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I. INTRODUCTION 

Electromagnetic vector sensor (EMVS) array is a new 

type of array to obtain the electromagnetic signal spatial 

and polarization domain information, which has the broad 

application prospect in the communication technique, 

signal detection technique (SDT), mobile communication 

and so on [1]-[23]. Direction of arrival (DOA) estimation 

based on the EMVS array has become a hot topic in the 

research field of signal processing, and it has made many 

valuable research results [1], [4]-[6], [8]-[12], [15]-[22]. 

The authors in literatures [2]-[12] have studied the 

direction finding parameter estimation of complete 

EMVS array, the parameter estimation of incomplete 

EMVS has been discussed in literatures [13]-[18], the 

direction finding and positioning parameter estimation of 
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spatially collocated vector-sensors composed of 

orthogonally oriented dipole(s) and /or loop(s) have also 

been investigated by Wong & Yuan in [19], [20]. Various 

algorithms have been developed to estimate the DOA and 

polarization parameters of multiple electromagnetic 

signals. The first direction-finding algorithms, explicitly 

exploiting all six electromagnetic components, have been 

developed by Nehorai and Paldi [2] and Li [3], 

respectively. The cross-product-based DOA estimation 

algorithm was first adapted to ESPRIT (estimation of 

signal parameters via rotational invariance techniques) by 

Wong and Zoltowski [9]-[12]. A uni-vector-sensor 

ESPRIT algorithm was put forward in [6]. The maximum 

likelihood approach was presented in [1]; the trilinear 

decomposition algorithm was proposed in [4] and [5]; 

two distinct versions of ESPRIT estimators were reported 

in [3] and [8] respectively; the multiple signal 

classification (MUSIC) technique was investigated in [9] 

and [10]. However, the above-mentioned estimation 

methods are based on the long vector data model of 

EMVS. Under this condition, complex-valued vectors are 

used to represent the output of each EMVS in the array, 

and the collection of an EMVS array is arranged via 

concatenation of these vectors into a long vector. 

Consequently, the corresponding algorithms somehow 

destroy the vector nature of incident signals carrying 

multidimensional information in space, time, and 

polarization. In recent years a few research have been 

made on estimating the DOA of EMVS within the 

algebraic system theory for quaternion and its extension 

[21]-[28]. Quaternion MUSIC technique was proposed 

based on the quaternion formalism of the two component 

vector sensor array in [25]. The three component vector 

sensor was expressed as a biquaternion number, then 

biquaternion-based MUSIC was proposed in [26]. The six 

component electromagnetic (EM) vector sensor array was 

represented by a quad-quaternion model in [27].  

The advantages of using quaternion for EMVS is that 

the local vector nature of a EMVS array is preserved in 

multiple imaginary parts, and it could result in a more 

compact representation. The use of quaternion allows us 

to skip the parametrization step used in long-vector 

techniques as it intrinsically includes the vector 

dimension in the process. Quaternionic matrix operations 

can provide a better subspace approximation than the 

long-vector approach.  
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Abstract—Electromagnetic vector sensor arrays have been 

widely applied in the communication, radio, navigation, and so 

on. The application of electromagnetic vector sensor antenna 

array will greatly improve the overall performance of the

communication system. In this paper, a novel quaternion-

ESPRIT (estimation of signal parameters via rotational 

invariance techniques) algorithm for direction finding and 

positioning based on COLD (cocentered orthogonal loop and 

dipole) uniform linear array (COLD-ULA) is proposed. First, 

quaternion data model of COLD-ULA is deduced and 

constructed. Second, the array steering vector and the angle of

arrival (DOA) are estimated using a quaternion eigenvalue 

decomposition of the data covariance matrix. Finally, the 

estimation of polarization parameters are required using the 

relationships between the dipoles and the loops. The proposed 

technique not only decouples the DOA estimation information 

from the polarization estimation information, but also improves 

the ability of signal detection. Moreover, the proposed 

technique has the advantage of small amount of calculation and 

parameter automatic matching. Simulation results show that the 

performance of quaternion method is obviously better than that 

of the long-vector method.



