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Abstract—We propose a novel space-division-based net-
work-coding scheme for multiple-input multiple-output (MIMO)
two-way relay channels (TWRCs), in which two multiantenna
users exchange information via a multiantenna relay. In the
proposed scheme, the overall signal space at the relay is divided
into two subspaces. In one subspace, the spatial streams of the
two users have nearly orthogonal directions and are completely
decoded at the relay. In the other subspace, the signal direc-
tions of the two users are nearly parallel, and linear functions
of the spatial streams are computed at the relay, following the
principle of physical-layer network coding. Based on the recov-
ered messages and message-functions, the relay generates and
forwards network-coded messages to the two users. We show
that, at high signal-to-noise ratio, the proposed scheme achieves
the asymptotic sum-rate capacity of the MIMO TWRC within

bits per user-antenna, for any antenna con-
figuration and any channel realization. We perform large-system
analysis to derive the average sum-rate of the proposed scheme
over Rayleigh-fading MIMO TWRCs. We show that the average
asymptotic sum-rate gap to the capacity is at most 0.053 bits
per relay-antenna. It is demonstrated that the proposed scheme
significantly outperforms the existing schemes.

Index Terms—Multiple-input multiple-output (MIMO), phys-
ical-layer network coding, space-division precoding, two-way
relay channel (TWRC).

I. INTRODUCTION

D URING the past decade, tremendous progress has been
made in the field of network coding [1]. In [2]–[4], the

concept of physical-layer network coding (PNC) was intro-
duced and applied to wireless networks. The simplest model
for PNC is a two-way relay channel (TWRC), in which two
users and exchange information via an intermediate relay.
Compared with conventional schemes, PNC allows the relay to
deliver linear functions of user messages, which can potentially
double the network throughput. It has been shown that PNC
can achieve the capacity of the Gaussian TWRC within 1/2
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bit per user [5], [6], and its gap to the capacity vanishes at
high-signal-to-noise-ratio (SNR) regime.
Recently, research effort has been directed toward efficient

communications over MIMO TWRCs, in which the two users
and the relay are all equipped with multiple antennas. Most
existing approaches on MIMO TWRCs focus on classical re-
laying strategies borrowed from one-way relay channels, such
as amplify-and-forward [7]–[10], compress-and-forward [11],
[12], and decode-and-forward [13]–[15]. These strategies gen-
erally perform well away from the channel capacity, e.g., due to
noise amplification and multiplexing loss [15]. Recently, sev-
eral relaying schemes have been proposed to support PNC in
MIMO TWRCs [16]–[22]. The basic idea is to jointly decom-
pose the channel matrices of the two users to create multiple
scalar channels, over which multiple PNC streams are trans-
mitted. Let , , and denote the number of antennas of
users and , and of the relay, respectively. For configurations
with , a generalized singular-value-decom-
position (GSVD) scheme was shown to achieve the asymptotic
capacity of theMIMOTWRC at high SNR [16], and an eigendi-
rection alignment-based scheme was shown to bring about im-
proved performance at medium-to-low SNR [17]. For configu-
rations with , all existing schemes in gen-
eral perform far away from the capacity. Such configurations,
however, are of most practical importance. For example, due to
the size limitation of user terminals, it is usually more conve-
nient to implement more antennas at the relay station than at the
user ends, as suggested in the standards of next generation wire-
less networks [23], [24].
In this paper, we propose a new space-division-based PNC

scheme for MIMO TWRCs. We first establish a novel joint
channel decomposition to characterize the mutual orthogonality
of the channel directions of the two users impinging upon the
relay. Based on this decomposition, the overall receive-signal
space at the relay is divided into two orthogonal subspaces. In
one subspace, the channel directions of one user are orthogonal
(or close to orthogonal) to those of the other user. In this sub-
space, the corresponding messages of the two users are com-
pletely decoded, hence referred to as completely decoded mes-
sages. In the other subspace, the channel directions of the two
users are parallel or close to parallel. In this subspace, linear
functions of the corresponding user messages are directly com-
puted, without completely decoding the individual messages.
These linear functions of the user messages are referred to as
PNCmessages. The completely decoded and PNCmessages are
jointly re-encoded at the relay, and then forwarded to the two
users. Following this, each user recovers the message from the
other user by extracting their own message.

0018-9448 © 2013 IEEE
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We derive the achievable rates of the proposed space-divi-
sion-based network coding scheme for MIMO TWRCs. We
analytically show that, in the high-SNR regime, the proposed
scheme can achieve the sum-capacity of the MIMO TWRC
within bits, or
bit/user-antenna, for any antenna setup and any channel real-
ization. We further consider a large-system analysis to derive
the average achievable sum-rate of the proposed scheme in
Rayleigh fadingMIMOTWRCs.We show that in the high-SNR
regime, the average gap between the achievable sum-rate of our
proposed scheme and the cut-set bound (serving as a sum-ca-
pacity upper bound) is at most 0.053 bit/relay-antenna, which
occurs at the antenna configurations of . For
all other configurations, the proposed scheme performs even
closer to the cut-set bound. Particularly, as the ratio (or

) tends to 0 or 1, the gap to the cut-set bound vanishes.
Moreover, numerical results demonstrate that the proposed
scheme significantly outperforms the existing schemes across
the full SNR range of practical interest.

II. PRELIMINARIES
A. Notation

The following notation is used throughout this paper. Scalars
are denoted by lowercase regular letters, vectors by lowercase
bold letters, and matrices by uppercase bold letters. For any
matrix , and denote the transpose and the Hermi-
tian transpose, respectively; denotes the determinant; and

denotes the Frobenius norm; denotes the column
space. and denote the ( )-dimensional real
space and complex space, respectively; denotes the log-
arithm with base 2; denotes the indicator function with

for and for ; denotes
; denotes the sign of ; and de-

notes the circularly symmetric complex Gaussian distribution
with mean and variable .

B. System Model

In this paper, we consider a discrete memoryless MIMO
TWRC in which users and exchange information via a
relay, as illustrated in Fig. 1. User is equipped with
antennas, , and the relay with antennas. We
assume that there is no direct link between the two users.
The channel is assumed to be flat-fading and quasi-static,
i.e., the channel coefficients remain unchanged during each
round of information exchange. The channel matrix from
user to the relay is denoted by , and
the channel matrix from the relay to user is denoted by

. We assume that the channel
matrices are always of full column or row rank, whichever is
smaller.1 As in [5], [6], [9], [10], [16], and [17], we also assume
that these channel matrices are globally known by both users as
well as by the relay. In practice, the channel state information
(CSI) is usually not known perfectly; however, accurate CSI
can reasonably be estimated at the receiver side via training
and channel estimation, while accurate CSI estimates at the
transmitter side may be more difficult to acquire due to delay in

1It can be shown that this full-rank assumption holds for randomly generated
channel matrices with probability one.

