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Abstract— Robotic hands are a key component of humanoids.
Initially more fragile and larger than their human counterparts,
the technology has evolved and the latest generation is close to
the human hand in size and robustness. However, it is still
disappointing to see how little robotic hands are able to do
once the grasp is acquired due to the difficulty to obtain a
reliable pose of the object within the palm.

This paper presents a novel method based on a particle filter
used to estimate online the object pose. It is shown that the
method is robust, accurate and handles many realistic scenario
without hand crafted rules. It combines an efficient collision
checker with a few very simple ideas, that require only a
basic knowledge of the geometry of the objects. It is shown, by
experiments and simulations, that the algorithm is able to deal
with inaccurate finger position measurements and can integrate
tactile measurements.

The method greatly enhances the performance of common
manipulation operations, such as a pick and place tasks, and
boosts the sensing capabilities of the robot.

INTRODUCTION

The Institute of Robotics and Mechatronics of the German
aerospace center has been developing robotic hands since
more than 15 years [1]. Initially more fragile and larger than
their human counterparts, the technology has evolved and
the latest generation is comparable to the human hand in
size and robustness (see. Fig. 1).

Fig. 1. Photograph of the hand of the Hand Arm System.

Motion planning and grasp planning developed at a similar
speed. Most of the problems considered complex offline
twenty years ago can be solved online. The problem of
grasp acquisition has been well covered in simulation (e. g.
GraspIt [2]) with the use of powerful computers and support

of graphics acceleration as well as in experiments with the
use of impedance control.

Most robotic hands are not very dexterous once the grasp
has been acquired. Even the seemingly trivial task of detect-
ing abnormal conditions (e. g. grasp failure) is a challenge
on its own. It is commonly realized by a set of hand crafted
rules and therefore time consuming and error prone. Adding
more objects requires more rules and can easily turn into a
logic nightmare.

A recurring issue in pick and place applications with
humanoid hands is the motion of the object with respect
to the palm during the grasp acquisition phase. Indeed,
uncertainties in the initial object pose, in the object model
and in the hand control are leading to a grasp execution
different than the planned version. Compliance in the finger
control is used to cope with the uncertainties and makes the
grasping of objects more robust. However, the equilibrium
position of the object, which is passively found, cannot
be controlled. Therefore, the object often moves within the
palm although the grasp is eventually stable. Thus, the use
of compliant grasping makes the process more robust but
decreases the precision of the object position even with the
most accurate hardware. The motion of the object w. r. t.
the palm is not an issue on its own for the picking phase.
However, the issue appears when placing the object since a
tilted object may be placed in an unstable configuration and
tip over. A second case for which the pose is required is the
control of the pose of the object in the hand, referred to as
in-hand manipulation, which requires the availability of the
pose of the object w. r. t. the palm.

In most robotic systems, the pose is given or acquired from
a vision system [3], [4]. This is a very effective approach as
long as the occlusion of the object is minimal. However,
since the objective is to estimate the pose of the grasped
object, it is clear that occlusions are to be expected.

While there has been extensive research on visual local-
ization, the problem of determining the pose of a grasped
object has rarely been addressed in the literature. The use of
real-time visual object tracking as part of a grasp planning
system was reported in [5]. Gadenye et al. [6] used force
controlled robots and tactile sensors to localize stationary
objects. They proposed an estimation algorithm based on
particle filtering. However, the great calculation effort re-
stricted their system to three DOF scenarios. Petrovskaya et
al. [7] build on that approach, extending it to six DOF. They
implemented a particle filter that scales in precision as the
localization progresses. The estimation of the pose of the
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object from contact information was introduced in [8], [9].
Hypotheses for possible contact points were generated by
comparing finger measurements with a previously generated
model. Subsequently, these hypotheses were used to find an
object pose that best represents the measurements. In [10],
[11], the hand-object configuration was tracked from tactile
sensing using particle filtering. The authors applied a new
measurement model to account for points on the manipulator
that are known not to touch the object. However, unlike
this paper, the work was not considering kinematic data.
The simultaneous tracking of the object and estimation of
parameters of the dynamic model was proposed in [12] but
the authors only applied their particle filter to pre-recorded
measurements. Finally, work based on learned rules on the
prediction of object motions by pushing proved to work well
but was not extended to multiple contacts points [13], [14]

In this paper, a method based on a particle filter, combined
with a custom collision checker is used to detect grasp
acquisition faults or abnormal conditions. The algorithm is
able to deal with inaccurate finger position measurements
and can integrate tactile measurements.