Compared with the COLD (cocentered orthogonal loop 

and dipole) pairs oriented along x-axis, y-axis and 

cocentered dipole and dipole pairs, cocentered loop and 

loop pairs oriented along x- and y-axis respectively, we 

can see that COLD pairs along the z axis is more easier to 

realize the decoupling of polarization and angle of arrival 

parameters because of its simple structure [13]-[18]. A 

novel quaternion-ESPRIT algorithm for estimating signal 

DOA and polarization using the COLD uniform linear 

array (COLD-ULA) is proposed in this paper. In the 

algorithm, the DOA information and polarization 

information of incident signals are decoupled, errors of 

DOA and polarization herein do not cumulate. Hence, 

this proposed algorithm: 1) is computationally less 

intensive than many open-form search methods; 2) 

produces closed-form solution with no extra computation 

needed for signal parameter estimates; 3) has the 

advantage of parameter automatic matching and without 

spectral peak searching. The simulation results show that 

the performance of quaternion method is better than that 

of long-vector method. 

The paper is organized as follows. In Section II, a 

mathematical theory of quaternion and its relevant 

properties are presented. Section III introduces the 

quaternion signal model for six-component and two-

component vector sensor. In Section IV, the proposed 

quaternion-ESPRIT algorithm is introduced. Simulation 

results are presented in Section V. In Section VI, 

conclusions are given. 

II. QUATERNION THEORY 

Quaternion, which extends imaginary numbers into a 

four-dimensional space, began to be developed by 

William Hamilton in 1843. A complex number has two 

components: the real and the imaginary part. The 

quaternion has four components, i.e., one real part and 

three imaginary parts, and can be represented in Cartesian 

form as: 

   i j k       , , , Rq a b c d a b c d                  (1) 

where i,  j  and k  are complex operators which obey the 

following rules. 

          
2 2 2

ij ji k      jk kj i

ki ik j     i j k 1 

     

      
            (2) 

Quaternion can also be expressed as the following 

form: 

                  i i j jq a b c d                          (3) 

which is known as the "Cayley-Dickson representation". 

The quaternion conjugate and the quaternion modulus 

are respectively given by  

                       i j kq a b c d                           (4) 

                         
2 2 2 2q a b c d                       (5) 

Let qi be i j ki i i i iq a b c d    , where , , ,i i i ia b c d  

R ,  =1,2i , then the addition of two quaternion 

expressed in terms of their real and imaginary parts is 

given by 

       1 2 1 2 1 2 1 2 1 2i j kq q a a b b c c d d          (6) 

From the rules in equation (2), it is clear that 

multiplication is not commutative, namely 

1 2 2 1q q q q   . The inner product of quaternion can be 

represented as: 

H
,p q p q                                 (7) 

If the inner product of quaternion meets 

with
H

, 0p q  , it is called that the quaternion p and q  

is orthogonal. 

For some reason, it is sometimes useful to consider the 

quaternion as composed of a vector part and a scalar part, 

thus q  can also be expressed as 

                                     q S q V q                            (8) 

where the scalar part,  S q  is the real part i.e. , 

 S q a  and the vector part is a composite of three 

imaginary components, i.e.,   i j kV q a b c   . 

The product of two quaternions expressed in terms of 

their scalar and vector parts is given by 

          
           

               

qp S q S p V q V p S q V p

S p V q V q V p

  

  
        (9) 

where   and   denotes the vector dot cross products, 

respectively. It follows from this that the dot and cross 

products of two pure quaternions m  and n are given by 

   
1 1

,       
2 2

m n mn nm m n mn nm             (10) 

From the point of view of algebra, quaternion is an 

extension of the complex field. Quaternion has more 

compact data expression. A quaternion contains more 

than two components than that of complex number, so 

that it can contain more information in one operation. 

III. SIGNAL AND DATA MODELS 

A six-component electromagnetic vector sensor 

consists of three spatially co-located identical but 

orthogonally oriented, electrically short dipoles and 

magnetically small loops separately measuring all three 

electric-field components and three magnetic-field 

components of incident signals. Such an electromagnetic 

vector sensor can exploit any polarization diversity 

among the impinging sources, as shown in Fig. 1.  