Fig. 1. Configuration of a MIMO TWRC.

feeding back CSI or limited feedback. We will briefly discuss
the realization of this assumption and the impact of imperfect
CSI later in Section V; cf., Remark 8.
The system operates in a half-duplex mode. Two time-slots

are employed for each round of information exchange. Fol-
lowing the convention in [16]–[18], we assume that the two
time-slots have the same duration. The extension of our results
to the case of unequal durations is straightforward.
In the first time-slot (referred to as the uplink phase), the two

users transmit to the relay simultaneously and the relay remains
silent. The transmit signal matrix at user is denoted by

, where is the number of channel uses
in one time-slot. Each column of denotes the signal vector
transmitted by the antennas in one channel use. The av-
erage power at each user is constrained as

. The received signal at the relay is denoted
by with

(1)

where denotes the additive white Gaussian noise
(AWGN) at the relay. We assume that the elements of are
independent and identically drawn from . Upon re-
ceiving , the relay generates a signal matrix .
In the second time-slot (referred to as the downlink phase),
is broadcast to the two users. The average power at the relay

is constrained as The signal matrix re-

ceived by user is denoted by ,
with

(2)

where, without loss of generality, represents the AWGN
matrix at user , with the elements independently drawn from

.

C. Definition of Achievable Rates
For the system model described above, the message of user
is denoted by . The cardinality

of is given by , where the factor of is because
each round of information exchange consists of two length-
time-slots. At user , the estimated message of user , denoted
by , is obtained from the received signal and the per-
fect knowledge of the self-message . The decoding opera-
tion at user is likewise. The error probability is defined as

or . A rate-pair is
achievable if the error probability vanishes as tends to in-
finity. The achievable rate-region of a scheme is defined as the
closure of all possible achievable rate-pairs.
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D. Capacity Upper Bound

This section briefly describes a capacity upper bound of the
MIMO TWRC. Let
be the input covariance matrices. For given
satisfying , the achievable
rate-pair of the MIMO TWRC is upper bounded as
[16]

(3a)

(3b)

where

(4a)

(4b)

(4c)

Here, the superscripts “UL” and “DL” represent uplink and
downlink, respectively, and the factor of is due to the two
time-slots used for each round of information exchange.
A capacity-region outer bound is defined as the closure of

the upper bound rate-pairs in (3). This outer bound can be de-
termined by optimizing , , and , as detailed in [16]
and [17]. The goal of this paper is to develop a communication
strategy that can approach this outer bound.

III. RELAYING STRATEGIES FOR TWRCS WITH
SINGLE-ANTENNA USERS

In this section, we consider TWRCswith single-antenna users
and a multiantenna relay, i.e., and . The
results developed in this section will be used for the study of
general MIMO TWRCs in the later sections.

A. Relaying Strategies: CD Versus PNC

For the case of single-antenna users, the channel model of the
uplink phase in (1) can be simplified as

(5)

where is the reduced version of , and
is the transmit signal vector of user , with the th entry

of being the signal transmitted at the th time interval,
.

We have two competing relay strategies described as follows.
From (5), the signal direction of user impinging upon the
relay is given by . On one hand, if
and turn out to be orthogonal, both messages of the two
users can be decoded free of interference from each other. The
recovered messages of the two users are then network-coded,
e.g., using algebraic operations [1], and forwarded to the two
users. We refer to this first strategy as a complete decoding (CD)
strategy. On the other hand, if and turn out to be
parallel (i.e., in the same direction), then it is advantageous to

compute a linear function of and , referred to as a net-
work-coded message, instead of completely decoding both
and . We refer to this second strategy as a PNC strategy.
In general, the following strategy can be adopted: if and
tend to be orthogonal, the CD strategy is applied; if

and tend to be parallel, the PNC strategy is applied. The
selection between these two strategies is based on their achiev-
able rates, as described below.

B. Achievable Rates of the CD Strategy

For the CD strategy, the uplink channel in (5) becomes a mul-
tiple-access channel (MAC). Let , be the rate
of user for the CD strategy. Then, the uplink rate-region of
the CD strategy, denoted by , is given by

(6a)

(6b)

which follows from the well-known MAC capacity region
[27]–[29].

C. Achievable Rates of the PNC Strategy

For the PNC strategy, it is required that the two user-signals
lie in the same spatial direction [5], [6]. This is not guaranteed
here due to the availability of multiple antennas at the relay.
To implement PNC, we employ a projection-based method as
follows. We first project the signals from the two users onto a
common direction, denoted by a unit vector . The
choice of will be discussed momentarily. This projection op-
eration creates an aligned scalar channel given by

(7)

with the effective channel coefficients given by and
. Let be the rate of user , . It was

shown in [5] that, with nested lattice coding [25], the following
rates are achievable over the scalar TWRC in (7):

(8)

where represents the transmission power
of user . Note that the above rates are achieved by decoding
the lattice-modulo of (referred to as
the codeword sum), instead of directly decoding the codeword
sum [5]. However, the latter is required to support successive in-
terference cancellation (SIC), as in the case of MIMO TWRCs
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where multiple spatial-stream pairs need to be successively de-
coded. It was shown in [16] that, if the codeword sum is de-
coded, the achievable rates ( ) are given by

(9)
Notice that (8) and (9) become identical at high SNR.
The uplink rate-region of the PNC scheme is given by

(10)

The boundary of can be found by optimizing , ,
and , as detailed below.
We start with the rate-pair given in (9). As the achievable rate-

region is convex, the boundary points of can be deter-
mined by solving the weighted sum-rate maximization problem:

(11a)

(11b)

where and are arbitrary nonnegative weighting coef-
ficients.2 By inspecting (9), the maximum of (11) is achieved
at . Thus, we only need to optimize
. The optimal to (11) is given in Appendix A. Particularly,
for the sum-rate case, i.e., , the optimal projec-
tion direction is just the angular bisector of and if

, or the angular bisector of and if
. By varying the ratio of , can be

determined.
We now briefly discuss the treatment for using the rate-pair

(8) in formulating (11). The problem then becomes more com-
plicated due to the coupling between the two rates (since both

and are present in both rate expressions in (8)). At high
SNR, in particular, as (8) and (9) are asymptotically identical,
we see that the high-SNR optimal projection direction for the
sum-rate case is still the angular bisector of the channel direc-
tions of the two users.

D. Overall Scheme

We now present an overall scheme which exploits the bene-
fits of both CD and PNC strategies. Specifically, in the uplink,
the proposed scheme selects the CD strategy, the PNC strategy,
or their combination by using time sharing. Then, the uplink
achievable rate-region, denoted by , is given by the convex
hull of and . An example of can be found in
Fig. 2.
For the downlink phase, the achievable rate-region is deter-

mined as follows. For CD, the relay jointly re-encodes the de-
coded messages and , and forwards the resulting code-
word to the two users in the downlink. For PNC decoding, the

2In fact, it is sufficient to describe and using one parameter, since
only the ratio matters in solving (11). However, we keep using both
and for notational convenience, as seen later in this paper.

