil and litter water

dx.doi.org/10.1016/j.agrformet.2012.03.013
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
mailto:tim.wilson@noaa.gov
dx.doi.org/10.1016/j.agrformet.2012.03.013
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ontent, soil and litter temperature, and fluxes of sensible heat,
oil heat conduction, and latent heat below a pine forest in south-
est France. However, they did not simulate fluxes of energy, water

apor, and CO2 above the canopy. El Maayar et al. (2001) found
hat adding a formulation of organic soil horizon atop a mineral
oil layer in an Integrated Biosphere Simulator (IBIS) model greatly
mproved model performance in simulating fluxes of sensible heat
H), soil heat conduction (G), latent heat (LE), and CO2 in both decid-
ous and conifer forests in the boreal forest region of Canada. A
ersion of IBIS called Agro-IBIS (Kucharik and Brye, 2003) over-
redicted energy budget components over the different seasons in
orn and soybean fields in Mead, Nebraska, and this disagreement
as attributed to the omission of residue formulation in the model

Kucharik and Twine, 2007). Other previous studies evaluated how
esidues affect surface turbulence, soil moisture, soil temperature,
oil CO2 flux, and soil nutrients in addition to the surface energy
omponents of radiation, sensible heat, evaporation, and soil heat
ux (Sauer et al., 1996; Burgess et al., 2002; Baker et al., 2001).
he quantification of residue properties has been conducted for
odeling surface microclimate (Daughtry, 2001; Wagner-Riddle

t al., 1996; Shen and Tanner, 1990), and several models aimed at
imulating the effects of residues on the soil surface without the
resence of growing vegetation are available (Enrique et al., 1999;
ristow et al., 1986; Gijsman et al., 2002; Bussiere and Cellier, 1994).

A two-source (canopy + soil) model known as the
tmosphere–Land Exchange Surface Energy (ALEX) balance
odel developed by Anderson et al. (2000) is used in this study

o evaluate the benefits of explicitly including the formulations
or residues atop the soil surface below the vegetation canopy.
nderson et al. developed ALEX as a simple, analytical model
ased on the bulk canopy resistance to canopy-atmosphere gas
xchange formulated using canopy light-use efficiency (LUE),
hich is defined as the ratio of net canopy carbon assimilation to

he photosynthetically active radiation absorbed (APAR) by the
anopy. Motivation for formulating canopy resistance in terms of
anopy LUE is that measurements of bulk canopy LUE are relatively
ell conserved for a given vegetation system and LUE relieves

he burden of computation and detailed data needs (Gower et al.,
999). To predict energy, water and CO2 fluxes above the plant
anopy and at the soil surface beneath the canopy, ALEX links
quations of the canopy energy and mass exchange processes
o equations of soil water transport and heat conduction so that
ntegrative solutions partition water and heat fluxes between the
anopy and the soil surface below the canopy. Of particular interest
o this study is that ALEX estimates the sensible heat and water
apor fluxes at the soil surface based on a soil surface transfer
oefficient that is a simple empirical function of wind speed,
urface roughness, and the turbulence intensity and length-scale
Sauer and Norman, 1995). This simple transfer coefficient does
ot explicitly include the presence of heavy residue cover on the
oil surface. This omission is largely because the residue layer
s a relatively complicated structure of plant materials that are
ifficult to monitor in individual fields. Moreover, formulating
he coupling of the residue layer between soil surface and the air
ayer below the canopy in a plant–environment model is a difficult
hallenge. Notwithstanding this challenge, effects of residues on
he variability of energy, water, and CO2 fluxes must be considered
o improve the performance of ALEX throughout the growing
eason in different vegetation environments.

The ALEX model has been used successfully to evaluate the
icroclimate observed in various forests, grasses, and crops in

he United States and Canada (Anderson et al., 2000). Kongoli and

land (2000) modified the soil routine in ALEX to simulate the
bserved long-term snow depth, accumulation, ablation and melt
n agricultural fields in the Upper Midwestern United States, but
hey removed the effects of the vegetation. Houborg et al. (2009)
Meteorology 161 (2012) 134– 147 135

recently evaluated the potential for ALEX to adopt a more detailed
model of canopy photosynthesis and transpiration based on the
photosynthesis–stomatal conductance for individual leaves, using
formulations proposed by Collatz et al. (1991, 1992),  Ball et al.
(1987), and Farquhar et al. (1980),  but they found no significant
advantage over the canopy LUE scheme which is currently used in
ALEX. So far these evaluations of ALEX have given less attention to
the effects of the soil surface below the canopy, and instead have
focused on climate and canopy characteristics as the key factors for
predicting the carbon dioxide and energy exchange between the
vegetation canopy and the atmosphere.

Our focus in this paper is to assess whether explicitly includ-
ing a residue sub-model in the ALEX model benefits the model
predictions of energy, water, and CO2 fluxes in deciduous for-
est environments from spring leaf emergence through the fall
senescence. Detailed evaluations of residue properties and detailed
investigations of the dynamic interactions within the residue cover
are beyond the focus of this paper. Many previous field and
modeling studies have conducted detailed investigations of the
properties, characteristics, and dynamic interactions of residue
cover over the soil surface. For example, analyses of field studies
have improved our understanding of the wind speed and turbulent
statistics within and above crop residues (Novak et al., 2000a), and
the transfer of thermal radiation, sensible heat, latent heat and heat
conduction within and beneath residues (Shen and Tanner, 1990;
Tanner and Shen, 1990; Novak et al., 2000b).  In addition, model-
ing studies have assessed the temperature and energy and water
exchange within crop residue cover and have evaluated the impact
of residue on soil temperature, latent heat, water content, and
soil carbon and nitrogen dynamics (Bristow et al., 1986; Bussiere
and Cellier, 1994; Findeling et al., 2007; Chung and Horton, 1987;
Ferreira et al., 2003).

The objective of this paper is to modify the ALEX model by
including in it the formulation of water and energy transport in
a soil–residue–atmosphere system developed by Bristow et al.
(1986), and to evaluate the modified ALEX model against the orig-
inal ALEX model in simulating the climate in a deciduous forest
environment. The purpose of the Bristow et al. model is to repre-
sent the dynamic interactions between the soil, residue, and the
atmosphere to provide separate estimates of residue energy and
water budgets that are coupled to the soil energy and water bud-
gets. Results from the modified and unmodified ALEX models are
compared to the measured soil heat conduction and eddy covari-
ance measurements of water vapor, sensible heat, and CO2 fluxes
over the forest across hours, days and years. This study (1) explores
the relevance of using the modified-residue ALEX model during low
leaf area index (LAI) conditions when the forest floor is exposed to
high intensities of radiation, wind, and precipitation, and (2) iden-
tifies periods during the growing season when the non-residue
ALEX model may  be inadequate for predicting the microclimate
conditions in forest environments.

2. Methods

2.1. ALEX description

The ALEX model is formulated as a soil-vegetation system ana-
lytical model that can combine dynamic interactions of multiple
soil layers and a single vegetation canopy–air layer to determine
the exchange of radiation, water vapor, sensible heat, and CO2 at
the soil surface and above the plant canopy. The ALEX model is

a simplified version of the mechanistic, multi-layer Cupid model
which offers a more detailed formulation of vertical profiles of
temperature and vapor pressure, and fluxes of radiation, sensible
heat, water vapor, and CO2 throughout the soil–plant–atmosphere
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Table 1
Parameters and values used in the temperate deciduous forest test of the ALEX model
simulations.

Parameters Symbol Value

Site properties
Latitude, Longitude Lat, Lon 35◦55′48′′ , 84◦19′49′′

Elevation m 336
Reference height zr(m)  43

Canopy properties
Height of canopy top, base h (m) 26
LAI max, min Lmax, Lmin 5.5, 1.5
Leaf  length z1 (m)  0.06
Fraction of range of green
vegetation

fgleaf 0.1–1.0

Canopy roughness, displacement
height

zo , zd(m) 0.07 × h, 0.84 × h

Canopy light use efficiency (LUE) ˇ 0.012
Nominal ratio of intercellular to
ambient CO2 at  ̌ = 0.012,  ̌ = 0

�n = Ci/Ca 0.8, 0.2

Green leaf absorptivity (visible,
near infrared, thermal)

VIS, NIR, TIR 0.85, 0.08, 0.96

Dead leaf absorptivity (visible,
near infrared, thermal)

VIS, NIR, TIR 0.55, 0.35, 0.96

Nominal maximum precipitation
interception by canopy

wmax (mm) 0.15

Nominal maximum fraction of
wetted LAI

fwetmax 0.2

Rooting depth zroot (m) 1.5

Soil properties
Surface reflectivity of visible,
near-infrared, thermal emissivity

vis, NIR, εs 0.10, 0.30, 0.96

Bulk density BDs (g kg−3) 1.5
Textural size fractions of sand,
silt, clay, quartz