An ideal electromagnetic vector sensor was called 

auxiliary element. The auxiliary element is idealized, by 

overlooking all mutual coupling among its six 

collocated constituent antennas. Such an idealized 
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vector sensor’s array manifold (also called unit-power 

electromagnetic field vector) would be a concatenation 

of the 3 1  electric-field vector e  with the 3 1  

magnetic-field vector h , to be [3, 8]: 

 
j

cos cos sin

cos sin cos

sin 0 sin e

sin cos cos cos

cos cos sin

0 sin

x

y

z

x

y

z

e

e

e

h

h

h



  

  

 
   

   

  



   
   
   
     
      

     
   
   
     

a , , ,  (11) 

where  0,π  is the signal’s elevation angle measured 

from the positive -axisz ,  0,2π   denotes the azimuth 

angle measured form the positive x-axis ,  0,π / 2   

represents the auxiliary polarization angle, 

and  π,π  symbolizes the polarization phase 

difference. 

 
Fig. 1. A six-component electromagnetic vector sensor. 

In this paper, we make the following assumptions. K 

far-field narrowband completely polarized electromag-

netic plane wave source signals in the x-z plane impinge 

upon a uniform linear array (ULA), which is composed of 

  M M K  identical COLD pairs, as shown in Fig. 2. 

For the COLD pairs, the dipoles parallel to the z-axis are 

referred to as the z-axis dipoles and the loops parallel to 

the x-y plane as the x-y plane loops, respectively 

measuring the z-axis electric field components and the z-

axis magnetic field components. The COLD pairs’ 

steering vector of the kth  1 Kk  unit-power 

electromagnetic source signal is the following 2 1  

vector [2]: 

 
j

sin sin e
, ,

sin cos

k

k k

k k k

k k

kz

kz

e

h

 
  

 

   
   
    

 a          (12) 

where  0,π 2k   is the signal’s elevation angle 

measured from the positive z-axis,  0,π 2k   

represents the auxiliary polarization angle, and 

 -π,πk   symbolizes the polarization phase difference. 

The z-axis electric field 
kz

e  and the z-axis magnetic 

field 
kz

h  both involve the same factor sin k , so 

polarization estimation based on COLD pairs is 

independent of the source’s direction of arrival and it 

requires no prior information of azimuth and elevation 

angles. Without loss of generality, we assume that the 

inter-element spacing of the ULA is d , where  < 0.5d   

and c f  , with  f  be the frequency of the signals. 



Xd

 
Fig. 2. Uniform COLD linear array geometry. 

The phase differences between the M array elements 

and the origin constitute the spatial steering vector, i.e.: 

 

 

2π
j sin )

2π M 1
j sin )

       1

e

           

e

 

k

k

d

k

d













 
 
 
 
 
 
 
 

q

(

(

                    (13)

 
The joint expression of 

kze  and 
kzh  are indicated as 

with a quaternion 
kc . 

j
i sin sin e isin cosk

k kz kz k k k kc e h
              (14) 

The output of array response for the kth incident signal 

can be expressed as follows: 

   
 

 
, ,

c

k k k

k k k kx t s t

  



a

q                       (15) 

where  ks t  is the kth incident signal and  , ,k k k  a  is 

defined as  k kc q . 

The received data collected by the COLD-ULA at time 

t can be represented as 

                            
     t t t X AS N

                       
(16)

 

where  tX ,  tS ,  tN  and
 

 1 K, ,A a a  are the 

received data, the uncorrelated incident signals, the zero-

mean additive complex Gaussian noise and the steering 

vector matrix of incident signals, respectively, i.e., 

 

 

 

 

,   0

,  1

i, M 1

  

i

i

i

t

t
t

t

 
 
 

  
 
 
 

x

x
X

x

,      

 

 

 

1

2

K

  

s t

s t
t

s t

 
 
 

  
 
 
 

S  

 

 

 

 