Fig. 2. Uplink rate-regions of the TWRCs with single-antenna users.
and . The channel ;

the horizontal axes represent the rate of user ; the vertical axes represent the
rate of user ; the unit is bit per channel use. It is seen that the PNC strategy
outperforms the CD strategy for , and the opposite is true for .
The time-sharing combination of the two strategies in general yields a larger
rate-region, as seen in the figure of . (a) . (b) .(c)

.

relay forwards the lattice-modulo of ,
referred to as the network-coded message, to the two users.
Then, each user recovers the message of the other user with the
help of perfect knowledge of the self-message. From [16]–[18],
the downlink rate-regions for the two strategies are the same
given by

(12)

with

(13a)

(13b)

Finally, an achievable rate-region of the overall scheme is the
intersection of and .

IV. SPACE-DIVISION APPROACH FOR MIMO TWRCS

In this section, we consider a general MIMO TWRC
with , . As aforementioned, the case of

has been well studied in [16], where the
asymptotic capacity was established. However, the case of

is of more practical importance, and all
existing schemes perform well away from the capacity in this
case. In what follows, we always assume
and propose a novel space-division approach which brings
about significant performance improvement over the existing
schemes.

A. Preliminaries

What motivates the proposed space-division approach is the
following property of and . Denote by
and the column spaces of the uplink channel matrices

and , respectively. In general, we can partition the
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column space as the direct sum3 of three
orthogonal subspaces: a subspace that is parallel to

, i.e., any vector in belongs to ; a sub-
space that is neither parallel nor orthogonal to ;
and a subspace that is orthogonal to . Simi-
larly, is the direct sum of three orthogonal subspaces

and . Note that since both
represent the common space of and .
In , the signal directions of the two users can be effi-

ciently aligned to a common set of directions, providing a plat-
form to carry out PNC, as in [16]–[18]. On the other hand, in

and , the two users do not interfere with each other;
hence, the CD strategy can be employed. The above treatments
are similar to those for the case of single-antenna users, as dis-
cussed in the preceding section. What remains is the treatment
for the signals in and that are neither parallel nor
orthogonal. Heuristically, some channel directions in and

may be nearly parallel to each other. For these channel
directions, the PNC strategy is preferable for the related spatial
streams. On the other hand, some channel directions in
and may be nearly orthogonal to each other. Then, the
CD strategy is preferable. The main challenge lies in how to
identify those nearly parallel/orthogonal channel directions. To
this end, we next propose a new joint channel decomposition of

and . To begin with, we present some useful lemmas,
with the proofs given in Appendix B.
Let the compact singular value decomposition of be

(14)

where is an matrix with orthonormal columns, i.e.,

. Denote by the th eigenvalue of the matrix

, and by the corresponding eigenvector
with unit length. Without loss of generality, we arrange in
the descending order. By definition, we have

(15)

The eigenvalues are valued between 0 and 2, since the

eigenvalues of are either 1 or 0, . We are
interested in the following four cases of : (a) ; (b)

(c) ; and (d) .
For case (a), implies that

Thus, lies in the common space of and , or
equivalently, is in the common space .
For case (c), we have the following lemma.
Lemma 1: If , then the corresponding satisfies

either

(16a)

3Let be a vector space, and let be subspaces of . is
defined to be a direct sum of when are mutually
orthogonal and for every vector in , there is in such

that .

or

(16b)

From Lemma 1, in case (c) is in (or ) which is
orthogonal to the space spanned by (or ).
We next show that the eigenvalues in cases (b) and (d) appear

in a pairwise manner. Denote

(17)

Note that is the projection of vector onto the column
space of . From (15), we obtain

(18)

The above implies that , and lie in the same two-di-
mension plane (denoted by ). We have the following lemmas.
Lemma 2: For any in case (b), the corresponding is the

angular bisector of and , i.e.,

(19)

Lemma 3: For any (as in case (b)), is
also an eigenvalue of , and the corresponding
unit-length eigenvector is given by

(20)

Lemma 4: The subspace spanned by and is or-
thogonal to , for any .
From Lemma 3, we see that the eigenvalues in case (b) and

case (d) indeed appear in a pairwise manner. As a result, the
number of eigenvalues in is the same as that in .

B. Joint Channel Decomposition

To develop the new joint channel decomposition of
and , we first give an overall picture of the eigenvalues
and eigenvectors of based on Lemmas 1–4.
Without loss of generality, let be the number of eigenvalues

of equal to 2 [for case (a)]; be the number
of eigenvalues [for case (b)]; be the number of

eigenvalues equal to 1 with
[for case (c.1)]; be the number of eigenvalues equal to 1

with [for case (c.2)].
Denote the eigenvalues in case (a) by , and

the corresponding orthogonal eigenvectors by .
Also denote the eigenvalues in case (b) by in
the descending order, and the corresponding eigenvectors by

. From Lemma 3, the eigenvalues in cases (b)
and (d) appear in a pairwise manner. We denote eigenvalues
in case (d) by in the descending order, and the
corresponding eigenvectors by . Furthermore,
we denote the orthogonal eigenvectors in case (c.1) by

, and the orthogonal eigenvectors in
case (c.2) by . Define

(21)
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It can be readily verified that satisfies ,
i.e., has orthonormal columns.
We are now ready to present the joint channel decomposition

as follows.
Theorem 1: The channel matrices and can be

jointly decomposed as

(22)

where is a square matrix, and
are defined as

(23a)
with

. . .
...

...
. . .

. . .

(23b)

(23c)

(23d)

Proof: Let

(24a)

and

(24b)

In the above, are the eigenvectors in case (a);
are the eigenvectors in case (c) satis-

fying for ;
are the eigenvectors in case (c)

satisfying for
. Then, with Lemmas 2 and 3, it can be verified

that in (23a) satisfies

(25)

Recall that for , where is the
2-D subspace spanned by and . Then, from Lemma
4 and the orthogonality of the eigenvectors, the columns of
are orthonormal. Together with the fact that all columns of
lie in the column space of (and so in the column space of

TABLE I
SUBSPACES AND THEIR DIMENSIONS

), we see that and share the same column space.
Thus, there exists an square matrix such that

(26)

Combining (25) and (26), we obtain

(27)

which completes the proof of Theorem 1.
Remark 1: We interpret (22) as follows. By inspection of