In a first section, the problem is described and the key
ideas are presented graphically on some simplified cases.
The second part transforms the problem into a mathemat-
ical form with the help of the stochastic framework. The
third part presents the implementation of the particle filter
and details the different contributions of the collision and
contact modules. It is shown that a valuable performance
improvement is obtained with the use of the grasp matrix so
as to obtain better predictions. The fourth part presents the
simulations and experimental results obtained on the latest
generation of robotic hand design at DLR. The robustness
and the accuracy of the method are demonstrated with the
help of realistic scenarios.

I. PROBLEM DESCRIPTION AND KEY IDEAS

In the first part of this section, the problem of in-hand
object localization is described. A second part presents
the key ideas in a graphical form to help understand the
mathematics needed to follow the rest of the paper.

A. Problem descriptions

The localization of an object w. r. t. the hand is a very
generic problem and the choice of a particular method is
conditioned by the available sensors. This paper considers
the following problem:

1) how to detect invalid (i. e. nearly impossible) situa-
tions?

2) how to estimate, online, a better object pose than the
initial pose?

and the following assumptions are made:
• a 3D mesh of the grasped object is available.
• the 3D mesh of the hand (palm and fingers) is available.
• the position of the fingers is available online.
• an initial guess of the object pose is made (e. g. vision

system).

Fig. 2. Collisions are unlikely so the right hypothesis is more plausible
than the left one.

Fig. 3. Measure that allows to correct the object position by rotation.

• contact sensor information is available either as on/off
or more detailed.

It is important to note that the use of visual feedback is
not considered. It is required that the estimation is available
online therefore, approaches that are applied offline, either
at planning stage or after execution, are not in the scope.

B. Key ideas

The algorithm developed in this paper relies upon several
key ideas. It is important to keep in mind that, in real life
application, the available data is not perfect, the meshes, the
mass or the friction coefficients are most likely unknown.
Therefore, putting effort in computing dynamic effects for
an object of which the mass is known with 10% error is
unlikely to lead to an appropriate answer. Similarly, it is not
possible to describe all objects with analytical expressions,
therefore it is necessary to use meshes. Meshes are only a
discrete approximation of the object surface and introduce
errors. Finally, the computation of the contact dynamics
requires the knowledge of the friction coefficients and the
contact type. These coefficients are very difficult to obtain
since they depend on the materials, the surface, the contact
geometry, and other parameters that are unlikely to be
available. Therefore, the present work focuses on facts that
do not require a precise knowledge of those quantities such
as:

• collisions : the object can not be where the fingers are
(cf. Fig. 2, 3).

• contacts : if a contact is detected the object must be
triggering the sensor (cf. Fig. 4).

• grasp : without extra information the grasp matrix is a
good prediction of the object motion (cf. Fig. 5).

• update : the object is immobile unless a new hypothesis
is significantly improving the results

Those facts are very generic and the structure of the algo-
rithm allows to add other facts. The presented work focuses
on static facts, however more elaborate facts, such as objects
are not flying, can be added if all required parameters are
available.
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Fig. 4. In the case where contacts are detected, the object should be
explaining the triggering (the green area represents an active contact).

Fig. 5. Without any extra information, the object should move according
to the fingers (prediction using the contact points).

II. MATHEMATICAL FRAMEWORK

This section presents the mathematical tools that are
required to understand the implementation of the localization
algorithm. First, the very general and well known Bayes filter
algorithm is presented. The implementation uses a particle
filter because, multi-modality is required, for example, to
handle distinct clusters of hypothesis. Moreover, Kalman
filters (regular or extended) perform best with an analytic
description of the measurement model. In a second section,
the general structure of a particle filter is described. The third
section describes the construction of a grasp matrix that is
used for the prediction step.