,  0

,  1

i, M 1

  

i

i

i

t

t
t

t

 
 
 

  
 
 
 

n

n
N

n

,      

 

 

 

T

1 1 1

T

2 2 2T

T

K K K

, ,

, ,

          

, ,

i

i

i

i

  

  

  

 
 
 

  
 
 
 

a

a
A

a

,  

with  , , ,  =1, ,Kk k k k k  a a . 
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According to formulas (14), (15) and (16), the matrix 

A  can be rewritten as: 

                                 
= ie hA A A

                                
(17)

 

The relationship between 
eA  and 

hA  can expressed 

as : 

e hA A Ω
                               

(18) 

where 

1

K

j

1

j

K

tan e

              

                tan e









 
 

  
  

Ω  

The first and last 1M   rows of matrix A  constitute 

two new matrices 
1A  and 

2 A  respectively, the 

relationship between 
1A  and 

2A  can expressed as 

           2 1A AΦ                            (19)
 

where 

1

K

2π
j sin

2π
j sin

e

             

                    e

d

d







 
 
 
 
 
  

Φ
                  (20)

 

IV. QUATERNION-ESPRIT ALGORITHM 

The correlation matrix of received data  tX  is 

H H 2E σx s
    R XX AR A I                  (21)

 

with  E  symbolizing the statistical mean，  
H

  is the 

complex conjugate transpose, 2σ  indicating the white 

noise power and    HEs t t   R S S  representing the 

source covariance matrix. Let sE  be the N K  matrix 

composed of the K  eigenvectors corresponding to the 

K  largest eigenvalues of xR and let nE  denote the 

 N N-K
 
matrix composed of the remaining 

N-K eigenvectors of xR . Based on the subspace theory, 

there exists K K  nonsingular matrix T , and the signal 
subspace can be expressed explicitly as 

                                     s E AT
                                 

(22)
  

The first M-1  rows and last M-1  rows of matrix 
sE  

constitute two new matrices 1E  and 2 E  respectively. 

According to the subspace theory, the signal subspace can 

be expressed explicitly as: 

                    1 1 2 2 1      E A T  E A T AΦT
              

(23) 

From equation (23), it can be obtained that:
 

                            
# 1 1

1 2

 E E T T Φ
                              

(24) 

where  
1

# H H

1 1 1 1



E E E E . 
 

Let  
-1

# H H

1 2 1 1 1 2= s s s s sψ E E E E E E , then formula (24) 

can be rewritten as 

                                  
1 1 ψT T Φ

                             
(25)

 

Equation (25) implies that the estimate of Φ̂  is a 

matrix whose diagonal elements are composed of the K  

largest eigenvalues of matrix ψ  and the full-rank matrix 

1
T  is composed of the K eigenvectors of corresponding 

to the K  largest eigenvalues of matrix ψ . The 

estimations of 1Â , 2
ˆ A  and ˆ A  can be obtained: 

                
1 1 1

1 1 2 2
ˆ ˆ ˆ= ,  ,  = s

  A E T A E T A E T
          

(26)
 

From the equation (20), the estimation of direction of 

arrival is given as: 

                      

 1ˆ ˆsin arg
2π

k kk
d


   

  
 

                

(27)

   

From the formulas (17) and (18) and using the theory 

of quaternion, estimations of matrix ˆ
eA  and ˆ

hA  can be 

obtained from Â . Their relationship is follow: 

ˆ ˆ ˆ
e hA A Ω                              (28)

 

 
1

H Hˆ ˆ ˆ ˆ ˆ
h h h e



Ω A A A A                     (29)
 

where 

1

K

ˆj

1

ˆj

K

ˆtan e

ˆ               

ˆ                tan e









 
 

  
  

Ω                (30)

 

According to equation (30), the polarization 

parameters estimation are presented as 

   1 ˆ ˆˆ ˆtan      argk kk k kk                 (31) 