(22), we see that specifies the column space of ,
i.e., . Note that has orthonormal

columns, as , . Therefore, the
columns of give an orthogonal basis of , with
the coordinates of specified in . Moreover, from (21),
it can be shown

where is defined above Lemma 2. Thus,
is actually the overall column space of the two channel

matrices, i.e., .
Remark 2: The column structures of and are

explained as follows. In the first place, we note that and
share the same first columns. Thus, the first columns

of span , i.e., the common space of and
. Second, from (23a), the last columns of (ob-

tained from multiplying with the third block column of )
are orthogonal to . Hence, these columns of span
the subspace , i.e., the subspace orthogonal to .
Third, the remaining columns of span the subspace

, by noting the facts that and that
is the direct-sum of three orthogonal subspaces ,

, and . Similarly, the first columns of span
, the next columns span , and the last columns

span . Recall that is the direct sum of ,
, and , and that is the direct sum of ,
, and . Thus, the dimensions of these subspaces

have the following relationship:

(28)

We summarize the geometrical meanings of these subspaces and
their dimensions in Table I.
The joint channel decomposition in Theorem 1 identifies the

channel directions of the two users based on the degree of or-
thogonality, as detailed below. Let be the th column of
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, . We refer to and as the th

channel direction pair. Here, means that

and are parallel, and means that they are

orthogonal. Thus, can be regarded as a measure of the
degree of orthogonality of and . In the following corol-
lary, the degree of orthogonality of each channel direction pair
( , ) is determined by the magnitude of , i.e., the th

eigenvalue of .
Corollary 1: For , the degree of orthogo-

nality of the th channel direction pair ( , ) is given by

.
Proof: For , we see from (23a) that and

, and so . For ,
from (23a) and (23b), the th column of is given by

(29)

where represents the th column of . Then, we obtain

, where the first
step utilizes the fact that has orthonormal columns, and the
second step follows from (23c).
Corollary 2: For , is an eigenvector

of corresponding to , and is orthogonal
to ; for , is an eigenvector
corresponding to and is orthogonal to .
Remark 3: The above corollaries show that the eigenvalue

is an indicator of the degree of orthogonality of the th direction
pair. In particular, means that the two channel directions
are close to parallel, and means that the two channel
directions are close to orthogonal.
Remark 4: For the case of , we obtain

, implying that the eigenvalues satisfy
for , and for . In this case,
efficient channel alignment techniques have been proposed in
[16]–[18] for the implementation of PNC. In what follows, we
are mainly interested in the case of , i.e.,
there exist valued between, but not including, 1 and 2.

C. Space-Division for MIMO Two-Way Relaying

Based on the joint channel decomposition in Theorem 1,
we now propose a new space-division approach for MIMO
two-way relaying. The main idea is to divide the overall signal
space into two orthogonal subspaces:
1) , in which the channel direction pairs ( ) are
parallel or close to parallel, for carrying out PNC; 2)
for carrying out the CD strategy. Let be an arbitrary integer

between 0 and . Recall that the channel direction pairs are or-
dered by the degree of orthogonality as in Corollary 1. That is,
the first direction pairs have lower degree of orthogonality
compared to the remaining pairs. Thus, we allocate the first

direction pairs to form a basis of . The remaining
channel directions give a basis of . In this section, we
assume that is given. The details on the optimization of will
be discussed later in Sections V and VI.
1) Space-Division Operation: Let the RQ decomposition of
be

(30)

where is an upper triangular matrix given by

...
...

. . .
...

(31)

and is unitary. Together with (22), the channel
matrices can be jointly decomposed as

(32)

Then, the received signal at the relay, after left-multiplying ,
can be represented as

(33)

where , and with
i.i.d. elements .
We partition and , respectively, as

(34a)

(34b)

where and
, are block-di-

agonal matrices, and and
, are upper

triangular matrices. Then, (33) can be rewritten as (35), given
at the bottom of the page, where , , and are
correspondingly partitioned as

(36)

(35)
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Here, the superscript “PNC” (or “CD”) represents the PNC (or
CD) strategy.
Based on the signal model in (35), the proposed space-di-

vision based relaying strategy is described as follows. At user
, two groups of spatial streams are generated: one group, re-

ferred to as the CD spatial streams, forms the codeword ma-
trix , and the other group, referred to as the PNC spatial
streams, forms the codeword matrix , .
2) CD Spatial Streams: Due to the block upper triangular

structure of the channel matrices in (35), the relay can com-
pletely decode the spatial streams and free of in-
terference from the PNC spatial streams. Specifically, the relay
completely decodes both and based on

(37)

Then, and are canceled from the received signal in
(35).
3) PNC Spatial Streams: After the cancellation of and
, the system model for the PNC spatial streams is given by

(38)

From (23a), the first columns of and are iden-
tical, meaning that the corresponding signal directions are al-
ready aligned; however, for , the th columns
of and are not identical, meaning that the sig-
nals are in different directions. To carry out PNC for these non-
aligned signal directions, we project each column pair of
and onto a common direction. The treatment is similar
to what described in Section III, as detailed below.
By inspection, the only difference between the th columns of

and is given by the vectors and ,
for . Without loss of generality, denote by
a unit vector representing the projection direction of
and . The choice of is similar to that described in

Section III and will be detailed in the next section.
Now the overall projection process can be described using the

following projection matrix:

. . .
...

...
. . .

. . .
(39)

After the projection, the resulting signal model is given by

(40)

with

(41a)

(41b)

where Note that
the equivalent channel matrices and are

-by- square matrices. For such an equiva-
lent MIMO TWRC, efficient techniques exist to align the
signal directions of the two users into a common set of
directions. Based on that, we carry out PNC streams in these
directions. We will analyze the achievable rates of the proposed
scheme in the next section.

V. ACHIEVABLE RATE-REGION OF MIMO TWRC

In this section, we derive an achievable rate-pair of the
proposed space-division based network coding scheme. Based
on that, we optimize the system parameters to determine the
achievable rate-region.

A. Achievable Rate-Pairs

1) CD Spatial Streams: The equivalent channel model seen
by the CD spatial streams is given in (37), with the equivalent
channel matrices given by , .
The signal model in (37) is a standard MIMO MAC channel.

Let be the input covariance matrix
of the CD spatial steams of user . Then, the achievable rate-
pair of the CD spatial streams satisfies (42), at the bottom of the
page; see [29]. It is worth noting that (42a) is redundant when
the CD signals of the two users are orthogonal to each other, i.e.,

is orthogonal to , implying
that there is no cross-interference between the two users’ CD
signals.
2) PNC Spatial Streams: The equivalent channel seen by the

PNC streams is given in (40). Recall that is a
square matrix, and the efficient design of PNC for this case

has been studied in [16]–[18]. Here, we follow the GSVD-based
approach in [16], as briefly described below.

(42a)

(42b)
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Applying the GSVD [26] to , we obtain

(43)

where is a nonsingular matrix,
is an orthogonal matrix, ,

and is a diagonal matrix with the th
diagonal element denoted by . We further take the QR
decomposition to the matrix , yielding

(44a)

where is an upper triangular matrix given
by

...
...