A. Bayesian filter algorithm

The Bayesian filter algorithm is the most general algorithm
for calculating probabilistic state distributions [15], [16,
ch .2]. The distribution of the state that is to be estimated
is represented by the belief. The belief over state x at time
t is denoted as bel(xt). At every time step the current belief
is inferred from the new measurements and the control data.
Starting from an initial belief bel(x0), the current estimate
is calculated in two steps. The prediction step calculates the
belief bel(xt) from the previous belief bel(xt−1) and the
current control data ut:

bel(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dx , (1)

where p(xt|ut, xt−1) is called the state transition probability.
During the update step the posterior belief bel(xt) is calcu-
lated form the measurements that were made at time t:

bel(xt) = ηp(zt|xt)bel(xt) , (2)

where p(zt|xt) is the measurement probability and η is a
normalizing constant. These two steps are executed at every
time step to track the progression of the belief over the state
x. The Bayes filter algorithm provides a general approache
to calculate belief distributions from the measurements and
the control data. However, it does not state how these
distributions are represented. Therefore, there exist a number
of different implementations of the Bayes filter algorithm. In
this paper the particle filter is used due to its multi-modality
and discrete representation of the control and measurement
models.

B. Particle Filter

The particle filter is a discrete algorithm that infers a state
estimation from the control data and the measurements [17].
It represents the belief state by a set of particles Xt and their
respective weights Wt:

Xt := x
[1]
t , x

[2]
t , ..., x

[M ]
t , (3)

Wt := w
[1]
t , w

[2]
t , ..., w

[M ]
t , (4)

where x
[m]
t and w

[m]
t denote individual elements of the

sets Xt and Wt at time t. Each particle is a concrete
hypothesis of the state that is to be estimated. The set of
particles is sampled to approximate the belief bel(xt). The
evolution of the particles is calculated from control data and
measurements in several steps: the prediction, the update
and the re-sampling. In the prediction step control data at
time step t is applied to the filter by calculating x

[m]
t from

x
[m]
t−1 and ut. It represents sampling from the state transition

probability
∫
p(xt|ut, xt−1)bel(xt−1)dx introduced in (1):

x
[m]
t ∼ p(xt|ut, x[m]

t−1) . (5)

In the update step the weights Wt are calculated from the
measurements made at time step t. Each weight represents
the probability that the measurements match the respective
particle. Therefore, the set of weighted particles are a rep-
resentation of the posterior belief bel(xt). The weights can
be calculated from the measurement probability p(zt|x[m]

t )
used in (2):

w
[m]
t = p(zt|x[m]

t ) . (6)

Using the weights that were calculated in the update step
the re-sampling can be executed. In this step a new set of
particles is drawn from the old set. The probability that
a particle is drawn form the previous set depends on its
respective weight. By re-sampling the particles according
to their weights the new set represents the posterior belief
bel(xt) according to (2).
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Initial set of particles

Measurement update

Particle resampling

Particle prediction

Best estimate

Fig. 6. Filtering workflow

C. Grasp Matrix

The particle filter contains a prediction step that can
incorporate the inputs of the actuator to adjust the current
belief. In the specific case of the in-hand manipulation, the
commanded motion of the fingers is a valuable knowledge
in order to predict the change of pose of a grasped object
[18, ch .28]. Simply put, the average motion of the contact
points corresponds to the object motion. However, because
the location of the contact points are not known, the first
step consists in estimating them for the current belief and
the detected contact points. In a second step, the contact
condition can be stacked in order to yield what is known
in the grasping literature as a grasp matrix. The matrix
expresses, component wise, the relationship between the
velocity of the contacts and velocity of the object according
to a contact model. Finally, the pseudo-inverse of the grasp
matrix, multiplied by the contact displacement, gives a least-
square estimate of the object motion. Mathematically, the
relation is

ċi = GT
i ẋ , with i ∈ [1 . . .m] , (7)

where for m contacts, ċi is the contact velocity, Gi is the
matrix composed of the relevant lines of the grasp matrix and
ẋ is the velocity of the object pose. As it will be described in

Fig. 7. Graphical representation of the initial object pose by the vision
system

the implementation part, the contact points required for the
grasp matrix calculation are given by the collision checker
and/or directly provided by the contact sensors.