0.25, 0.55, 0.20, 0.20

Air  entry potential  e (J kg−1) −3.3
Moisture release curve
coefficient

bx 6

Saturated hydraulic conductivity Ks (kg s m−3) 4.5 × 10−4

Residue properties
Layer thickness zresidue (m) 0.02
Residue bulk density BDr(kg m−3) 45
Residue dry weight RDW (mg ha−1) 7.0
The Bristow residue moisture
release curve

br 2.4

The Bristow residue moisture
characteristic coefficient

Ar (J kg−1) −350

Nominal maximum water stored
within layer

WRmax (g g−1) 4
36 T.B. Wilson et al. / Agricultural and 

ystem (Norman and Campbell, 1983; Wilson et al., 2003; Norman,
982). A detailed description of ALEX is found in Anderson et al.
2000).  The number of soil layers is specified, along with the leaf
rea index (LAI) and canopy height, as well as the canopy turbu-
ence roughness length and displacement height. The net radiation
f the canopy layer and the photosynthetically active radiation
bsorbed (APAR) by the green fraction of LAI are calculated based
n a simple analytical formulation of solar irradiance, LAI, leaf angle
istribution (LAD), leaf absorptivity, and soil reflectance (Norman
nd Campbell, 1983). The use of APAR permits the calculation of
he canopy stomatal resistance as a cubic function of wind speed,
O2 concentration, LAI and LUE (Anderson et al., 2000). The canopy
O2 flux or carbon uptake by photosynthesis (assimilation) is then
alculated based on the canopy stomatal resistance. The canopy
nergy balance components are calculated as the combination of
everal factors, including differences in temperature and vapor
ressure between the canopy and air layer above, net radiation,
anopy stomatal resistance (estimated based on LUE), and canopy
erodynamic resistance (estimated based on the wind speed). To
stimate the canopy sensible and latent heat fluxes, canopy tem-
erature and vapor pressure are extrapolated by combining the
quations of canopy–air temperature and vapor pressure with the
anopy energy budget calculation. An iterative solution of these
quations leads to estimated values of the canopy temperature and
apor pressure so that the sum of the latent and sensible heat fluxes
s equal to the canopy net radiation.

The water vapor transport and heat conduction within the
oil profile are obtained by solving second order, time-dependent,
on-linear partial differential equations. The equation for the soil
emperature (T) and heat conduction (G) is given by

sCs
∂T
∂t

= −∂G
∂z

+ Q (1)

here �sCs is the volumetric soil heat capacity (J m−3 K−1), t is the
ime (s), z is the soil depth (m), Q is the heat source calculated as
RNs − LEs)/∇ z (W m−3); R N s and L E s are the net radiation and
atent energy at the soil surface and ∇z is the thickness of the soil
urface layer (m). The G is derived by integrating Eq. (1) over the
oil surface layer to obtain

 = �sCs∇z ∂T
∂t

+ Ks
∂T
∂z

(2)

here Ks is the soil thermal conductivity (W m−1 K−1). Similarly,
he time rate of change of the soil water content is given by

w
∂�
∂t

= − ∂
∂z

(
Kw
∂ 
∂z

− Kwg

)
− U (3)

here �w is the density of water (kg m−3), � is the volumetric
oil water content (m3 m−3), Kw is the soil hydraulic conductivity
kg s m−3),   is the soil water potential (J kg−1), g is the acceleration
f gravity (m s−2), and U is the volumetric soil water sink (kg m−3

−1).
Eqs. (1) and (3) are solved as implicit finite difference equa-

ions using a Newton–Raphson procedure adopted from Campbell
1985). Solutions of the soil temperature and water profiles from
qs. (1) and (3) are coupled with equations of the temperature and
apor pressure within the canopy air space. This coupling arrange-
ent enables the energy balance components within the canopy

ir space and at the soil surface to be solved simultaneously using
nputs of weather variables above the canopy and soil conditions at
he lower boundary of the root depth in the soil; thus soil surface

ariables, including temperature, vapor pressure, surface latent and
ensible heat are calculated rather than specified as input variables.
he soil surface latent heat and the sensible heat fluxes are cal-
ulated from the respective gradients of soil surface temperature
and vapor pressure and the temperature and vapor pressure in the
canopy air space using the soil surface water vapor and heat transfer
coefficients (Sauer and Norman, 1995; Sauer et al., 1995).

2.2. Equations of residue processes

This section presents the modifications made to include the
explicit formulation of residue processes in the ALEX model. Impor-
tant modifications consisted of formulating equations of energy,
water, and CO2 transport within the residues. Only the litter residue
quantity was measured in this study; other residue characteristics,
including properties of water and radiation transport within the
residues were obtained from the literature (Table 1). Equations of
the residue energy and water transfer processes were adopted from
Bristow et al. (1986) and are summarized below. The residue heat
conduction was  calculated by solving Eq. (1) simultaneously for the
residue layers and the soil layers, using only inputs of air tempera-

ture above the canopy and soil temperature at the lower boundary
of the root zone. The transfer of water vapor within the residue



Forest 

w
t

(

w
o
(
v
v
e
u

K

w
t

K

w
t
c

D

w
(
w

r
d
o
d
t
a
a
p
c
b
a
p
t
e
v
w

m
l
t
r
e

N

w
u
r
l
u
a
(
g

N

T.B. Wilson et al. / Agricultural and 

as calculated based on the time rate of change of water within
he residues (Bristow et al., 1986), given as

�a�
P

) ∂e
∂t

= ∂
∂z

(
Kv
∂e
∂z

)
+ Uv (4)

here �a is the density of air (1.292 kg m−3), �  = 0.622 is the ratio
f the molecular weights of water vapor (18.02 g mol−1) to dry air
28.97 g mol−1), P is the atmospheric pressure (kPa), e is the water
apor pressure (kPa), Kv is the turbulence conductivity for water
apor (kg m−1 s−1 kPa−1), and Uv is the residue source-sink for
vaporation or condensation (kg m−3 s−1). The Kv is determined
sing an equation by (Norman and Campbell, 1983):

v = �Kh
CpP

(5)

here Cp is the specific heat of air (29.3 J mol−1 K−1) and Kh is the
urbulence conductivity for heat (W m−2 K−1) calculated as

h = �aCpDh
�z

(6)

here �z is a specified residue layer depth (m)  and Dh is the
urbulent diffusivity of heat transfer within the residue (m2 s−1)
alculated as

h = Dha(1 + 0.007T)(1 + 4u) (7)

here Dha is the molecular diffusivity of heat transfer in air
1.89x10−5m2 s−1) at 0◦C, T is temperature, and u is the horizontal
ind speed.

Similar to Eqs. (1) and (3),  the solution of Eq. (4) in the various
esidue layers is obtained by using the Newton–Raphson finite-
ifference method as reported by Campbell (1985).  The solution
f the Newton–Raphson method is combined with empirically
erived values of the water content and relative humidity (h) within
he residue layers, where values of the residue water content (�r)
re estimated by (Bristow et al., 1986) as �r = 0.064(h−0.51 − 1)−0.42,
nd this iteration process leads to the derivation of residue vapor
ressure values that balance with the change in the residue water
ontent due to evaporation or rainfall interception. The upper
oundary and lower boundary conditions used in solving Eq. (4)
re the vapor pressure of the canopy air space and the water vapor
ressure at the soil surface, respectively. The vapor pressure of
he canopy air space is obtained from the solution of the canopy
nergy balance as described in Section 2.1,  and the soil surface
apor pressure is calculated assuming equilibrium with the soil
ater potential at the soil surface.

The available net radiation within the residue layers is deter-
ined as the sum of the short wave solar radiation (SWR) and the

ong-wave thermal radiation (LWR) within the residue. The equa-
ion used to calculate the net SWR  (NSWR) at a given layer i in the
esidue was developed by Norman (1979) and reported by (Bristow
t al., 1986), and given as

SWRi = (1 − t − r)[(1 − td)(Sd,i+1 + Sd,u,i−1) + (1 − tb)Sb,i+1] (8)

here t and r are the transmittance and reflectance of the individ-
al residue elements, td is the diffuse radiation transmittance of the
esidue layer, tb is the direct radiation transmittance of the residue
ayer, Sd (W m−2) is the downwelling diffuse radiation, Sd,u is the
pwelling diffuse radiation, and Sb (W m−2) is the direct beam radi-
tion. Using a formulation of LWR  transfer within plant canopies
Norman, 1979), Bristow et al. (1986) calculated the net LWR  at any

iven layer i within the residue that is divided into three layers:

LWRi = ai	[td,i+1�acT
4
ac + �i+1T

4
i+1 + �i−1T

4
i−1 + td,i−1�sT

4
s − 2T4

i ]

(9)
Meteorology 161 (2012) 134– 147 137

where ai is the absorptivity of the residue layer, 	 is the Stefan-
Boltzmann constant (W m−2 K−1), �ac, �i, and �s are the emissivity
values for the canopy air space, the residue layer, and the soil sur-
face; Tac, Ti, and Ts are the temperature values of the canopy air
space, the residue layer, and the soil surface; and ai = �i. Eqs. (8)
and (9) are combined to get the available net radiation for a layer
i as RNi = SWRi + LWRi. The net energy balance above the surface of
the residue is given by