. . .
...

(44b)

The transmit signal in (40) is designed as

(45)

where is a di-
agonal matrix with , and

is the codeword matrix with unit power (i.e., the el-
ements of have zero mean and unit variance). Note that
the total power consumption of the PNC streams of user is
given by , .
By left-multiplying to the received signal in (40), the

signal component induced by the PNC spatial streams is
given by . Note that each
column of is proportional to the corresponding
column of . This allows us to successively decode
the linear combinations on the main diagonal by peeling
off the interference from the other PNC spatial streams
[16]. Specifically, let be the th row of ,

and be the th element of . With the upper tri-
angular form of the equivalent channel matrices, the PNC
spatial streams, i.e., ,

, are successively network-decoded
and canceled from the received signal. Let be the total
rate of the PNC spatial streams of user . From [16, Th. 1], the
achievable rate-pair is given by

(46)

where is the indicator function with for and
for .

3) Overall Achievable Rate-Pair: We now consider
the overall achievable rate-pair of the proposed space-di-
vision based network coding scheme. Before going into
details, we note that the power constraint of user , i.e.,

, can be equivalently
expressed as

(47)

We are now ready to present the following theorem on the
achievable rates of the proposed scheme. The proof can be
found in Appendix C.
Theorem 2: For given , , and satisfying (47) and

, a rate-pair for the MIMO TWRC is
achievable if

(48)

where and satisfy (42), is given by (46), and
is given by (4).

Remark 5: Here, we briefly explain the difference be-
tween our proposed scheme and the existing GSVD-based
scheme [16]. For the case of , we have

or or both,
i.e., the two users share a common dimension-
signal space. Then, the GSVD approach in [16] is equiva-
lent to our space-division approach, and both can identify

aligned spatial directions for PNC. On
the other hand, for the case of , any of

and generally does not contain the other.
As a consequence, the GSVD approach can only identify
aligned PNC directions in the intersection of and

. In contrast, in the proposed space-division approach,
we first project the PNC signals into a properly chosen common
subspace to obtain the equivalent channel matrices and

satisfying . Then, we
use GSVD to identify ( ) aligned spatial directions
for streams of PNC. The remaining portions of signal
directions are projected to the space orthogonal to the PNC
streams, where CD can achieve improved performance. This
difference eventually leads to the performance advantage of the
space-division approach over the GSVD approach for the case
of .
Remark 6: The proposed space-division scheme involves

jointly re-encoding the completely decoded messages and net-
work-coded messages at the relay. This re-encoding operation
includes symbolwise algebraic operations for network-coding
and conventional channel coding. These two operations are
generally required in all regenerative relaying schemes uti-
lizing network coding [2], [5], [16], [17], [35]. In particular,
the algebraic operations involve simple additions and multi-
plications in finite fields. Thus, the overall complexity of the
re-encoding process is dominated by channel coding, for which
efficient encoding algorithms have been well studied in the
literature. Compared with conventional regenerative relaying,
the proposed space-division scheme requires a marginal extra
overhead for the joint re-encoding process at the relay.
Remark 7: We note that identical received power between

the two users is not required in our proposed scheme. Unlike
the original PNC scheme proposed in [2], PNC with nested lat-
tice coding allows unequal reception powers of the two users
and is capacity-achieving for SISO TWRCs in the high-SNR
regime [5]. Our work in this paper borrows the result in [5] for
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PNC spatial streams. Specifically, our SD approach employs a
new precoding technique to decompose a MIMO TWRC into
multiple scalar SISO TWRCs, and then nested lattice coding
is applied to each of those SISO TWRCs. Therefore, pre-equal-
ization with identical received powers is not required in the pro-
posed space-division scheme.
Remark 8: Global CSI is assumed in developing the pro-

posed space-division scheme. However, acquiring global CSI
may pose a heavy burden on the network backhaul in practice.
We now describe an efficient way to distribute CSI in a MIMO
TWRC, so as to realize the proposed scheme. We assume that
channel estimation is conducted at the relay node, with the con-
sideration that the relay node is usually more computationally
powerful than the user nodes, such as in a cellular network.
Upon acquiring the CSI, the relay computes necessary infor-
mation for implementing the proposed scheme, including the
precoding matrices of both users, the number of PNC spatial
streams (that is the same for both users), and the information
rates of the PNC/CD spatial stream for both users. Then, the
relay sends the information to the two users via backhaul links.
Note that it is sufficient for each user to know its individual in-
formation including its own precoding matrix, the number of its
PNC spatial streams, and the rates of its PNC and CD spatial
streams. Generally speaking, the overhead incurred by sending
the individual information to a user is much smaller than that
by directly sending the global CSI (including the channel ma-
trices of the two user-relay links) to this user. Furthermore, the
assumption of perfect CSI is usually difficult to be exactly met
in practice, e.g., due to the Doppler effect or due to capacity
limitation of the backhaul links. In what follows, we briefly dis-
cuss the robustness of the proposed scheme against uncertainties
in the CSI. With perfect CSI, the signal directions of the PNC
spatial streams (as described in Section IV-B and in this sub-
section) impinging upon the relay are perfectly aligned, so that
the PNC streams are successively decoded free of interference.
However, if the users only partially know CSI, the PNC streams
cannot be perfectly aligned, which causes interference between
the PNC streams (that cannot be handled using the SIC tech-
nique in the proposed scheme). In the low-SNR regime, this in-
terference leakage has little impact on the system performance,

as the interference is overwhelmed by the channel noise; how-
ever, in the high-SNR regime, this leakage in general impairs
the achievable degrees of freedom (DoF) of the PNC streams.
We will return to this issue in Section VI-A.

B. Determining Achievable Rate-Region

Nowwe consider determining the boundary of the achievable
rate-region. From (48), the downlink achievable rates are the
same as the capacity upper bound in (4). Here, we focus on the
uplink rate-region.
The boundary of the uplink rate-region can be determined by

solving the weighted-sum-rate maximization problem defined
in (49), given at the bottom of the page. This problem involves
the optimization of the number of PNC streams , the projection
matrix , the covariance matrices and for the CD
streams, and the power allocation coefficients and

. This problem is in general difficult to solve.We next
propose a suboptimal solution, as detailed below.
1) Determining the Projection Directions: The optimization

of the projection matrix to maximize the weighted sum-rate
is in general difficult to solve. To simplify the problem, we con-
sider the high-SNR regime, with the weighted sum-rate given
by

(50)

(49a)

(49b)

(49c)

(49d)

(49e)
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where step (a) follows from substituting (46), step (b) from the
facts that is upper triangular and that equal power allocation
is asymptotically optimal (i.e., ),4 step (c) by noting

[cf., (40) and (44a)],
and step (d) from the fact that is diagonal. In the above,

is the only term related to . Recall from

(41b) that with being the principle
submatrix of in (34a). Thus, the weighted sum-rate maxi-
mization problem over can be decoupled into independent
subproblems as

(51)

where and are given in (23c). From (71) and the dis-
cussions therein, the optimal to maximize the weighted sum-
rate is a real vector given by

(52)

where is a scaling factor to ensure , and

(53)

with

(54)

4At high SNR, the sum-rate maximization problem in (49) reduces to maxi-
mize subject to (49b). This
formulation is similar to the power allocation problem for point-to-pointMIMO,
and it is known that equal power allocation is asymptotically optimal at high
SNR [33].