III. IMPLEMENTATION

This section presents the implementation of the steps
needed for the particle processing depicted in Fig. 6.

A. Initial set of particles

An initial particle distribution is needed to initialize the
particle filtering algorithm. The distribution is based on
the knowledge of the object state, that is, it is statistically
distributed around the pose estimated by the vision system
(cf. Fig. 7). A fixed number of sample poses are generated
around the initial pose by a Gaussian sampling. If a prior
variance is provided by the vision system, it can be used to
obtain a well distributed set of particles.

An interesting case appears when the vision system is
unable to decide whether an object is flipped or not. It is
the case for example when localizing a cylindrical cup only
with edge matching. In such a case, the initial distribution is
performed around the two principal hypothesis of the vision
system. It is one of the reasons justifying the need of a multi-
modal filter. The distribution will contain both hypothesis
until a measurement is able to statistically rule out one case.

B. Update from measurements

The incorporation of the measurement data into the par-
ticle filter is realized by the weight update. It evaluates
for each particle how well a given hypothesis of the ob-
ject pose matches the current set of measurements. In the
context of this localization method, there are two types of
measurements that are considered. Kinematic data, which is
provided by the joints of the hands, allows the calculation of
the poses of the hand links. Since the shapes of the object
and the links of the hands is available, this data can be
used to identify collisions between the assumed object and
the fingers. Utilizing a custom collision checker, a shortest
distance or deepest penetration between each link j and the
object is calculated. This distance, d[j]t , is negative, if the
bodies are colliding and positive, if there is no collision.
To express the probability that the assumed object pose
is correct, distance d

[j]
t is related to a scalar weight value
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p(d
[j]
t ):

p
(
d
[j]
t

)
=

1

2

(
1 + erf

(
d
[j]
t√
2σl

))
, (8)

This function was empirically chosen to assign high weight
values to positive distances and small values to negative
distances. The standard deviation σl of the function can
be adjusted to the inaccuracy of the measurements. The
distance-weight relation is illustrated on the left side of
Figure 8. Under the assumptions that the measurements of
the individual link poses are independent from one another,
a combined weight p[m]

t,l for all links can be expressed:

p
[m]
t,l =

Nl∏
j=1

p(d
[j]
t ) , (9)

where Nl is the number of links.
Measurements from tactile sensors are incorporated in a

similar way. For each sensor k that measures a contact, the
distance, d[k]t , between the assumed object and the sensor is
calculated. However, the relation of the distance to a weight
value p(d[k]t ) differs from the kinematic data:

p
(
d
[j]
t

)
= e

− 1
2

(
d
[j]
t
σs

)2

. (10)

This function only assigns high weights to values that are
close to zero, since this is the expected distance between an
object and a sensor that measures a contact. The right side
of Figure 8 illustrates the relation. The standard deviation
σs of the distribution can be adjusted to account for the
uncertainty in the pose of the sensor. A cumulative weight
p
[m]
t,s for multiple sensors is expressed by the product of the

individual values:

p
[m]
t,s =

Ns∏
k=1

p(s
[k]
t ) , (11)

where Ns is the number of tactile sensors that measured a
contact. Finally, to obtain a single scalar weight w[m]

t value
for a particle, the cumulative weights of both, the kinematic
data and the tactile sensing information, is considered:

w
[m]
t = p

[m]
t,l p

[m]
t,s . (12)

Calculated for every particle, the update step results in a set
of M weights:

Wt = {w[1]
t , w

[2]
t , . . . , w

[M ]
t } . (13)

C. Inference of the best estimate
The objective of the in-hand localization is to provide

a best estimate x̂ of the object pose. Therefore, a single
pose has to be inferred from the set of particles. A number
of different methods have been proposed in literature to
accomplish this task. For this application, simply selecting
the particle with the highest weight proved to be most
effective, since it represents the one hypothesis of the object
pose that best matches the current set of measurements. A
new best estimate can be determined in every time step after
the particle weights have been calculated.
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Fig. 8. Distance-weight relations for the kinematic data (left) and tactile
sensing information (right). The standard deviations are denoted σl and σs.