RNr = Hr + Er + G (10)

where Hr and Er are the latent heat and the sensible heat fluxes
above the residue, and G is the heat conduction of the soil surface
below the residue. Values of the vapor pressure (er) from Eq. (4)
and temperature (Tr) from Eq. (1) at the top layer of the residue are
combined with vapor pressure (eac) and temperature (Tac) of the
canopy air space to compute Hr and Er as

Hr = �aCp
Tr − Tac
Rr

(11)

Er = �aCp
�

er − eac
Rr

(12)

where Rr is the turbulent resistance (1/eddy diffusivity) (s m−2)
over the residue cover and � is the psychrometric constant
(0.067 kPa K−1). Using the wind speed (us) at the residue height,
Rr is estimated from an empirical function developedby Sauer et al.
(1995) as,

Rr = 1
0.0035 + 0.011 ∗ Us

(13)

Another modification related to the soil-residue formulation in
ALEX is the estimation of respiration from the residue layer as a
component of the total respiration of CO2 from the ground. The
traditional method for estimating soil respiration in ALEX used of
the empirical equation by Norman et al. (1992) using values of LAI,
and soil temperature and soil moisture in the top 0.1 m soil depth,
which is suitable for bare soil surface conditions. The residue com-
ponent of the surface respiration is calculated using an empirical
equation that Hanson et al. (2003a) proposed to estimate leaf litter
respiration below the deciduous forest reported in this study:

Rresp = ab
ˇ(Trm−20)/10 (14)

where Rresp is the respiration from the residue layer (�mol  m2 s−1),
a is the litter-specific respiration at 20 ◦C (0.0071 �mol  m2 s−1), b is
a response constant for the litter residue maximum water potential
(3.48),  ̌ is the temperature response coefficient for a 10 ◦C change
in litter residue temperature (4.05), Trm is the mean temperature
of the residue layer (C), and 
 is the mean water potential of the
residue layer (MPa), which is estimated as a function of the residue

water content (rwc) as (
 = −[5.53 ∗ 108 ∗ 504.85((−3.22)(rwc)0.0528)],
where rwc is the residue water content per oven dry weight (g g−1).
To obtain the surface respiration rate, the calculation of the res-
piration rate from the residue is combined with the estimated
component of the mineral soil (Norman et al., 1992), using values
of the profiles of temperature and water derived from Eqs. (1)–(4).

2.3. Model simulations

Model simulations were divided into two runs in hourly time
steps: one run was  carried out using the original ALEX model that
treats the soil surface as a bare rough/smooth surface overlying a
soil profile with a specified number of arbitrary layers. The second

run was conducted using the modified ALEX model with residue
layers incorporated over the ground. Table 1 lists the basic input
parameters used for the soil, residue, and forest canopy. The residue
was divided into three layers of equal residue area index, and the
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Table  2
Statistics of the comparisons of measurements and modeled midday-average fluxes.

Flux Unit Year No. days Modeled with residue Modeled without residue

Intercept Slope R2 Bias RMSE Intercept Slope R2 Bias RMSE

RN w m−2 2006 208 −0.33 0.89 0.97 51.70 55.56 −6.88 0.91 1.00 49.63 52.64
2007 134 −0.16 0.90 0.99 49.29 53.72 −4.73 0.92 1.00 45.56 48.44
2008 57 −1.55  0.90 1.00 56.74 59.94 −16.02 0.93 1.00 54.87 56.96
2009 153 −1.29  0.89 1.00 53.89 57.34 −10.23 0.92 1.00 50.57 53.01
All  years 552 −0.97 0.90 1.00 52.24 56.09 −8.18 0.92 1.00 49.44 52.23

G  w m−2 2006 208 19.63 0.71 0.67 −10.67 19.48 51.00 1.31 0.73 −60.36 64.97
2007 134 11.28 1.00 0.67 −11.31 19.16 48.31 1.56 0.62 −67.27 73.36
2008 57 22.76 0.78 0.67 −13.28 22.74 44.23 1.52 0.74 −67.06 73.77
2009 153 11.39 0.71 0.59 0.93 16.53 27.05 1.46 0.69 −46.61 53.61
All  years 552 17.65 0.73 0.63 −7.88 19.01 47.82 1.31 0.66 −58.92 65.23

LE  w m−2 2006 208 −3.74 1.05 0.90 −4.82 48.03 50.66 0.92 0.89 −37.94 60.33
2007  134 −13.22 1.01 0.93 11.66 34.70 45.62 0.83 0.79 −23.12 58.38
2008 57 −21.09 1.04 0.93 15.35 38.30 82.73 0.83 0.87 −55.69 71.20
2009 153 −4.92 0.85 0.90 33.89 58.70 55.65 0.77 0.87 −10.28 55.67
All  years 552 −3.93 0.95 0.89 11.99 47.62 55.19 0.84 0.86 −28.51 59.84

H  w m−2 2006 208 78.04 0.95 0.75 −69.64 93.71 61.84 0.55 0.65 8.79 59.02
2007 134 127.27 0.73 0.76 −70.07 97.40 99.61 0.46 0.63 16.41 78.63
2008 57 122.19 0.82 0.88 −85.63 102.77 91.31 0.39 0.62 35.84 98.55
2009 153 126.62 0.75 0.72 −90.63 115.42 89.63 0.39 0.56 −3.18 78.96
All  years 552 109.19 0.81 0.77 −77.99 101.95 80.18 0.48 0.65 10.12 74.46

CF  �mol m−2 s−1 2006 208 −3.69 0.73 0.83 1.00 4.59 −3.33 0.66 0.82 −0.02 4.54
2007 134 −3.55 0.72 0.83 2.03 4.26 −3.13 0.67 0.81 1.37 4.06
2008 57 −3.70 0.70 0.83 0.91 4.24 −3.77 0.62 0.87 0.25 4.46
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All  years 552 −3.57 0.70 

oil was divided into 12 arbitrary layers. An analytical formulation
f the canopy reflectance and transmittance reported by Campbell
nd Norman (1998) was used to calculate radiation transfer within
he canopy. The net radiation above and below the canopy was
alculated based on the incoming and outgoing direct and diffuse
omponents of the shortwave visible (VIS) and near infrared (NIR)
adiation, and LWR  using values of LAI, leaf angle distribution, leaf
bsorptivity in the VIS, NIR, and LWR, and soil reflectance in the
IS and NIR. Details of the net radiation calculation are available in
nderson et al. (2000).  Within the residue, the transfer of direct and
iffuse VIS and NIR radiation was calculated as a function of trans-
ittance and reflectance of the residue layers and reflectance of the

oil surface. Equations for the residue transmittance and reflectance
eveloped by Norman (1979) were combined with Eq. (8) to cal-
ulate the SWR  transport within the residue. Eq. (9) was used to
alculate the LWR  transfer within the residue layers from estimated
alues of emissivity, transmittance, and temperature of the canopy
ir layer, residue layers, and soil surface. Heat transport within the
esidue was determined by extending the solution of Eq. (1) to the
esidue layers. A finite difference equation of water vapor pressure
as used to describe water vapor transport within the residue lay-

rs above the soil surface, which was then coupled to the soil water
olution by Eq. (3).  The eddy diffusivity for the heat and water vapor
ransfer within the residue was estimated from a linear wind pro-
le equation by Bristow et al. (1986),  using wind speed and residue
emperature. Because of the lack of detailed information on the
eaf litter elements below the forest, residue physical properties
or radiation and water transport were obtained from the litera-
ure (Bristow et al., 1986; Shen and Tanner, 1990; Sauer et al., 1996;
auer and Norman, 1995). In addition, the fraction of rainfall inter-
epted by residue layers was calculated as an exponential function
f the cumulative area index from the top of the residue, and the
esidue water storage was estimated based on the residue density

s proposed by Bristow et al. (1986).  The residue was treated as

 porous medium that was assumed to intercept rainfall until it
eaches saturation. Starting at the residue top, when a layer was
aturated, any intercepted rainfall was allowed to drain through to
−0.36 5.20 −3.22 0.55 0.78 −1.53 5.56
0.86 4.66 −3.33 0.62 0.82 −0.07 4.73

the next layer; and the amount of rainfall that was not intercepted
by the residue was transmitted as input to the soil.