2) Determining and : Given in (52), the
optimization problem in (49) can be decoupled into two sepa-
rate problems by predetermining the power allocated to the two
signal subspaces. Let be the power of user used for
the CD spatial streams. Then, the power for the PNC streams
is given by . For given
and , the optimal and to (49) can be found by
solving the problem in (55), given at the bottom of the page.
This is a standard weighted sum-rate maximization problem for
a MIMO multiple-access channel with two users [34]. The op-
timal solution can be computed using convex programming [30]
or the iterative water-filling technique in [34].
3) Determining Power Allocation for PNC Streams: Now

we consider the optimization of and .

Given and , the optimal and
can be determined by solving the problem in (56), given at the
bottom of the page. A similar problem has been considered in
[16], and the optimal solution can be obtained by solving the
Karush–Kuhn–Tuchker (KKT) conditions. The involved com-
plexity is negligible. We refer interested readers to [16] for more
details.
4) Overall Algorithm: We summarize the above suboptimal

solution to (49) as follows:

(55a)

(55b)

(55c)

(55d)

(56a)

(56b)
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Remark 9: In the above algorithm, the projection directions
are fixed in (52) and are independent of the other optimiza-
tion parameters. This treatment is in general not optimal, but
allows a simple solution to (49) as described in the above algo-
rithm.Wewill show in the next section that the proposed scheme
(with this suboptimal treatment of the projection directions) has
guaranteed sum-rate performance in both high- and low-SNR
regimes. However, no guaranteed performance can be promised
in the medium-SNR regime, though our empirical experience
suggests that this treatment can also provide good performance
at medium SNR.
Remark 10: In Step 2 of the above algorithm, the exhaus-

tive search over all possible choices of and ,
(denoted by the set ) is detailed as follows. First

note that enumerating is straightforward, as is an integer
between 0 and . In addition, denote by the por-
tion of power allocated for the PNC spatial streams of user ,

, i.e., and ,
. Then, we only need to conduct a bounded 2-D

exhaustive search, i.e., to search and over a discretized
set of up to a certain precision level.
Remark 11: The computational complexity of the above al-

gorithm is dominated by Step 2, which involves solving two
decoupled problems (55) and (56) for every possible choice of

and , . Note that (56) can be done
by solving KKT conditions with marginal complexity. Thus, the
complexity is dominated by (55) which is a weighted sum-rate
maximization problem for a vector MAC and is solvable using
the iterative water-filling technique in [34].

VI. ASYMPTOTIC SUM-RATE ANALYSIS

In the preceding section, we have shown the achievable rates
of the proposed space-division-based network-coding scheme
for MIMO TWRCs. In general, it is difficult to represent the
achievable rate of the optimized space-division scheme in a
closed form. Thus, we turn to the asymptotic regimes to assess
the performance of our proposed scheme.
In the low-SNR regime, our proposed scheme asymptotically

achieves the capacity of MIMO TWRC as SNR tends to zero.5

This is because the proposed scheme reduces to the CD scheme,
and the optimal power allocation for each user is to allocate the
entire power to the signal stream that has the highest channel
gain as SNR tends to zero. In this way, our scheme achieves the
capacity at low SNR, as similarly to water-filling for a point-to-
point MIMO system [17].
In what follows, we focus on the high-SNR analysis. We de-

rive a closed-form expression for the asymptotic sum-rate of the
proposed scheme in the high-SNR regime.

A. Asymptotic Sum-Rate as

We start with analyzing the uplink achievable sum-rate

(57)

5On the contrary, the GSVD approach in [16] performs away from the ca-
pacity at low SNR. This is because PNC with nested lattice coding generally
fails to achieve the capacity of TWRC, as we see from (8) and (9) that there is
no “1+” term in the logarithm of the rate formulas.

as the SNRs, i.e., and , tend to infinity. In the high-SNR
regime, equal power allocation is asymptotically optimal; cf.,
Footnote 4. Then, the upper bound of the uplink sum-rate of the
MIMO TWRC is given by [cf., (4)]

(58)

where “ ” means

We now present the following theorem on the asymptotic
sum-rate of the proposed scheme. Denote by the uplink
achievable sum-rate of the proposed space-division scheme.
Theorem 3: For a given , the uplink achievable sum-rate of

the proposed space-division scheme satisfies

(59a)

where

(59b)
The proof of Theorem 3 can be found in Appendix D. No-

tice that the first term in (59b), i.e., , is the rate

loss incurred by the PNC spatial streams, and the second term,

i.e., , is that incurred by the CD spatial

streams.
Remark 12: For the case of , we have

and for ; see Remark 4. Then,
from (59b), we have , which means that the scheme
is asymptotically optimal. This agrees with the fact that our
proposed space-division scheme reduces to the GSVD scheme
which is indeed asymptotically optimal in the high-SNR regime
[16].
Corollary 3: The proposed space-division scheme and the

capacity upper bound have a common high-SNR rate slope (re-
ferred to as the DoF) given by

(60)

Proof: From (59a), we see that the proposed space-division
scheme and the capacity upper bound have the same rate slope,
since their rate gap is a constant. From (58), the capacity upper
bound is the sum of the achievable rates of two point-to-point
MIMO channels. Note that the DoF of a point-to-point MIMO
channel is the minimum of the number of transmit antennas and
that of the receive antennas. Thus, the DoF of the capacity upper
bound is , which concludes the proof.
Remark 13: The DoF of the CD scheme is limited by the

MAC in (1), and is given by . From Corol-
lary 3, our proposed scheme achieves a higher DoF than the CD
scheme when . However, as aforementioned,
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the PNC spatial streams lose DoF when channel uncertainty ex-
ists. In that case, the DoF of our proposed scheme reduces to that
of the CD scheme. We note that such a loss of DoF is a common
problem for all existing signal-alignment based techniques [16],
[17], [36].
Corollary 4: The optimal that minimizes in (59b)

satisfies

(61)
With this choice of , the asymptotic rate gap is at most

bits, which occurs when
.