V. SIMULATION RESULTS 

In this section, some simulations are conducted to 

evaluate the performances on DOA and polarization 

estimation by the proposed method. Three uncorrelated 

equal-powered signals with parameters 

   1 1 1, , 45 ,44 ,60    ,    2 2 2, , 30 ,33 ,45   
 
and 

   3 3 3, , 10 ,22 ,30    impinging upon a COLD-ULA 

with M=5  sensors. The inter-element spacing of ULA is 

0.5 . 1024 snapshots are used in simulation experiments.
 In the first experiment, we consider a scenario with 

500 independent Monte Carlo trials running on the 

corresponding COLD ULA. We choose the first signal 

for this experiment and the SNR is set to 15 dB. The sets 

of values of the DOA and polarization variables have 

been represented in scatter diagrams (Fig. 3 to Fig. 6). 
From Fig. 4, it is shown that almost all estimated 

values are located in the vicinity of actual value 1 45   
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by using quaternion method, the estimated value of 1̂  

range from the numerical range (44.75 ,45.25 ) . On the 

contrary, from Fig. 3, the estimated values 1̂  using long 

vector method are distributed in the range of 

 44.05 ,45.95 . The estimated error using long vector 

method is much larger than that of quaternion method. 

0 100 200 300 400 500
44

44.5

45

45.5

46

46.5

Times


(。

)

 
Fig. 3. DOA scatter diagram using long vector method. 
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Fig. 4. DOA scatter diagram using quaternion method. 
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Fig. 5. Polarization scatter diagram using long vector method.  

From Fig. 6, it is shown that almost all estimated 
values are located in the vicinity of actual value 

   1 1, 44 ,60   by using quaternion method, the 

estimated value of  1̂  and 1̂   range from the numerical 

range  43.6 ,44.4  and  59.25 ,60.05 , respectively. 

On the contrary, from Fig. 5, the estimated values are 

distributed in the range of 
1̂   43.2 ,44.75  and 

1̂  

 58.8 ,61.5 . The estimated error using long vector 

method is much larger than that of quaternion method. 

43 43.5 44 44.5
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59
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
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Fig. 6. Polarization scatter diagram using quaternion method. 

In the second experiment, we first compare the 

performance of quaternion method with long vector 

method with respect to SNR. In the simulations, the 

signal-to-noise ratio (SNR) is from 0 to 45dB, 1024 

snapshots are used in each of the 500 independent Monte 

Carlo simulation experiments. The performance of 

standard deviation and probability of success is illustrated, 

and the corresponding results are shown in Fig. 7- Fig. 9. 
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Fig. 7. Standard deviation of DOA versus SNR.  
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Fig. 8. Standard deviation of APA versus SNR.  

The curves with star and circular data points in Fig. 7 

to Fig. 9 respectively plot the standard deviation of ̂ , ̂  
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and ̂ , respectively estimated by long vector and the 

proposed quaternion method, at various signal-to-noise 

ratio (SNR) levels. The proposed quaternion procedure is 

better than long vector. The estimation precision at 0 dB 

based on the quaternion model has improved larger than 

4.89 for ̂ , 1.12 for ̂ , 1.15 for ̂ , compared with 

that of the long vector method. The enhanced 

performance is rooted in the special data model of 

quaternion.  
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Fig. 9. Standard deviation of APA versus SNR. 

Then, we consider the probability of success of DOA 

and polarization estimations. The result is shown in Fig. 

10 and Fig. 11. 
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Fig. 10. Probability of success of DOA versus SNR. 
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Fig. 11. Probability of success of polarization versus SNR. 

The curves with star and circular data points in Fig. 10 

and Fig. 11 respectively plot the probability of success of 

DOA and polarization, respectively estimated by long 

vector and the proposed quaternion method, at various 

signal-to-noise ratio (SNR) levels. The proposed 

quaternion procedure is better and more robust than long 

vector procedure. 

VI. CONCLUSIONS 

A closed form estimation of DOA and polarization, 

based on quaternion-ESPRIT algorithm is studied. The 

proposed algorithm can decouple DOA estimation from 

the polarization estimation. Because in this algorithm 

quaternion is used to retain the vector nature of each 

vector sensor, there exists better estimated accuracy of 

parameters than that of the traditional long vector data 

model method. 
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