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ABSTRACT 

In this paper we discuss the use of the MapReduce software 

framework to address the challenge of constructing high-

performance, massively-scalable distributed systems.  We discuss 

several design considerations associated with constructing 

complex distributed systems using the MapReduce software 

framework, including the difficulty of scalably building indexes.  

We focus on Hadoop, the most popular MapReduce 

implementation. Our discussion and analysis are motivated by our 

construction of SHARD, a massively scalable, high-performance 

and robust triple-store technology on top of Hadoop.  We provide 

a general approach to construct an information system from the 

MapReduce software framework that responds to data queries.  

We provide experimental results generated of an early version of 

SHARD.  We close with a discussion of hypothetical MapReduce 

alternatives that can be used for the construction of more scalable 

distributed computing systems. 

Categories and Subject Descriptors 

D.2.2 [Software Engineering]: Design – methodologies. 

General Terms 

Design, Algorithms, Software Engineering, Performance, Design, 

Experimentation. 

Keywords 

Distributed computing, MapReduce, Programming, Systems, 

Semantic Web, Graph Data, SPARQL, Performance Evaluation. 

1. INTRODUCTION 
Lately there have been a number of advances in software 

frameworks, such as MapReduce [4], that can be used to address 

the challenges inherent to the construction of highly parallel, high-

performance and highly scalable distributed computing systems 

much easier.  Although MapReduce has been very successful as a 

distributed computing substrate for relatively simple highly 

parallel applications like search and data storage, there have been 

few more complex systems such as scalable data management 

systems built using this or similar frameworks.  We speculate that 

this is primarily because these frameworks (and MapReduce in 

particular) are too low-level [5]. 

In this paper we focus on the design aspects inherent to using the 

MapReduce software framework to construct highly-parallel, 

high-performance and scalable information management systems.  

We also suggest alternative software frameworks for the easier 

design and development of highly-scalable information 

management systems.  Our insight and discussions in these areas 

are motivated by our experience designing, constructing and 

evaluating our initial implementation of the SHARD (Scalable, 

High-Performance, Robust and Distributed) triple-store.  A triple-

store is an information storage and retrieval environment for 

graph data, traditionally represented in RDF formats [17].  (RDF 

is a standard data format for representing triples which are edges 

in data graphs.)  SHARD persists graph data as RDF triples and 

responds to queries over this data in the SPARQL query language.  

We use the Hadoop implementation of MapReduce to construct 

SHARD.  We discuss lessons learned and insight for future 

revisions of our design and implementation.  To support these 

claims, we present our initial experimental results evaluating 

SHARD with the standard LUBM benchmark for triple-stores [6]. 

The problem context driving our information system design is the 

need for web-scale information systems.  For example, one of the 

singular advancements over the past several years in the Semantic 

Web domain has been the explosion of graph data available in 

semantic formats [10].  Unfortunately, Semantic Web data 

processing technologies, which rely on graph data information 

systems, are designed for deployment on a single (or a small 

number of) machine(s).  This is fine when data is small, but 

current methodologies to design high-level information systems 

for graph data are limited by data processing and analysis 

bottlenecks with graphs on the order of a billion edges [10][18].  

These scalability constraints are the greatest barriers to achieve 

the fundamental web-scale Semantic Web vision and have 

hindered the broader adoption of Semantic Web technologies.  

Other scalable approaches to triple-store design based on key-

value and column stores (such as Cassandra [3] and Project 

Voldemort [16], among many others) are feasible.  However, 

these other technologies do not provide the native data processing 

capabilities supported by MapReduce implementations like 

Hadoop that enable more efficient query processing. 

We discuss work-in-progress to address these scalability 

limitations in the Semantic Web by designing and developing 

SHARD using the MapReduce software framework. In particular, 

we describe initial results from deploying an early version of 

SHARD into an Amazon EC2 cloud [1] and running the standard 

LUBM triple-store benchmark.  We find that SHARD already 

performs better than current industry-standard triple-stores for 

datasets, on the order of a billion triples. 