Proof: The proof follows straightforwardly from (59b) by
noting that the minimum of , , is
achieved at .
Corollary 5: At high SNR, the proposed scheme is at most

bits, or bits per
user-antenna away from the sum-capacity; the corresponding
asymptotic SNR gap to the sum-capacity upper bound is at most

.
Proof: From Corollary 4, the asymptotic gap to the

sum-capacity upper bound is bits for the worst
case. Thus, the first half of the corollary is proven by noting

. For the second half, we see from Corollary 3
that the rate gap and the corresponding SNR gap in dB (denoted
by ) satisfies

(62)

Substituting , we obtain

(63)

B. Average Sum-Rate via Large-System Analysis

In this subsection, we investigate the statistical average of the
rate gap in fading channels. To this end, the distribution
of , i.e., the eigenvalues of , is required.
However, such a distribution is difficult to obtain in general.
Here, we employ the large-system analysis to find an approxi-
mation of the distribution of . The distribution obtained in
this way becomes exact as the number of antennas in the system
is large.

We assume Rayleigh fading, in which the channel coefficients
are i.i.d. circularly symmetric complex Gaussian random vari-
ables. Then, the matrices and in (14) are truncated uni-
formly distributed unitary matrices or, alternatively, are asymp-
totically free random matrices [31]. Thus, we can use the theory
of free probability to derive the asymptotic eigenvalue distribu-
tion (a.e.d.) of as tends to infinity, with
the result given in the lemma below. Define

.
Lemma 5: As with and , the

a.e.d. of is given by (64), at the bottom of
the page, where is a Dirac delta function and is the
imaginary part of a complex number.
The proof of the above lemma can be found in Appendix E.

As , we see that for , the portion of
eigenvalues equal to 2 is given by . This por-
tion corresponds to the dimension of the common space
of and . In addition, for , the portion of
eigenvalues equal to 1 is given by . This portion
corresponds to the dimension of if or the di-
mension of if .
We are now ready to present the following asymptotic result.

Define . Then, we have the following.
Theorem 4: As with and , the

gap to the capacity upper bound satisfies

(65)
Proof: The a.e.d. of is given by Lemma 3. Then, letting
tends to infinity in (59b), we immediately obtain the the-

orem.
Let be the average sum-capacity upper bound. Then, for

a large , the average sum-rate of the proposed SD scheme can
be first-order approximated as

(66)

with given in (65).
We next study the symmetric case that the two users have the

same number of antennas, i.e., .
Corollary 6: For ,

(67a)

(64)
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for ,

(67b)

where and

(67c)

Proof: Letting , we obtain that
for and

for . In addition, implies .
Based on these facts and Theorem 4, we obtain the corollary.
Remark 14: From the above, we see that, if the

probability of approaches zero as , implying
that CD achieves a higher rate than PNC for all spatial streams.
Corollary 7: The asymptotic normalized rate gap in (65)

is maximized at , with the maximum given by

(68)
Proof: We first consider optimizing and under the

constraint of . From (64), we see that, for any
, is maximized at , and

so is .
What remains is to optimize . From (67c), is max-

imized at . Therefore, is maximized at ,
which completes the proof.
Remark 15: We can represent the above rate gap in terms of

the equivalent SNR gap as follows. From (62), together with
and , we

obtain the corresponding SNR gap as

(69)

Fig. 3 illustrates the function of the normalized asymptotic
rate gap against . From Fig. 3, this rate gap is maximized to
be about 0.053 bit at , which verifies Corollary 7. Also,
this rate gap vanishes as tends to 0, implying that, for any fixed

, the proposed space-division scheme can achieve
the asymptotic capacity as tends to infinity. Moreover, this
rate gap vanishes as tends to 1. This agrees with the fact that,
for , or equivalently, , the proposed
space-division scheme achieves the asymptotic capacity as it
reduces to the GSVD scheme in [16].

VII. NUMERICAL RESULTS

In this section, we provide numerical results to eval-
uate the performance of the proposed space-division based
network-coding strategy for MIMO TWRCs. The results pre-
sented here are obtained by averaging over 10 000 random
channel realizations. Rayleigh-fading is always assumed, i.e.,
the coefficients in the channel matrices are independently and
identically drawn from .
We first present the numerical results for the MIMO TWRC

with and in Fig. 4. The sum-capacity

Fig. 3. Function of the average normalized gap in (65) against .

Fig. 4. Average achievable sum-rates of various schemes for the Rayleigh
fading MIMO TWRC with and .

upper bound (UB), the proposed space-division (SD) scheme,
the GSVD scheme in [16] and the CD scheme in [17] are in-
cluded for comparison. We see that, at a relatively high SNR,
e.g., , the rate gap between the proposed SD
scheme and the sum-capacity upper bound is about 0.15 bit/
channel-use, which is almost unnoticeable. We also plot the
high-SNR analytical result in (66) of the proposed SD scheme.
We observe that our analytical result are very tight for SNRs
greater than 10 dB. From this figure, it is clear that the pro-
posed SD scheme significantly outperforms the other schemes
in the entire SNR range of interest. For example, at the rate of
14 bits per channel use, the proposed SD scheme outperforms
the CD and GSVD schemes by more than 2.4 dB. The slope
of the achievable sum-rate curve is parallel to that of the ca-
pacity upper bound, which implies that the proposed SD scheme
achieves full multiplexing gain. Fig. 4 also includes the perfor-
mance curve for the analog network coding (ANC) approach in
[10]. We see that the proposed SD scheme outperforms ANC by
a significant power gap of over 6 dB throughout the SNR range.
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Fig. 5. Average achievable sum-rates of various schemes for the Rayleigh
fading MIMO TWRC with and .

Fig. 6. Scaling effect of the average sum-rates of various schemes for the
Rayleigh fading MIMO TWRCs with .

In Fig. 5, we present the numerical results for the MIMO
TWRC with and . The same set of rate
curves as in Fig. 4 are included for comparison. Again, we see
that the gap between the sum-rate of the proposed SD scheme
and the sum-capacity upper bound is almost unnoticeable at a
relatively high SNR, say, . Again, we observe
that the proposed SD scheme significantly outperforms its coun-
terparts throughout the SNR range of interest.
In Figs. 6 and 7, we show the scaling effect of the antennas

on the average achievable sum-rates. We see that the asymptotic
rate gap between the proposed SD scheme and the sum-capacity
upper bound increases linearly as the increase of for fixed
and . For example, for the case of in

Fig. 6, the rate gap at is 0.14 bits per channel
use for ; 0.29 bits per channel use for ; and 0.40

Fig. 7. Scaling effect of the average sum-rates of various schemes for the
Rayleigh fading MIMO TWRCs with .

Fig. 8. Average achievable rate-regions for the Rayleigh fading MIMO TWRC
with and . The average SNRs for all the channel links
are set to 30 dB.

bits per channel use for . These numerical results agree
well with the asymptotic results in Corollaries 6 and 7.
In Fig. 8, we show the achievable rate-region of the proposed

SD scheme. The capacity-region outer bound and the achievable
rate-region of the CD scheme are also included for comparison.
From Fig. 8, the difference between the achievable rate-region
of the proposed SD scheme and the capacity region outer bound
is negligible for a relatively high SNR. We also see that the pro-
posed SD scheme can achieve rate-pairs that cannot be achieved
by the CD scheme.