Fig. 9. Different contacts associated with the particles. The red circle are
representing the contact point locations.

D. Particle re-sampling

In the re-sampling step, a new set of particles is drawn
from the old set according to their weights. In literature, a
great number of re-sampling strategies have been proposed,
many of which are optimized for very specific applications
and constraints. To realize the re-sampling for this particle
filter, the sampling importance re-sampling (SIS/R) was
chosen. It is one of the most generic strategies and imposes
hardly any restrictions on the belief representation. The
SIS/R is executed at every time step, immediatly after the
calculations of the weights. The total number of particles is
kept consistent.

E. Particle prediction

Using the previous inputs on the system, such as the last
commanded finger motion, it is possible to apply a model
based transformation to each object (one for each particle).
A good prediction allows to reduce the particle distribution
since, otherwise, a large particle distribution required to track
the object. For example, if a finger motion is commanded
during a precision grasp, the prediction will simply move
the object and everything will appear as immobile for the
particles. Similarly, the particle distribution reduced if the
arm motion is used to predict the object motion, instead of
waiting for the particle to get collisions with the fingers.
As pointed out in the previous section, the grasp matrix can
be used to express this transformation. However, the actual
grasp matrix is not known and it must estimated for each
particle as depicted in Fig. 9. The grasp matrix for a given
particle can be obtained by defining a distance threshold for
the collision checker and including the contacts measured by
the sensors. Alternatively, the expected grasp matrix from the
grasped planner can be used as a crude estimate, at the cost
of a less realistic prediction.

It is important to note that, in general, each particle may
have a different set of contact points as depicted in Fig.
9. Moreover, contacts are usually giving redundant condi-
tions. Therefore, there usually exist only an approximate
solution. A possible formulation of the problem consists in
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the quadratic optimization problem defined as

minẋ(stack(ċ)−GT ẋ)2 , (14)

where ẋ ∈ R6 is the object velocity. The stacking operator
stack() creates a vertical stacking of the contact conditions
for the fingers. GT ẋ ∈ R6×m is the contact velocities
obtained for each contact (for a given particle). One solution
to this minimization problem is the Moore-Penrose pseudo-
inversion that minimizes the L2 norm of the error.

xn+1
i = xn

i +G+[ċi,0 . . . ċi,j . . . ċi,n]
T dt , (15)

where i ∈ [1 . . . k] is the particle index (k particles), j ∈
[1 . . .m] is the contact point index (m contact points). xn

i ∈
R6 and xn+1

i ∈ R6 are the previous state of the object and
the newly predicted one. G+ ∈ R6×m is the Moore-Penrose
pseudo-inverse of the grasp matrix. [ċi,0 . . .vi,j . . .vi,n] is
the stack vector of the contact point velocities. dt ∈ R is the
time step between the last estimation and the current time
(alternatively, the velocities can be replaced by the small
displacements). It is important to note that the prediction
step is effective as soon as it yields statistically better particle
than the ones that are available. Therefore, the grasp matrix
prediction can be replaced by any other prediction, such as
the expected object motion provided by the planner or a few
iteration of a simplified dynamic simulation.

IV. EXPERIMENTAL RESULTS AND SIMULATIONS

In the previous sections a particle filtering algorithm, the
ideas and their implementations have been described. This
section concentrates on the experimental validation of the
method. In a first step the filter is evaluated with the help
of simulations, which allows to analyze the influence of bias
or noise in the measurements. In a second step, experiments
are performed to evaluate the practical performance of the
method. A representative power grasp task is demonstrating
that the method allows to compensate for a tilting object. A
more delicate precision grasp highlight how the estimation
can be used in scenarios where using available vision tools
would be extremely challenging.