The remainder of this paper is organized as follows.  In Section 2 

we provide an introduction to MapReduce, Hadoop, and their 

relevant properties for the design of information management 

systems.  In Section 3 we provide a brief overview of relevant 

SHARD design goals and graph data processing concepts.  In 

Section 4 we describe the design of information management 

systems such as SHARD using the MapReduce software 

framework.  In Section 5 we describe our experimental results 

from the deployment of an early version of SHARD into an 

Amazon EC2 cloud.  In Section 6 we discuss design insight we 

gained from experimentation.  We conclude in Section 7 with a 



discussion of ongoing and alternative designs for high-

performance, massively scalable information systems. 

2. MAPREDUCE AND HADOOP 
MapReduce is a software framework for processing and 

generating large data sets [4]. Users specify a map function that 

splits data into key/value pairs and a reduce function that merges 

all key/value pairs based on the key. Many real world low-level 

tasks are expressible in this model including word counting and 

the Page-rank algorithm. 

The MapReduce software framework is easily parallelizable for 

execution on large clusters of commodity machines. This enables 

the construction of high-performance, highly-scalable 

applications.  One of the more popular MapReduce 

implementations is Hadoop [8].  Hadoop takes care of the details 

of managing data on compute nodes through the Hadoop 

Distributed File System (HDFS), scheduling the program's 

execution across a set of machines, handling machine failures, and 

managing the required inter-machine communication. This allows 

for the design and implementation of high-level functionality 

using the MapReduce framework to construct high-performance 

and highly scalable applications. 

A key aspect of the MapReduce software framework, as expressed 

in the Hadoop implementation, is the use of a special, centralized 

compute node, called the NameNode.  The name node directs the 

placement of data onto compute nodes through HDFS, assigns 

compute jobs to the various nodes, tracks failures and manages 

the shuffling of data after the Map step completes. 

There are several benefits as well as drawbacks from using 

MapReduce to design high-performance information systems, 

irrespective of how those information systems are designed.  

These benefits include that MapReduce implementations such as 

Hadoop are generally easy to set up and debug, and applications 

are easy to write efficiently in several programming languages.  

The drawbacks of the Hadoop implementation of the MapReduce 

framework include that only Java programs can be used natively 

for more complex applications, it is difficult to run Java code on 

compute nodes that need runtime customization, NameNode 

creates a bottleneck for HDFS access, and NameNode failures can 

be catastrophic. 

  
Figure 1: A Small Graph of Triple Data. 

3. DESIGN GOALS 
Our primary information system design motivations are the ability 

to persist and rapidly query very large data graphs.  To align with 

Semantic Web data standards, we consider graphs represented as 

subject-predicate-object triples [2][7].  A small example graph can 

be seen in Figure 1 that contains 7 triples – Kurt lives in 

Cambridge, Kurt owns an object car0, car0 is a car, car0 was 

made by Ford, car0 was made in Detroit, Detroit is a city and 

Cambridge is a city. 

We use SPARQL [19] as a representative query language - it is 

the standard Semantic Web query language.  SPARQL semantics 

are general purpose and similar to the more well-known SQL.  An 

example SPARQL query for the above graph data is the 

following: 

SELECT ?person 

WHERE  {  

   ?person :owns ?car . 

   ?car :a :car . 

   ?car :madeIn :Detroit . 

  } 

The above SPARQL query has three clauses and asks for all 

matches to the variable ?person such that ?person owns an 

entity represented by the variable ?car which is a car and was 

made in Detroit.  Note that the above query can be represented as 

a directed graph as seen in Figure 2. 

 

Figure 2: A Directed Graph Representation of a Query. 

Processing of SPARQL queries in the context of a data graph such 

as the one above consists of identifying which variables in the 

query clauses can be bound to nodes in the data graph such that 

the query clauses align with the data triples.  This alignment 

process for query processing is fairly general across many data 

representations and query languages.  An example of this 

alignment for our example query and data can be seen in Figure 3. 

 

Figure 3: An Alignment of SPARQL Query Variables with Triple 

Data. 

Our functional design goals for the SHARD triple-store are to: 

1. Serve as a persistent store for triple data in RDF format. 

2. Serve as a SPARQL endpoint to process SPARQL 

queries. 