VIII. CONCLUSION

In this paper, we developed a new joint channel decom-
position for the uplink of MIMO TWRCs. Based on that,
we proposed a space-division-based network-coding scheme
that is able to approach the sum-rate capacity of the MIMO
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TWRC within bit per user-antenna in the
high-SNR regime. We also showed that, for a large-system
Rayleigh-fading MIMO TWRC, the average gap between the
achievable sum-rate of the proposed scheme and the capacity
is no more than 0.053 bit per relay-antenna in the high-SNR
regime.
We conclude this paper by pointing out some promising re-

search avenues for future work. First, the capacity of the MIMO
TWRC still remains an open problem. There are possibilities to
further reduce the gap toward the capacity, e.g., by designing
more advanced multidimensional PNC relaying strategies, or
by developing capacity upper bounds tighter than the cut-set
bound. Second, global perfect CSI was assumed in this study.
The relay design for the MIMO TWRC with imperfect CSI is
an interesting topic for future research. For example, as men-
tioned in Remark 8, imperfect CSI generally impairs the achiev-
able DoF of the proposed space-division scheme. Thereby, it is
of pressing interest to develop a smarter signal-alignment tech-
nique that can avoid this DoF loss.

APPENDIX A
OPTIMAL SOLUTION TO PROBLEM (11)

Suppose that (or ). Then, from (9),
the optimal is trivially taken as (or ). Thus, we
focus on the case of . In this case,
this weighted sum-rate maximization problem is equivalent to
maximizing

(70)

or equivalently

where and
, . By setting the

derivative of the Lagrangian with respect to to zero, the
optimal satisfies

where is a scaling factor. Then, with some straightforward
algebra, we obtain the optimal projection direction given by

opt (71)

where is given in (72), at the bottom of the page, and is a
scaling factor to ensure .

APPENDIX B
PROOF OF LEMMAS 1–4

1) Proof of Lemma 1: If , then (15) implies
. Thus, (16a) holds, which proves the lemma.

Therefore, it suffices to consider the situation of .
We multiply both sides of (15) by . Then, after some
straightforward manipulations, we obtain

(73)

Noting , we obtain

(74)

Recall that . Thus, (74) implies that the vector
is in the null space of the matrix ,

i.e., . On the other hand, we have .
Therefore, is actually an eigenvector of
satisfies (16b), which concludes the proof.

2) Proof of Lemma 2: Similar to (74), we have

(75)

Then

where step follows from (17), from (74), from the fact
that the Hermitian transpose of a real-valued scalar is itself,
from (75), and again from (17). From (17), the projection
of onto is just . Thus, , which
completes the proof.

(72)
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3) Proof of Lemma 3: By definition, we have

(76)

where step follows from (20), and step from (17), (74)
and (75).
What remains is to show that . To see this, we left-

multiply both sides of (15) by , yielding

(77)

Together with (19), we obtain

(78)

Moreover, left-multiplying (74) and (75), respectively, by
and plugging in (17), we obtain

(79)

Then

(80)

where step ( ) follows from (78) and (79), and step ( ) from (78)
and the fact of . This completes the proof of Lemma
3.

4) Proof of Lemma 4: From (18) and (20), we see that
both and lie on the plane . As and are orthogonal
to each other, is spanned by and . Then, the lemma
holds straightforwardly by noting the orthogonality between the
eigenvectors.

APPENDIX C
PROOF OF THEOREM 2

Here, we provide a sketch of the proof of Theorem 2. The
overall encoding and decoding process for the proposed scheme

is described as follows. The messages of the user are doubly
indexed as , with
for the CD spatial streams, and
for the PNC spatial streams. Each is one-to-one mapped
to in (35), and each is one-to-one mapped to
in (45). In the uplink phase, and
are transmitted via the channel in (35), with the transmit power
limited by (47).
Upon receiving , the relay first completely decodes

and based on in (37), with the achiev-
able rate-pair given in (42). The decoded and
are subtracted from . Then, the network-coded PNC
spatial streams, i.e., ,

, are successively recovered
and canceled from the received signal, with the achievable
rate-pair given in (46). The decoded messages from the CD
streams, together with the network-coded messages from the
PNC streams, are then jointly encoded. The new codeword is
forwarded to the two users in the downlink phase, under the
transmit power constraint of . Following the dis-
cussions in [16]–[18], the achievable rate-pair of the downlink
phase is given by in (4). This completes the proof.

APPENDIX D
PROOF OF THEOREM 3

We first consider the sum-rate upper bound:

(81)

where step ( ) follows by substituting (32) into (58), step ( ) fol-
lows from the facts that and

, and step ( ) utilizes the fact that is a square
matrix.
Now we consider the achievable sum-rate of the proposed

space-division scheme. For notational simplicity, let
, . From (42), the sum-rate of the

CD spatial streams is given by (82), at the bottom of the next
page, where (82a) utilizes the fact that equal power alloca-
tion is asymptotically optimal, and (82d) follows by substituting

. Applying the matrix inversion lemma

to , we further obtain (83), given
at the bottom of the next page, where (83b) follows by noting

and
, , and (83c) utilizes the definitions
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in (23a) and (34a). Moreover, letting in (50), we
obtain the sum-rate of the PNC spatial streams as

(84)

From (52), is the angular bisection of and , or equiv-
alently, , for the sum-rate case of .
Then, using the definition in (41b), we obtain

(85)

Combining (81)–(85), we complete the proof of Theorem 3.

APPENDIX E
PROOF OF LEMMA 5

We prove by using the theory of free probability [32]. The
a.e.d. of is given by

Let be a random variable with PDF . Its Stieltjes
transform is given by (cf., [31, (2.40)])

Then, the inverse function of is given by

Using the relation between Stieltjes transform and R-transform
(cf., [31, (2.72)]), we obtain the R-transform of as

From [31, Th. 2.64], as and are asymptotically
free random matrices, the R-transform of the a.e.d. of

is given by

(82a)

(82b)

(82c)

(82d)

(83a)

(83b)

(83c)
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Then, the Stieltjes transform of the a.e.d. of
satisfies

Letting , we obtain

Multiplying on both
sides, we have

Adding the above two equations and taking the square, we fur-
ther obtain

Solving , we obtain

From [31, (2.45)], the a.e.d. of is given by

Thus, for and , we obtain

(86)
In addition, for a randomly generated pair of and ,
there are orthogonal eigenvectors for

, orthogonal eigenvectors for ,
and orthogonal eigenvectors for .
Thus, as tends to infinity, the PDF at is
given by ; that at is given
by ; and that at is given by

. This concludes the proof of the lemma.
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