2.4. Field measurements

Field measurements to evaluate model predictions were
obtained from the NOAA Surface Energy Balance Network (SEBN)
flux tower in the national deciduous forest reservation in Oak Ridge,
eastern Tennessee. The flux tower is a 60-m walk-up tower located
on a ridge, called Chestnut Ridge (35◦55′48′′N, 84◦19′49′′W)  that
has been operating since 2005, and it represents a continuation of
the 30-m tall Walker Branch tower that dates back to 1997 (35◦ 57′

36′′N, 84◦17′24′′W).  This site is one of the longest operating flux
towers providing continuous, long-term measurements of energy
and carbon fluxes in forest environments using the eddy covariance
flux measurement approach (Wilson and Meyers, 2001; Baldocchi
et al., 1986; Wilson et al., 2001; Anderson et al., 2000). Both towers
are located on a northeast–southwest ridgetop about 335 m above
sea level with a gentle northwest-southeast slope <10%. The decid-
uous forest is dominated by oak, maple, poplar, and hickory species.
The basal area of the forest stand is about 29 m2 ha−1. The average
height of the forest canopy top is about 26 m.  The silhouette woody
biomass index and the peak LAI are about 1 and 6, respectively. The
LAI was  estimated as a function of in situ-derived normalized dif-
ference vegetation index (NDVI) from measurements of radiation
fluxes above the forest (Wilson and Meyers, 2007). The active grow-
ing season of the forest is characterized by periods of bud break in
early April (DOY 90–110), peak LAI at the end of May  (DOY 150),
and senescence and abscission from early October to the end of
November (DOY 280–330).

The understory of the forest stand is sparsely covered with small
trees, shrubs and herbs on a forest floor that is covered with a large
quantity of litter residue nearly shielding the soil surface below

(Fig. 1). Soils at the site are Typic Paleudults formed in alluvium
outwash of upland soils derived from rocks of dolomite, sandstone,
and shale. Highly weathered, rocky, well-drained, and very deep
(>10 m),  the soil textures are predominantly silty clay loam with
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Fig. 1. Mid  spring canopy growth with litter-covered forest floor below the decid-
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est floor to the forest energy budget and CO2 fluxes. Hanson et al.
ous oak forest, Chestnut Ridge, Oak Ridge, TN.

 yellow–red hue. The average bulk density of the soil horizon in
he top 0.5 m is about 1.5 mg  m−3 . Climate records from 1981 to
010 indicate that the site normally receives about 1300 mm  of
nnual precipitation; the greatest normal monthly precipitation of
bout 130 mm occurs during the winter and early spring, while
ormal of about 116 and 100 mm occur the during summer and

all, respectively. The predominant wind direction at the site is out
f the south-southwest, and the critical source of moisture for the
rea is the Gulf of Mexico. The normal monthly temperature at the
ite varies from about 5 ◦C during the winter and early spring to
eak values of about 23 ◦C during the summer, and then gradually
ecreases again to about 15 ◦C during the fall.

.5. Eddy covariance flux measurements

Eddy covariance measurements of latent heat (LE) and sensible
eat (H), and CO2 fluxes over the forest canopy were used to evalu-
te model predictions. Measurements consisted of 30-min averages
nd the dataset consisted of continuous measurements obtained
uring the growing season from DOY 100–300 in 2006–2009. Spu-
ious measurements and missing data were eliminated from the
valuation and no gap filling was performed on the dataset. Sen-
ors for the eddy covariance flux measurements were mounted at

 height of 43 m on a walk-up scaffold tower, with the sensors
bout 17 m above the forest canopy. For the sensible heat flux,
ertical wind velocity and air temperature fluctuations were mea-
ured with a three-dimensional ultrasonic anemometer (RM Young
odel 81000, R.M. Young Company, Traverse City, MI). For the LE

nd CO2 fluxes, water vapor and CO2 fluctuations were measured
ith an open path, infrared CO2/H 2O gas analyzer (LI-7500, LI-COR,

incoln, NE). Instantaneous values were sampled at a frequency
f 10 Hz using a computer. Post-processing of the instantaneous
ata was performed offline, and computer software developed in-
ouse was used to correct for problems such as density fluctuations
Webb et al., 1980) to calculate the 30-min averages of the verti-
al fluxes of sensible heat, water vapor, and CO2 as the covariances
f the vertical velocity and the corresponding scalar values of air
emperature, water vapor and CO2. The sensible heat flux was cal-
ulated from the instantaneous fluctuations of the vertical velocity
nd the air temperature. LE and the CO fluxes were calculated
2
sing a lag time of 0.2 s. for the vertical velocity to correct for the
elay in the response of the CO2/H 2O gas analyzer.
Meteorology 161 (2012) 134– 147 139

2.6. Supporting measurements

Supporting measurements collected above the forest at the
same height as the eddy covariance measurements included down-
welling and upwelling solar and thermal radiation measured with
a net radiometer (CNR-1 Kipp & Zonen, Delft, The Netherlands);
downwelling and upwelling photosynthetically active radiation
(PAR) measured using quantum sensors (Apogee Instruments, Inc.,
Logan, UT); air temperature and humidity measured with a Vaisala
Humitter (model 50Y, Vaisala Oyj, Helsinki, Finland); air tem-
perature measured with platinum resistance thermometer (PRT)
(model RTDs, Thermometrics Corp., Northridge, CA); wind speed
and direction measured with a wind vane anemometer (model
05103, R.M. Young, Traverse City, MI); precipitation measured with
a tipping bucket raingauge (model TB3, Hydrological Services Pty
Ltd, Liverpool, Australia); and atmospheric pressure measured with
a pressure sensor (model PTB101B; Vaisala Oyj, Helsinki, Finland).
The radiation sensors were mounted at the end of a 4-m long alu-
minum boom extended horizontally to the south of the tower.
Upwelling and downwelling solar and thermal radiation from the
net radiometer were used to calculate net radiation.

In addition to measurements above the canopy, soil conditions
were also measured, and they included soil heat conduction mea-
sured at multiple locations at a depth of 0.04 m with heat flux
sensors (model HFP01SC, Hukseflux Thermal Sensors, Delft, The
Netherlands); soil temperature measured at triplicate locations
each at depths of 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, and 1.28 m with
thermistor probes (model YSI44034, Therm-X, Hayward, CA); soil
volumetric water content at depths of 0.05, 0.10, 0.20, 0.50, and
1.00 m with soil moisture probes (model Stevens Hydra Probe II,
Stevens, Portland, OR). The continuous flux and meteorological
measurements were sampled at 10 Hz and averaged over 30-min.

Measurements of the annual leaf litter accumulation on the for-
est floor during fall seasons were made manually in the vicinity
of the flux tower. This annual leaf litter and the water content of
the leaf litter residue were the only residue measurements that
were made in this study; Table 1 provides a list of residue factors
that were taken from the literature and used in this paper. Over
20 wire mesh baskets were placed randomly apart on the forest
floor since 2006 and in subsequent years. The baskets stayed on
the forest floor throughout the year so that the residue inside the
baskets was subjected to natural changes, including wetting, dry-
ing, and decomposition that characterized the forest floor. Leaving
the baskets on the forest floor also allowed leaf litter to accumulate
in them from the successive fall senescence. The gravimetric water
content of the residue baskets was  measured occasionally and air-
dried litter samples indicated that the annual leaf litter production
was about 550 g m−2 . The thickness of undecomposed leaf residues
on the forest floor was  measured to be about 0.04 m overlying a
humus layer about 0.06 m thick.

3. Results and discussion

Flux tower measurements over the growing seasons in
2006–2009 were used to evaluate the performance of the
land–atmosphere, one-dimensional ALEX model in predicting
energy budget components and CO2 fluxes of a deciduous forest
that produced about 550 g m−2 of leaf litter residues each fall sea-
son. Due to the slow residue decomposition (Hanson et al., 2003a),
about 0.04 m undecomposed residue persisted on the forest floor,
which dramatically influenced the relative contribution of the for-
(2003b) studied leaf litter decomposition on the forest floor and
found that only about 45% of the annual leaf litter was decom-
posed after a year, so that the soil surface below the forest was
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ig. 2. Daily gravimetric water content of leaf litter residue below the deciduous
orest measured during 2009. The maximum water content during well-drained
et  residue conditions was  around 2.5 g g−1.

early shielded by leaf litter residues throughout the year. In this
tudy, measurements of the gravimetric water content of the leaf
itter residue during 2009 indicated a large scatter with maximum
alues of about 2.5 g g−1 for well-drained leaf litter residue condi-
ions (Fig. 2). Bristow et al. (1986) used 4 g g−1 as an appropriate

odel input value for the saturated gravimetric water content of
he leaf litter residue. In previous studies below the forest in this
tudy, maximum values of about 3 g g−1 were reported for gravi-
etric water content of the leaf litter residue (Hanson et al., 2003b;
ilson et al., 2000).
The daily LAI during 2006–2009 was a key input for the model

nd was successfully calculated based on measurements of the radi-
tion fluxes above the forest (Wilson and Meyers, 2007). Values of
AI showed a strong variation during the course of the year from
inimum values ranging from 1 to 1.5 for the woody biomass in
inter and early spring that increased rapidly to maximum values

anging from 5 to 5.5 in early summer, and then decreased gradu-
lly after mid-summer before decreasing steadily during the end of
all as the forest shed its leaves (Fig. 3). Interestingly, values of LAI

uring the 2007 growing season were less than the other years, as
eak LAI values were reached much later in the summer. The lower
AI values in 2007 were attributed to growing conditions in the
pring that were appreciably different from the other years. A major
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ig. 3. Daily LAI of the deciduous oak forest at Chestnut Ridge, Oak Ridge, TN during
006–2009 estimated based on flux tower measurements of PAR and global solar
adiation above the canopy.
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freeze that occurred across the region during the first week in April
2007 caused severe damage to the emerging leaves of the forest
canopy. While the forest managed to overcome the freeze damage,
the extreme weather event disrupted the normal leaf emergence
and slowed leaf development in ways that ultimately produced
lower LAI values in 2007 than in other years.