There have been a number of other design approaches for triple-

stores with similar if not the same functional design goals [18].  

Several of these triple-stores have achieved very good 

performance on single compute-node systems by using designs 

based around memory mapping index information [11].  However, 

disk and memory limitations have driven the need for distributed 

computing approaches to triple-stores [12][14].  There have been 

a number of recent attempts to develop designs of triple stores 

using distributed computing frameworks [20]. 

4. SYSTEM DESIGN 

4.1 Data Persistence 
In order to use a distributed computing approach to information 

management system design, it is generally infeasible to pass large 

volume input data directly to and from the user.  This data passing 

would involve the coordinated transfer of data onto and off of the 

compute nodes when data needs to be processed. The large scale 

of data makes this approach impractical due to data churn.  

Consequently, large input (data, queries) and output (query 

results) data sets need to be stored directly on the compute nodes.  

In order to best leverage the MapReduce software framework and 

its Hadoop implementations to construct an information 

management system, we made this design decision with the 

understanding that the input data and output results are generally 

very large and not feasible to output directly to the user.  The data 

storage directly on compute nodes is done natively using the 

Hadoop implementation of MapReduce by placing data in the 

HDFS distributed file system. 

We persist SHARD data in flat files in the HDFS file system such 

that each line of the triple-store text file represents all triples 

associated with a different subject. Consider the following 

exemplar line saved in SHARD from the LUBM domain that 

represents three triples associated with the entity subject Pub1: 

Pub1 :author Prof0 :name "Pub1" a 

:Publication 

This line represents that the entity Pub1 has an author entity 

Prof0, Pub1 has a name “Pub1” and that Pub1 is a publication. 

Although this approach to persisting triple data as flat text files is 

rudimentary as compared to other information management 

approaches, we found that it offers a number of important benefits 

for several general application domains.  For one, this approach, 

particularly in the HDFS implementation, brings a level of 

automated robustness by replicating data and MapReduce 

operations across multiple nodes.  The data is also stored in a 

simple, easy to read format that lends itself to easier, user focused 

drill-down diagnostics of query results returned by the triple-store.  

Most importantly, however, although this approach to storing 

triples is inefficient for query processing that requires the 

inspection of only a small number of triples, this approach is 

efficient in the context of Hadoop for scanning over large sets of 

triples to respond to queries that will generate a large number of 

results, as Hadoop natively scans over input data during the Map 

stage of its Map-Reduce operations. 

4.2 Query Processing 
MapReduce provides only simple data manipulation techniques 

by splitting data into key-value pairs, and accumulating all values 

with the same keys.  In order to provide more advanced query 

processing that can leverage highly scalable implementations of 

the MapReduce software framework, information systems would 

need to iterate over clauses in queries to incrementally attempt to 

bind query variables to literals in the triple data while satisfying 

all of the query constraints.  Each iteration consists of a 

MapReduce operation for a single query clause. This iteration is 

non-trivial because results of previous clauses would need to be 

continually joined with the results of more recent clauses over the 

iterations of the MapReduce steps.  We describe here how we 

designed these iterations with a focus on joining intermediate 

results as an approach to constructing more complex systems. 

We use our SHARD context of graph data and SPARQL queries 

to concretely discuss a design for this iterative query processing 

using the MapReduce software framework.  A schematic 

overview of this iterative query binding process for the graph data 

and SPARQL context can be seen in Figure 4.  This schematic 

consists of multiple MapReduce operations. 

  

Figure 4: A Schematic Overview of the Iterative Algorithm to process 

SPARQL queries with Triple Data. 

The first map MapReduce step maps the triple data to a list of 

variable bindings which satisfy the first clause of the query.  The 

key of the Map step is the list of variable bindings.  The Reduce 

step removes duplicate results and saves them to disk with the 

variable bindings as the key. 

The intermediate query binding steps continue to iteratively bind 

variables to literals as new variables are introduced by processing 

successive query clauses and/or filtering the previous bindings 

which cannot fit the new clauses.  The intermediate steps perform 

a MapReduce operation over both the triple data and the 

previously bound variables which were saved to disk. 