A. Simulations

It is expected that, after some time, the particle filter is
able to converge to a good estimate of the particle with
maximum likely-hood. A simulation without measurement
noise or bias is used to verify the execution of the algorithm.
However, because the problem has several local minimums,
it is not guaranteed that the best estimate is the truth
although it solves properly the estimation problem. The
simulation works as follow: the grasp of an object is used
as initial position, an object motion is given, the finger tip
position are updated using the initial grasp matrix and the
object motion and the finger position are computed with the
help of inverse kinematics1. The finger trajectories and the
initial object pose are then used as measurements for the

1because the initial guess is good, a few Jacobian iteration yield a perfect
result.

Fig. 10. Initial object pose and grasp configuration for the simulation
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Fig. 11. Estimated object pose from ideal and inaccurate joint measure-
ments. The reference object trajectory is depicted by the black/dashed line.
The estimated trajectory from perfect measurements is represented by the
colored/solid lines. The shaded area illustrates the standard deviation of
the estimation from measurement with randomly added offsets to the joint
positions. It highlights the effect of errors in the kinematic model of the
fingers.

algorithm execution. A reference experiment with the perfect,
simulated, measurement is executed in order to verify that
the algorithm does not diverge. Then, multiple experiments
with sensor bias and/or noise are performed to analyze the
sensitivity to noise. The initial configuration of the object
and the fingers is depicted in Figure 10. The estimated
object pose and the reference object pose are reported in
Figure 11. The solid lines are representing the results of
the reference experiment, that is, the estimated pose from
the perfect measurements. They show a good match with
the simulated motion (represented in black/dashed). It is
important to notice that the translation and the rotation
around the object axis cannot be estimated and thus, tends
to drift very slowly up or down. The measurable coordinates
are showing an excellent tracking over a time span of
30s which ensures a good estimation of the object pose
during the grasp acquisition. The drift of the non-measurable
coordinates is limited to a few millimeters over the 30s and
thus does not pose any problem (11, axis z). The shaded
area represents the distribution of estimation over more than
50 experiments with random initial joint position offset. The
initial bias are selected according to the expected hardware
accuracy and have a distribution of several degrees. Since
the measurements are not anymore geometrically exact, the
stochastic design takes all its importance. It is clearly visible
that the values are close from the reference trajectory and
that they follow very well the relative object motion. The
non-measurable coordinates tend to drift faster since, in many
cases, the bias in the joint position creates a squeezing effect
on the object.
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Fig. 12. Experiment: the ketchup bottle is grasped lower than expected.
Left: real grasp, right: model based

B. Experiments

According the simulation section, the method is able to
deal with uncertainties that are compatible, in scale, with
the ones of the experimental platforms. The method has
been applied on several robotic hands available at DLR but
the results reported are obtained with the latest platform:
the Hand Arm System [19]. The system is very dexterous,
with 52 degrees of freedom, and anthropomorphic, thanks
to its human size and force capabilities. It is the ideal
platform since it can be used to manipulate common life
objects, however, the method is applicable to more primitive
grippers such as a two or three finger gripper. In the Hand
Arm System, the finger joint angles and the contact sensor
information are available from the real-time system at a rate
of at least 1kHz. However, because of the calculation load
involved, the particle filtering algorithm is reading them at
about 20Hz. The experiment consists in grasping a ketchup
bottle located by the vision system using a grasp from a
grasp planner database. However, because the grasp planner
did not account for the titling during the grasp acquisition
phase, the object is moving with respect to the palm. The
particle filter estimates the object pose during the grasp
acquisition, during the arm motion phase and the release
phase. The code that handles the phases is strictly identical
and no special trick is needed to make the transition between
the grasped or not grasped object. Indeed, the fact that the
object is attached to the end effector naturally comes from
the prediction step. As a result, the algorithm is able to
incorporate the pick and place concept without any prior
knowledge. A more complete sequence is proposed in the
media attachment that accompanies the paper, a description
of it is proposed in the Appendix VI. The repeatability of
the method is evaluated by executing the algorithm on the
same input data several times. Because of stochastic nature
of the method, the results are not expected to be identical but
should be similar. In Figure 13, 20 simulations are overlaid
and confirm that the method is leading to repeatable results.
The results are represented along the coordinates that can be
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Fig. 13. Simulation: repeatability of the evaluation. The simulation is
performed 20 times with the same input data. The observable coordinates
u and v are reported (translations and rotations along the main axis cannot
be observed).