3.1. Field measurements

Measurements of net radiation (RN), latent heat (LE), sensible
heat (H) and CO2 fluxes above the forest canopy and heat conduc-
tion (G) at the soil surface below the forest during spring, summer
and fall seasons in 2006 and 2009 are shown in Figs. 4–6 . Spuri-
ous and missing data were elimated from the evaluation. During
the daytime period, which was  when values of the solar radiation
were greater that zero, RN values were high during the spring and
summer, reaching about 17 JM m−2 day−1 . They became low dur-
ing the fall with values of about 10 MJ  m−2 day−1. Hourly midday
values of RN averaged about 700 W m−2 during spring and sum-
mer  and 400 W m−2 during fall. This seasonal variation in RN was
typical of values reported by Wilson and Baldocchi (2000).  High
values of RN above the canopy during both spring leafless and sum-
mer  fully leafed periods suggested that the variation in LAI had a
much greater effect on the radiation transmitted below the canopy
than on RN above the canopy. As expected, the dense summer-
time LAI reduced the radiation transmitted to the understory and
the high incidence of radiation and low reflectivity of the canopy
resulted in high RN above the canopy. The forest was characterized
by a high density of woody biomass and litter residue cover that
have nearly identical reflectivity, absorptivity and emissivity as the
canopy; thus, the high RN above the canopy during low LAI periods
resulted from the relatively large increase in radiation absorbed by
the woody biomass and litter residue.

Measurements of the relative contribution of RN–G indicated
seasonal variation, with daytime values of G about 8% of RN during
the spring leafless period compared with 3% during the summer.
The forest-floor RN–G, latent heat, and sensible heat fluxes were
not measured in this study because the objective of this study was
to evaluate the impact of litter residue cover on the net ecosystem
energy and CO2 fluxes. Compared with above-canopy measure-
ments, direct measurements of energy balance components below
the vegetation are relatively scarce and have mostly involved short-
term studies (Sauer et al., 1995; Denmead and Bradley, 1985, 1987;
Baldocchi and Meyers, 1991; Baldocchi and Vogel, 1996). However,
a few studies have evaluated the seasonal variation in radiation
transfer and energy balance fluxes below vegetation (Baldocchi
et al., 1986, 2000; Wilson et al., 2000). For example, Wilson et al.
(2000) reported direct measurements of the energy balance at the
forest floor over an annual cycle. They measured the seasonal varia-
tion in G, RN, and H, with higher understory fluxes during the spring
and lower understory fluxes during the summer. By contrast, they
found that latent heat at the forest floor responded more to changes
in litter residue water content than to seasonal changes in RN and
LAI.

One important difference between the seasonal variations of
the above-canopy H and LE was  due to differences in the relative
contributions to H and LE from below the canopy. Wilson et al.
(2000) reported that values of H at the forest floor increased to
about 60–70% of values above the canopy during spring, and then
decreased to about 6% during the summer growing season, while
values of latent heat at the forest floor were consistently low with
daily total values about 0.5 MJ  m−2. They also found that values of

the forest floor latent heat were about 56% of the total LE during
the spring leafless period, when LE was  dominated by the evapo-
ration of water intercepted by the woody biomass and litter, and
latent heat from the forest floor was  about 8% of the total LE during
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easurements (open circles) are compared with values modeled with residue (soli

he summer growing season. In this study the Bowen ratio (H/LE)
ecreased from high values of greater than 6 during the winter
nd spring to about 0.5 during the summer (Fig. 7). This seasonal
ariation in the energy budget partitioning was typical for other
eciduous forest sites (Turnipseed et al., 2002; Oliphant et al., 2004;
ilson et al., 2000; Wilson and Baldocchi, 2000).
The seasonal pattern in the daytime CO2 flux above the for-

st was similar to previous studies in the same forest (Wilson and
aldocchi, 2001). The general variation in the CO2 flux followed the
hange in LE more closely than that of RN, and was  much different
han the seasonal pattern of H, indicating that the canopy resistance
ontrolling LE also controlled the CO2 flux. Wilson and Baldocchi
2001) revealed that the total daytime CO2 flux above this forest in
997 peaked to values of about – 0.7 mol  m−2 during early summer,
hich was also when the peak LAI occurred. These high values grad-
ally decreased to near-zero during the fall, when the forest was
ominated by the leafless biomass of stems and branches. They
lso observed a similar pattern for the soil respiration beneath the
orest, with daytime totals near zero during early spring and fall
nd about −0.25 mol  m−2 during the mid-summer period. In our
tudy the mean total ecosystem daytime CO2 flux values over the
orest from 2006 to 2009 peaked at about −0.6 mol  m−2 during the
ummer, with midday hourly values of about −25�mol  m−2 s−1.
hese values were similar to the values observed by Wilson and
aldocchi (2001).  The success of eddy covariance CO2 flux measure-

ents is closely related to the accuracy of the energy budget closure
easurement, as factors such as turbulence, vapor pressure deficit,

adiation and soil water conditions that influence energy partition-
ng into H and LE can have similar effects on the CO2 flux (Twine
bove the canopy, and soil heat flux (G), during spring, summer, and fall for 2006;
 and without residue (dash line).

et al., 2000). In our study, the energy balance closure was about
75–85% (Fig. 7), with a resultant lack of closure of about 15–25%
indicating a possible underestimation of the CO2 flux above the
forest.

Measurements of the soil water content at 0.1 m showed neg-
ligible hour-to-hour variations with sharp day-to-day variations
closely connected to rainfall events (Figs. 8 and 9). The relatively
high frequency of daily rainfall in 2009 resulted in less daily vari-
ability in the soil water content values, with soil water content
values remaining above 0.2; however, in 2006 the water content
decreased to about 0.1. Unlike the soil water content, measure-
ments of the soil temperature at 0.02 m showed clear diurnal and
seasonal changes in 2006 and 2009, and daytime values increased
gradually from spring to summer and then gradually fell during
the fall (Figs. 8 and 9). The high rainfall conditions in 2009 resulted
in relatively lower soil temperature values at 0.02 m than in 2006.
These values of soil temperature and water content were consis-
tent with the energy budget components that have been measured
below the forest by Wilson et al. (2000),  who  reported on the effect
of litter residue water content on net radiation and latent heat at
the forest floor, where strong seasonal variation in the net radia-
tion and sensible heat fluxes influenced the seasonal variation in
soil temperature.

3.2. Model performance
The comparison of modeling results to field measurements
demonstrated the ability of ALEX to simulate observed vertical
fluxes of energy, water and CO2 in the deciduous forest (Figs. 4–6.
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ig. 5. Hourly net radiation (RN), latent heat (LE), sensible heat (H) and CO2 flux (CF
easurements (open circle) are compared to values modeled with residue (solid lin

he model performed very well in simulating RN above the canopy,
ven though the model underestimated daytime values of RN
y about 10% (Figs. 4 and 5). The RN deficit was most evident
round midday hours. This discrepancy may  have resulted from
he radiation transfer parameters used by the model to calcu-
ate RN within and above the canopy. The ALEX model used leaf
ngle distribution, leaf absorptivity, and soil reflectance parame-
ers whose values were fixed throughout the growing season. Thus,
espite important advances in determining radiation transfer in
egetation canopies (Chen et al., 1997; Chen and Cihlar, 1995b;
iller and Norman, 1971), further work is still needed to eval-

ate the implications of seasonal changes in vegetation canopy
nd soil surface characteristics on the ALEX radiation transfer
etermination.