The ith intermediate Map step identifies all variables in the triple-

data which satisfy the ith clause and saves this result with the key 

being any variables in the ith clause which appeared in previous 

clauses.  The value of this Map step is the bindings of other 

variables not previously seen in the query clauses, if any.  This 

iteration of the Map set also rearranges the results of the previous 

variable bindings saved to disk to the same name of a variable key 

in the ith clause that appeared in previous clauses.  The value of 

this key-value pair is the list of variable bindings which occurred 

in previous clauses but not in the ith clause.   

The ith Reduce step runs a join operation over the intermediate 

results from the Map step by iterating over all pairs of results from 

the previous clause and the new clause with the same key 

assignment. 

This iteration of map-reduce-join continues until all clauses are 

processed and variables are assigned which satisfy the query 



clauses.  SHARD is designed to save intermediate results of the 

query processing to speed up the processing of similar later 

queries.  The storage of intermediate results is a byproduct of the 

Hadoop MapReduce implementation. 

The final MapReduce step consists of filtering bound variable 

assignments to satisfy the SELECT clause of the SPARQL query.  

In particular, the Map step filters each of the bindings, and the 

Reduce step removes duplicates where the key value for both Map 

and Reduce are the bound variables in the SELECT clause. 

5. EXPERIMENTATION 
To test the performance of our general design of a scalable 

information management system based on the MapReduce 

framework, we developed an early version of SHARD using the 

Cloudera version of the Hadoop implementation that we deployed 

onto an Amazon EC2 cloud environment of 20 XL compute nodes 

[1] running RedHat Linux and Cloudera Hadoop.  The version of 

SHARD we deployed for evaluation supports basic SPARQL 

query functionality (without support for prefixes, optional clauses 

or results ordering) over full RDF data.  This unimplemented 

functionality is generally associated with the pre- or post-

processing of queries and we don‟t expect that adding this extra 

functionality will substantially detract from the performance 

exhibited by the current implementation of SHARD.  Although 

possible to implement, the deployed version of SHARD does not 

perform any query manipulation/reordering/etc… normally done 

for increased performance by SPARQL endpoints in mature 

triple-stores.  Also, the deployed version of SHARD does not yet 

take advantage of any possible query caching made possible by 

our design choices. 

5.1 LUBM Benchmark 
We used the LUBM benchmark to evaluate the performance of 

SHARD.  The LUBM benchmark creates artificial data about the 

publishing, coursework and advising activities of students and 

faculty in departments in universities.   

The LUBM code natively generates OWL ontology files [15].  

OWL ontology files represent relationships between properties, 

but because our early version of SHARD takes N3 (an RDF 

serialization format) data as input, we provided functionality to 

convert the generated LUBM data into N3 format over many 

universities and automatically store this generated data in the 

SHARD HDFS backend using Hadoop.  We used code from the 

LUBM benchmark to generate triple data for 6000 universities 

which is approximately 800 million triples to parallel the 

performance evaluations made in a previous triple-store 

comparison study [18]. 

After loading the triple data into the SHARD triple store, We 

evaluated the performance of SHARD in responding to queries 1, 

9 and 14 of LUBM as was done in the previous triple-store study.  

Query 1 is very simple and asks for the students that take a 

particular course and returns a very small set of responses.  Query 

9 is relatively more complicated query with a triangular pattern of 

relationships - it asks for all teachers, students and courses such 

that the teacher is the adviser of the student who takes a course 

taught by the teacher.  Query 14 is relatively simple as it asks for 

all undergraduate students (but the response is very large). 

5.2 Performance 
SHARD achieved the following query response times for 6000 

universities (approx. 800 million triples) using the LUBM 

benchmark when deployed on an Amazon AWS cloud with 20 

compute nodes: 

Query 1: 404 sec. (approx 0.1 hr.) 

Query 9: 740 sec. (approx 0.2 hr.) 

Query 14: 118 sec. (approx 0.03 hr.) 

We generally found the SHARD performance increased with the 

number of compute nodes, but we found this performance 

increase to be sub-linear.  This sub-linear increase was mostly 

likely due to the communication overhead of the MapReduce 

steps. 