Fig. 14. Experiment: distribution of the particles during a pinch grasp of
a plastic box. It is important to notice that, because of its transparency, this
object is particularly challenging to track visually.

estimated. Indeed, the shape of the ketchup bottle prevents
the estimation of the translation and the rotation along the
vertical axis of the bottle. Figure 14 shows how the particles
are gathering during a real wolrd experiment that is very
challenging with a vision system since the box is transparent.
The initial particle distribution is wide since no the fingers
are far from the object and are not measuring any contact.
The distribution of the particle is narrowing as the fingers
are getting closer. This experiement demonstrates that the
method can be applied to localize the box within a few
millimeters. There exists a delicate compromise between the
number of particle and the computation time. Indeed, more
particles increases the likely-hood of covering a better space
but reduces the execution speed. Conversely, a higher speed
reduces the changes between two steps and reduces the space
to be covered. Figure 15 provides the relation between the
number of particles and the execution time for three different
simulations. It has been experimentally established that about
20 particles at 20Hz provides a good tracking and covers
the space sufficiently. The execution was performed on a
desktop PC CPU and a significant speed-up is expected to be
achieved by using GPU computation and cluster computing
since each particle weighting is independent.

V. CONCLUSION AND FUTURE WORK

The method is based on very simple facts which, together
with the efficiency of a particle filter, provide accurate,
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Fig. 15. Simulation: execution time vs.a accuracy. E1 is a simulation with
perfect initial pose and unbiased measurements, E2 uses a perfect initial
pose and biased measurements (DC offset in the joint angles) and E3 uses
an inaccurate initial pose and biased measurements.

robust and online pose of the grasped object. First, the
key ideas were introduced and the particle filter algorithm
was described. The key elements of the implementation
were highlighted, such as the prediction step based on the
grasp matrix. Once the algorithm was implemented, several
simulations were performed to verify the stability and the
repeatability of the estimation. Finally, experiments demon-
strated the applicability of the approach in several realistic
scenarios.

Due to its very construction, the algorithm can incorporate
various facts in a flexible manner. One major next step is to
add an absolute referencing system, such as vision, in order
to estimate non-measurable coordinates. A second possible
extension is to use the algorithm to estimate joint DC offset,
thus realizing a self calibrating system.
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VI. VIDEO ATTACHMENT DESCRIPTION

The video shows how the method can be used in a realistic
setup, all videos are in realtime and synchronous. The first
part serves as a motivation example. The robot picks up the
bottle and the software attaches the bottle to the palm. The
planner then compute the release configuration according to
the initial grasp configuration and the planner provides a
collision free path. Finally, the robots executes the motion
and releases the object. It is clearly visible that the fingers
are going through the object because the object pose is not
updated during the grasp. As a result the object is placed
in an unstable configuration and falls. In the second part,
the particle filter is used to estimate the object pose. The
available knowledge is limited to the 3D models of the robot
and the object, the initial position of the object and the
configuration of the robot online. In a first step the particle
filter is initialized with the video data and the algorithm is
started before the motion is started. It can be seen that the
fingers are not going through the object anymore and that the
estimated object pose is realistically estimated. In the second
phase, the planner used the estimated pose after lift off in
order to plan the place configuration. The motion is executed
and, because the release configuration is matching the real
object pose, the object is released in a stable configuration. It
is very important to note that no knowledge of a the effect of
a grasp is programmed. The method, very naturally, results
in the attached/detach behavior without ever being coded.
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