Simulated values of LE and CO2 fluxes above the canopy were in
ood agreement with eddy covariance measurements for the mean
aytime totals, but on hourly time scales modeled values were
lightly low during the summer. In particular, the model slightly
nderpredicted midday values of LE and CO2. It is difficult to iden-
ify the specific reasons for this problem; however ALEX assumed

 constant seasonal averaged parameter of LUE to determine
E above the canopy, which is species-specific, and may  actu-
lly vary during the growing season depending on environmental
nd canopy physiological stress factors that interact to constrain
hotosynthetic processes. These factors include temperature, soil

oisture, soil nutrients, vapor pressure deficit, photosyntheti-

ally active radiation (PAR), and phenology (Anderson et al., 2000;
orman and Arkebauer, 1991; Runyon et al., 1994; Houborg et al.,
009). In addition, turbulent transfer parameters used by ALEX to
e the canopy, and soil heat flux (G), during spring, summer, and Fall for 2009, where
d without residue (dash line).

formulate mass and energy transfer at the soil surface and in the
residue layer below the canopy were based on work in crop envi-
ronments (Bristow et al., 1986; Sauer et al., 1995). The deciduous
forest environment in this study was much more complex than
the uniform environments found in most crops. The forest canopy
was dominated by multiple species of oaks, and the forest floor was
highly heterogeneous not only in the physical properties of the soil,
residue and landscape, but also in radiation fluxes and the turbu-
lent fluxes of energy and CO2 (Wilson and Meyers, 2001; Wilson
et al., 2000)

Modeled values of H above the canopy were in reasonable agree-
ment with eddy covariance measurements, but less so for H than for
LE and CO2 fluxes. For example, on hourly time scales (Figs. 4 and 5),
the discrepancies between modeled and measured values of H was
larger during the spring than during the summer and fall. The
model tended to overpredict G below the forest throughout the
growing season, which may  have resulted from shortcomings in
the formulation of the available energy and the partitioning of
energy into H and latent heat below the forest canopy. A simi-
lar disagreement was reported for H and G in an evaluation of
ALEX in this forest (Anderson et al., 2000). One important short-
coming of the ALEX model, in addition to the consideration of
residue effects, is an implicit use of K-theory to describe the tur-
bulent transport of H and water vapor below the canopy. Field
and modeling studies have reported measurements of counter-

gradient fluxes of heat, water vapor and CO2 within forest canopies
(Raupach, 1989; Denmead et al., 2000). Although vertical profiles of
scalar transport within the canopy were unavailable in this study,
in detailed measurements of energy budget partitioning below
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the forest relative to the above-canopy energy budget, Wilson
et al. (2000) suggested that the seasonality of the forest canopy
affected H and G below the canopy more than the LE from the for-
est floor, and they revealed that LE below the forest was strongly
coupled to changes in the vapor pressure deficit (VPD) and surface
conductance above the canopy. Another area where future work on
the ALEX within-canopy transfer processes is needed is in separat-
ing the leaf portion of the canopy from tree stems and branches. The
current ALEX model does not explicitly include stems and branches,
which form a large portion of deciduous forest canopies. Instead,
the canopy in ALEX is described through the prescribed bulk LAI
divided between green and dead area fractions. This omission of
the effects of forest stems and branches may cause errors in the
storage of heat and water within the canopy (Oliphant et al., 2004),
especially during spring and fall when the canopy is dominated
by woody biomass. Unlike photosynthetically active leaves that
absorb radiation during CO2 assimilation and are cooled by transpi-
ration, the woody biomass of the forest not only does not transpire,
but it also absorbs radiation that is either stored or re-emitted
as heat flux. Furthermore, the environment within the forest may
have been characterized by spatial heterogeneity in the wind speed
and in the fluxes of radiation, heat, water, and CO2 (Wilson et al.,
2000). Single-point eddy covariance measurements and the one-
dimensional ALEX model consider the soil–plant–atmosphere as
a horizontally homogeneous medium. Therefore the ALEX model
performance can be further improved as issues of field measure-
ments and model formulations are resolved under a wide range of
soil–vegetation–environment conditions.

This study showed that it is important to consider the pres-

ence of litter residues in modeling energy and mass transport
in forest environments. Percent differences between the ALEX
model without residue effects and measurements of fluxes in
grasslands in Kansas and Oklahoma, corn and soybean crops
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Fig. 9. Hourly (a) and daily (b) soil temperature (Tsoil) at 0.02 m,  soil volumetric water content (SWC) within 0.1 m of top soil surface, and total precipitation above the canopy
during the 2009 growing seasons. Measurements consist of open circles and bars; the solid lines show values modeled with residue cover; and the dash lines were modeled
without  residue cover; zero values of SWC  and Tsoil indicate missing data.
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n Illinois, desert shrubs in southern Arizona, and Black spruce
n the boreal forest in Canada were found to be 138% for H,
4% for LE and 33% for CO2 and 279% for G (Anderson et al.,
000).

Inclusion of an explicit formulation of a residue layer on the
oil surface in the ALEX model in this study improved the simula-
ion of the energy, water and CO2 exchange in a deciduous forest
Table 2). The biggest improvement was made in the simulation of

 below the canopy and H above the canopy, particularly during
he spring and fall seasons. Overprediction of daytime G was  sub-
tantially reduced, with the slope of the linear regression between
redicted and measured values reduced from 2.28 for the original
LEX model without residue effects to 1.07 with residue effects

Fig. 10). Under-prediction of H was also improved, as the slope of
he regression line between predicted and measured values was
ncreased from 0.69 for the original ALEX model without residue
ffects to 1.16 for the modified ALEX model (Fig. 11). The modifica-
ion of residue effects showed a clear improvement in modeling LE

bove the canopy during the spring and fall, but this improvement
as less evident during the summer season. The regression line

etween predicted and measured daytime LE yielded significant
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oak forest canopy during the course of the growing season for 2006–2009. Values
modeled with residue cover (filled symbols) agreed much better with measurements
than modeled without residue cover (open symbols).

scatter with a slope of about 1.0 for both model versions (Fig. 12).
However, without the modification of residue effects, the model
significantly underpredicted LE during the spring and fall, which
coincided with large overprediction of G and underprediction of
H (Figs. 4–6). Consistent with the improvement in model perfor-
mance in predicting the energy balance, the modification of residue
effects showed slight improvement in predicting the CO2 flux over
the canopy. Even though the regression between the predicted and
measured daytime total CO2 flux showed large scatter, inclusion
of residue effects improved the slope from 0.89 to 1.02 (Fig. 13).
As with the energy and CO2 fluxes, the omission of residue effects
resulted in substantial over-prediction of daytime soil temperature
at 0.02 m,  but only a slight over-prediction of the soil water con-
tent at 0.1 m depth (Figs. 8 and 9). Another important effect of the
surface residue on CO2 fluxes in deciduous forests are respiration
pulses caused by residue wetting and drying cycles connected with
rain events as reported in previous studies (Hanson et al., 2003a;
Wilson et al., 2000). For the soil temperature, differences between

predicted and measured values were as high as 9◦C without residue
effects, compared with 1◦C when residue effects were considered
in the model (Figs. 8 and 9). The importance of accounting for
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itter residues in modeling soil temperature under forests was  also
emonstrated by Paul et al. (2004).  For the soil water content, the
ifference between the model prediction was relatively small, but
his difference increased during low soil water content conditions,
nd predicted values were much higher when the model ignored
he effects of residues. Similar residue effects on soil temperature
nd soil water content were also successfully simulated under short
rasses (Grant et al., 1995)

. Conclusions

This study has evaluated the exchange of energy and CO2 above
nd soil heat conduction below a deciduous forest during daytime
onditions from the spring to fall growing season. The ALEX model
emonstrated that the presence of residues on a deciduous forest
oor can significantly affect the exchange of energy and mass in
egetation stands throughout the growing season. This study has
xtended the original ALEX model formulation as a simple, com-
rehensive model available for studying soil–plant–environment

nteractions in different vegetation systems. However, the discrep-
ncy found between model simulations and field measurements
uggests the need for further research that will involve simultane-
us modeling-measurement efforts for both daytime and nighttime
onditions within and above the vegetation canopy over all seasons
f the year.

The ALEX model successfully simulated the hourly energy and
O2 exchange observed in the deciduous forest. The H, LE and CO2
uxes showed substantial daytime variations during the spring,
ummer, and fall growing seasons. The summer RN partitioning
as mostly dominated by LE and less by H and G due to the

ncreased magnitude of transpiration. During spring and fall, LE
as greatly reduced as transpiration diminished, and the increased

mportance of H during the spring and fall was due to the leafless-
ess that allowed increased radiation to penetrate into the forest,
xposing the woody biomass and litter residues to significant heat-
ng. The omission of a residue layer at the forest floor caused large
iscrepancies in the model simulation of H, LE and G during the
pring and fall. The biggest improvement was made in the simula-
ion of sensible heat and soil heat conduction when residue effects
ere explicitly considered in the ALEX model. The strong decrease

f G results from the fact that the thermal conductivities of the
esidue cover are much lower than the soil beneath. This differ-
nce in the thermal property limits the heat transfer between the
oil and the air layer immediately above the residue, an interaction
hat also reduces vapor transfer and ultimately soil evaporation.

hile the residue provides a resistance to heat and vapor transfer
etween the soil and air above the residue, the large values of H dur-

ng the spring and fall, when strong solar radiation penetrates into
he open forest, indicate that the residue may  have increased mix-
ng and enhanced turbulent exchange between the forest floor and
he forest canopy. The contribution of soil respiration to the CO2 flux
eems to depend not only on the biophysical controls of the residue
ut also on the residue wetting and drying cycles connected with
ain events. The successful evaluation of the residue modification of
he model in this study provides evidence that many of the residue
over and soil factors that interact with each other can be integrated
n a simple, analytical land–atmosphere energy exchange model to
tudy the transfer of energy and mass to and from plant canopies
nd the underlying soil. Results of this study have demonstrated
hat ALEX is quite useful for quantifying the transfer of energy and

ass below and above plant canopies. One important limitation

f the ALEX model is that the soil–plant–atmosphere system is
reated as a horizontally homogeneous medium. This assumption
equires further work to consider the influence of heterogeneity on
he soil surface characteristics, wind speed, energy and moisture
Meteorology 161 (2012) 134– 147

and their impact on the vegetation. Future modeling work should
involve long-term measurements of microclimate factors within
and above vegetation canopies that include mass and energy trans-
port within the residue-soil system. An essential part of improving
measurements within the canopy would be to monitor water
and energy transport within the residue layer remotely to relieve
the burden of on-site measurements. In addition, while rapid
advances in eddy covariance instrumentation have led to flux tower
networks that perform increasingly well in different vegetation
environments, considerable effort is still required to maintain, pro-
cess, and provide high quality long-term measurements of energy,
water and CO2 fluxes in these different vegetation environments.