For comparison, in the triple store study [18] the industrial single-

machine DAMLDB triple-store (released as the open-source 

project Parliament 1 ) was able to achieve the following 

performance on the same queries coupled with the Sesame2 and 

Jena3 Semantic Web frameworks to aid query processing. 

Sesame+DAMLDB took: 

Query 1: approx 0.1hr. 

Query 9: approx 1 hr. 

Query 14: approx. 1 hr. 

For Jena+DAMLDB we have no data on performance over 550 

million triples due to the difficulty of loading triples into this 

dataset, but based on observed trends this triple-store probably 

would of taken the following: 

Query 1: approx 0.001 hr. 

Query 9: approx 1 hr. 

Query 14: approx. 5 hr. 

Note that the only query where SHARD performed noticeably 

worse than DAMLDB was on query 1.  Query 1 returns a very 

small subset of literals bound to variables.  Although MapReduce 

is traditionally used to build indices, its implementations (e.g.  

Hadoop) provide little native support for accessing data stored in 

HDFS files.  Conversely, DAMLDB has some special indexing 

optimizations for simple queries like that for Query 1, that are not 

yet implemented in SHARD.  We discuss how this aspect of 

MapReduce may be improved upon below.  Except for this one 

exception, SHARD performed better than other known 

technologies due to the highly parallel implementations of the 

MapReduce framework that we leverage in our design of 

SHARD.  Also, due to the inherent scalability of the Hadoop and 

HDFS approach to the SHARD design, the SHARD triple-store 

could potentially be used for extremely large datasets (more than 

billions of triples) without requiring any specialized hardware, as 

is required for other monolithic triple-stores. 

6. DESIGN INSIGHTS 
The performance of SHARD over previous triple-store 

implementations demonstrate the viability of our information 

system design approach based on MapReduce.  Our design 

enables the efficient search through data to find matches that 

satisfy queries.  This design is easily distributed across many 

compute nodes for highly parallel and highly scalable operation.  

It is also low-cost as it can run on commodity hardware. 

There are a number of areas for improvement in an alternative to 

the MapReduce software framework and its implementations for 

the easier design of information systems in general and triple-

stores in particular.  Most notably, the MapReduce, and 

consequently our design, are biased towards operations over large 

                                                                 

1 http://parliament.semwebcentral.org/ 

2 http://www.openrdf.org/ 

3 http://jena.sourceforge.net/ 



datasets without the search for individual key-value pairs.  This 

could be improved upon with native indexing capabilities, 

possibly supported during pre-processing operations.  These pre-

processing operations could also be used to reason over the data, 

so that SHARD could correctly respond to queries that require 

reasoning. 

A more advanced modification to support information system 

design would be an alternative software framework that provides 

better data linking.  Instead of having to store lists of data in flat 

files in an HDFS-like construct, a software framework could 

provide a native linked-data construct that pairs data elements 

with pointers to related data.  This linked data framework would 

provide faster localized query processing without requiring 

exhaustive search of the data set on every query request. 

7. ONGOING WORK 
Development work is ongoing with our information system design 

based on the MapReduce software framework.  Based on our 

experience with the initial SHARD deployment, we have several 

short- and long-term activities to further improve performance and 

applicability from both a design and software framework 

perspective. 

First among the improvements is a more effective method to index 

data.  This will most likely need to be supported by an alternative 

to the MapReduce framework that supports native indexing 

instead of basic Map operations over all data elements. 

Additional performance improvement of our design in a targeted 

production environment could be provided by using cached partial 

results both locally for high-performance parallel operations and 

globally by a NameNode-like entity that tracks local caching of 

partial results..  This will require additional capability in a 

software framework to track partial results that were previously 

cached and possibly to track which cached results could be thrown 

out to save disk space in the cloud (if this is a deployment 

concern.) 

There is a general need for improved tools for high-level highly-

parallel computations in clusters.  The MapReduce tools we 

explore operate at a low level.  It is difficult to coordinate the 

storage and use of intermediate results in parallel without 

frequent, temporally expensive disk access.  An enhanced 

software framework might provide this by caching data in 

memory and persisting data to disk as a backup for failure 

recovery. 
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