Acknowledgement

This work was funded by the NOAA OAR/ARL Climate Research
Program.

References

Aase, J., Siddoway, F., 1980. Stubble height effects on seasonal microclimate, water
balance, and plant development of no-till winter wheat. Agric. Forest Meteorol.
21,  1–20.

Aiken, R., Flerchinger, G., Farahani, H., Johnsen, K., 1997. Energy balance simulation
for surface soil and residue temperatures with incomplete cover. Agron. J. 89,
404–415.

Anderson, M.,  Kustas, W.,  Norman, J., 2003. Upscaling and downscaling-a regional
view of the soil-plant-atmosphere continuum. Agron. J 95, 1408–1423.

Anderson, M.,  Norman, J., Meyers, T., Diak, G., 2000. An analytical model for estimat-
ing  canopy transpiration and carbon assimilation fluxes based on canopy light
use  efficiency. Agric. Forest Meteorol. 101, 265–289.

Arain, M.,  Black, T., Barr, A., Griffis, T., Morgenstern, K., Nesic, Z., 2003. Year-round
observations of the energy and water vapour fluxes above a boreal black spruce
forest. Hydrol. Proc. 17, 3581–3600.

Baker III, T., Lockaby, B., Conner, W.,  Meier, C., Stanturf, J., Burke, M.,  2001. Leaf
litter decomposition and nutrient dynamics in four southern forested floodplain
communities. Soil Sci. Soc. Am.  J. 65, 1334–1347.

Baldocchi, D., Hutchison, B., Matt, D., McMillen, R., 1986. Seasonal variation in the
statistics of photosynthetically active radiation penetration in an oak-hickory
forest. Agric. Forest Meteorol 36, 343–361.

Baldocchi, D., Law, B., Anthoni, P., 2000. On measuring and modeling energy fluxes
above the floor of a homogeneous and heterogeneous conifer forest. Agric. Forest
Meteorol. 102, 187–206.

Baldocchi, D., Meyers, T., 1991. Trace gas exchange at the floor of a deciduous forest
I.  Evaporation and CO2 efflux. J. Geophys. Res. Atmos 96, 7271–7285.

Baldocchi, D., Vogel, C., 1996. A comparative study of water vapor, energy and CO2
flux  densities above and below a temperate broadleaf and a boreal pine forest.
Tree  Physiol. 16, 5–16.

Baldocchi, D., Wilson, K., 2001. Modeling CO2 and water vapor exchange of a tem-
perate broadleaved forest across hourly to decadal time scales. Eco. Model. 142,
155–184.

Ball, J., Woodrow, I., Berry, J., 1987. Progress in Photosynthesis Research. Ch. A Model
Predicting Stomatal Conductance and its Contribution to the Control of Pho-
tosynthesis Under Different Environmental Conditions. Nijhoff, Dodrecht, pp.
221–225.

Bristow, K., Campbell, G., Papendick, R., Elliott, L., 1986. Simulation of heat and mois-
ture  transfer through a surface residue-soil system. Agric. Forest Meteorol. 36,
193–214.

Burgess, M.,  Mehuys, G., Madramootoo, C., 2002. Nitrogen dynamics of decomposing
corn residue components under three tillage systems. Soil Sci. Soc. Am.  J. 66,
1350–1358.

Bussiere, F., Cellier, P., 1994. Modification of the soil temperature and water con-
tent regimes by a crop residue mulch: experiment and modelling. Agric. Forest
Meteorol 68, 1–28.

Campbell, G., 1985. Soil Physics with BASIC: Transport Models for Soil–Plant Sys-
tems. Elsevier, New York.

Campbell, G., Norman, J., 1998. An Introduction to Environmental Biophysics.
Springer-Verlag, New York.

Caprio, J., Grunwald, G., Snyder, R., 1985. Effect of standing stubble on soil water loss
by  evaporation. Agric. Forest Meteorol. 34, 129–144.

Chen, J., Blanken, P., Black, T., Guilbeault, M.,  Chen, S., 1997. Radiation regime and
canopy architecture in a boreal aspen forest. Agric. Forest Meteorol. 86, 107–125.

Chen, J., Cihlar, J., 1995b. Plant canopy gap-size analysis theory for improving optical
measurements of leaf-area index. Appl. Opt. 34, 6211–6222.
Chung, S., Horton, R., 1987. Soil heat and water flow with a partial surface mulch.
Water Resour. Res. 23, 2175–2186.

Collatz, G., Ball, J., Grivet, C., Berry, J., 1991. Physiological and environmental regu-
lation of stomatal conductance, photosynthesis and transpiration: a model that
includes a laminar boundary layer. Agric. Forest Meteorol. 54, 107–136.



Forest 

C

D

D

D

D

D

E

E

E

F

F

F

G

G

G

H

H

H

K

K

K

M

M
N

N

N

N

N

T.B. Wilson et al. / Agricultural and 

ollatz, G., Ribas-Carbo, J., Berry, J., 1992. Coupled photosynthesis-stomatal conduc-
tance model for leaves of C4 plant. Aust J. Plant Physiol 19, 519–538.

aughtry, C., 2001. Discriminating crop residues from soil by shortwave infrared
reflectance. Agron. J. 93, 125–131.

enmead, O., Bradley, E., 1985. The Forest–Atmosphere Interaction. Ch. Flux-
gradient relationship in a forest canopy. D. Reidel Publishers, Dordrecht, pp.
421-441.

enmead, O., Bradley, E., 1987. On scalar transport in plant canopies. Irrig. Sci. 8,
131–149.

enmead, O., Harper, L., Sharpe, R., 2000. Identifying sources and sinks of scalars in
a  corn canopy with inverse Lagrangian dispersion analysis, I. Heat. Agric. Forest
Meteorol. 104, 67–73.

ickinson, R., Henderson-Sellers, A., Kennedy, P., 1993. Biosphere Atmosphere
Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate
Model. Tech. rep., NCAR Technical Note.

l  Maayar, M.,  Price, D., Delire, C., Foley, J., Black, T., Bessemoulin, P., 2001. Validation
of  the integrated Biosphere Simulator over Canadian deciduous and coniferous
boreal forest stands. J. Geophys. Res. 106, 14,339–14,355.

nrique, G., Braud, I., Jean-Louis, T., Michel, V., Pierre, B., Jean-Christophe, C., 1999.
Modelling heat and water exchanges of fallow land covered with plant-residue
mulch. Agric. Forest Meteorol 97, 151–169.

nz, J., Brun, L., Larsen, J., 1988. Evaporation and energy balance for bare and stubble
covered soil. Agric. Forest Meteorol. 43, 59–70.

arquhar, G., von Caemmerer, S., Berry, J., 1980. A biochemical model of phosynthetic
CO2 assimilation in leaves of C3 species. Planta 149, 78–90.

erreira, L., Yoshioka, H., Huete, A., Sano, E., 2003. Seasonal landscape and spectral
vegetation dynamics in the Brazilian Cerrado: An analysis within the Large-Scale
Biosphere-Atmosphere Experiment in Amazonia (LBA). Remote Sens. Environ.
87, 534–550.

indeling, A., Garnier, P., Coppens, F., Lafolie, F., Recous, S., 2007. Modelling water,
carbon and nitrogen dynamics in soil covered with decomposing mulch. Eur. J.
Soil  Sci. 58, 196–206.

ijsman, A., Hoogenboom, G., Parton, W.,  Kerridge, P., 2002. Modifying DSSAT crop
models for low-input agricultural systems using a soil organic matter-residue
module from CENTURY. Agron. J 94, 462–474.

ower, S., Kucharik, C., Norman, J., 1999. Direct and indirect estimation of leaf area
index, fapar, and net primary production of terrestrial ecosystems. Remote Sens.
Environ. 70, 29–51.

rant, R., Izaurralde, R., Chanasyk, D., 1995. Soil temperature under different
suface managements: testing a simulation model. Agric. Forest Meteorol. 73,
89–113.

anson, P., O’Neill, E., Chambers, M.,  Riggs, J., Joslin, J., Wolfe, M.,  2003a. Ecological
Studies: North American Temperate Deciduous Forest Responses to Changing
Precipitation Regimes. Vol. 166, Ch. Soil respiration and litter decomposition.
Springer, New York, pp. 163-189.

anson, P., Todd, D., Joslin, J., 2003b. Ecological Studies: North American Temperate
Deciduous Forest Responses to Changing Precipitation Regimes. Vol. 166, Ch.
Canopy Production. Springer, New York, pp. 303-315.

ouborg, R., Anderson, M.,  Norman, J., Wilson, T., Meyers, T., 2009. Intercomparison
of  a ‘bottom-up’ and ‘top-down’ modeling paradigm for estimating carbon and
energy fluxes over a variety of vegetative regimes across the U.S. Agric. Forest
Meteorol. 149 (11), 1875–1895.

ongoli, C., Bland, W.,  2000. Long-term snow depth simulations using a modified
atmosphere-land exhange model. Agric. Forest Meteorol. 104, 273–287.

ucharik, C., Brye, K., 2003. Integrated BIosphere Simulator (IBIS) yield and nitrate
loss predictions for Wisconsin maize receiving varied amounts of nitrogen fer-
tilizer. J. Environ. Quality 32, 247–268.

ucharik, C., Twine, T., 2007. Residue, respiration, and residuals: evaluation of a
dynamic agroecosystem model using eddy flux measurements and biometric
data. Agric. Forest Meteorol. 146, 134–158.

iller, E., Norman, J., 1971. A sunfleck theory for plant canopies. I. Lengths of sunlit
segments along a transect. Agron. J. 63, 735–738.

onteith, J., 1965. The state and Movement of Water in Living Organisms.
orman, J., 1979. Modification of the Aerial Environment of Plants, Ch. Modeling the

Complete Crop Canopy. ASAE, pp. 249–277.
orman, J., 1982. Integrated Pest Management, Ch. Simulation of Microclimates.

Academic Press, New York, pp. 65-99.
orman, J., Arkebauer, T., 1991. Predicting canopy light-use efficiency from leaf char-

acteristics. In: Modeling Plant and Soil Systems, Agronomy Monograph. No. 31.
ASA-CSSA-SSSA, Madison, pp. 125–143.
orman, J., Campbell, G., 1983. Advances in Irrigation. Ch. Application of a Plant-
environment Model to Problems in Irrigation. Academic Press, New York, pp.
156-188.

orman, J., Garcia, R., Verma, S., 1992. Soil surface CO2 fluxes and the carbon budget
of a grassland. J. Geophys. Res. 97 (D17), 18845–18853.
Meteorology 161 (2012) 134– 147 147

Norman, J., Kustas, W.,  Humes, K., 1995. Source approach for estimating soil and
vegetation energy fluxes in observations of directional radiometric surface tem-
perature. Agric. Forest Meteorol. 77, 263–293.

Novak, M., Chen, W.,  Orchansky, A., Ketler, R., 2000a. Turbulence exchange pro-
cesses within and above a straw mulch. Part I: Mean wind speed and turbulence
statistics. Agric. Forest Meteorol. 102, 139–154.

Novak, M.,  Chen, W.,  Orchansky, A., Ketler, R., 2000b. Turbulence exchange processes
within and above a straw mulch. Part II: thermal and moisture regimes. Agric.
Forest Meteorol. 102, 155–171.

Ogee, J., Brunet, Y., 2002. A forest floor model for heat and moisture including a litter
layer. J. Hydrol. 255, 212–233.

Oliphant, A., Grimmond, C., Zutter, H., Schimid, H., Su, H., Scott, S., Offerle, B., Ran-
dolph, J., Ehman, J., 2004. Heat storage and energy balance fluxes for a temperate
deciduous forest. Agric. Forest Meteorol. 126, 185–201.

Paul, K., Polglase, P., Smethurst, P., O’Connell, A., Carlyle, C., Khanna, P., 2004. Soil
temperature under forests: a simple model for predicting soil temperature under
a  range of forest types. Agric. Forest Meteorol. 121, 167–182.

Priestley, C., Taylor, R., 1972. On the assessment of surface heat flux and evaporation
using large scale parameters. Monthly Weather Rev. (100), 81–92.

Raupach, M.,  1989. Applying Langrangian fluid mechanics to infer scalar source dis-
tributions from concentration profiles in plant canopies. Agric. Forest Meteorol.
47,  85–108.

Runyon, J., Waring, R., Goward, S., Well, J., 1994. Environmental limits on net primary
production and light-use efficiency across the Oregon transect. Ecol. Appl. 4,
226–237.

Sauer, J., Norman, J., Tanner, C., Wilson, T., 1995. Measurement of heat and vapor
transfer coefficients at the soil surface beneath a maize canopy using source
plates. Agric. Forest Meteorol. 75, 161–189.

Sauer, T., Hatfield, J., Prueger, J., 1996. Aerodynamic characteristics of standing corn
subble. Agron. J. 88, 733–739.

Sauer, T., Hatfield, J., Prugger, J., Norman, J., 1998. Surface energy balance of a corn
residue-covered field. Agric. Forest Meteorol. 89, 155–168.

Sauer, T., Norman, J., 1995. Simulated canopy microclimate using estimated
below-canopy soil surface transfer coefficients. Agric. Forest Meteorol. 75,
135–160.

Shen, Y., Tanner, C., 1990. Radiative and conductive transport of heat through flail-
chopped corn residue. Soil Sci. Soc. Am.  J 54, 653–658.

Shuttleworth, W.,  Wallace, J., 1985. Evaporation from sparse crops – An energy
combination theory. Quart. J. Roy. Meteorol. 111, 839–855.

Tanner, C., Shen, Y., 1990. Water vapor transport through a flail-chopped corn
residue. Soil Sci. Am.  J. 54, 945–951.

Turnipseed, A., Blanken, P., Anderson, D., Monson, R., 2002. Energy budget above a
high-elevation subalpine forest in complex topography. Agric. Forest Meteorol.
110, 177–201.

Twine, T., Kustas, W.,  Norman, J., Cook, D., Houser, P., Meyers, T., Prueger, J., Starks,
P.,  Wesely, M.,  2000. Correcting eddy-covariance flux underestimates over a
grassland. Agric. Forest Meteorol. 103 (3), 279–300.

Wagner-Riddle, C., Gillespie, T., Swanton, C., 1996. Rye mulch characteriza-
tion for the purpose of microclimate modelling. Agric. Forest Meteorol. 78,
67–81.

Webb, E., Pearman, G., Leuning, R., 1980. Correction of flux measurements for den-
sity  effects due to heat and water vapor transfer. Q.  J. R. Meteorol. Soc. 106,
85–100.

Wilson, K., Baldocchi, D., 2001. Comparing independent estimates of carbon dioxide
exchange over 5 years at a deciduous forest in the southeastern United States.
J.  Geophys. Res. 106 (D24), 34,167–34,178.

Wilson, K., Hanson, P., Baldocchi, D., 2000. Factors controlling evaporation and
energy partitioning beneath a deciduous forest over an annual cycle. Agric.
Forest Meteorol. 102, 83–103.

Wilson, K., Hanson, P., Mulholland, P., Baldocchi, D., Wullschleger, S., 2001. A
comparison of methods for determining forest evapotranspiration and its com-
ponents: sap-flow, soil water budget, eddy covariance and catchment water
balance. Agric. Forest Meteorol. 106, 153–168.

Wilson, K., Meyers, T., 2001. The spatial variability of energy and carbon dioxide
fluxes at the floor of a deciduous forest. Boundary Layer Met. 98, 443–473.

Wilson, K.B., Baldocchi, D.D., 2000. Seasonal and interannual variability of energy
fluxes over a broadleaved temperate deciduous forest in north america. Agric.
Forest Meteorol. 100, 1–18.

Wilson, T., Meyers, T., 2007. Determining vegetation indices from solar and photo-
synthetically active radiation fluxes. Agric. Forest Meteorol. 144, 160–179.
Wilson, T., Norman, J., Bland, W.,  Kucharik, C., 2003. Evaluation of the importance of
Lagrangian canopy turbulence formulations in a soil–plant–atmosphere model.
Agric. Forest. Meteorol. 115, 51–69.

Wu,  Y., Perry, K., Ristaino, J., 1996. Estimating temperature of mulched and bare soil
from meteorological data. Agric. Forest. Meteorol. 81, 299–323.


	The effect of soil surface litter residue on energy and carbon fluxes in a deciduous forest
	1 Introduction
	2 Methods
	2.1 ALEX description
	2.2 Equations of residue processes
	2.3 Model simulations
	2.4 Field measurements
	2.5 Eddy covariance flux measurements
	2.6 Supporting measurements

	3 Results and discussion
	3.1 Field measurements
	3.2 Model performance

	4 Conclusions
	Acknowledgement
	References


