
High-Performance, Massively Scalable Distributed
Systems using the MapReduce Software Framework:

The SHARD Triple-Store

Kurt Rohloff
BBN Technologies

Cambridge, MA, USA

krohloff@bbn.com

Richard E. Schantz
BBN Technologies

Cambridge, MA, USA

schantz@bbn.com

ABSTRACT

In this paper we discuss the use of the MapReduce software

framework to address the challenge of constructing high-

performance, massively-scalable distributed systems. We discuss

several design considerations associated with constructing

complex distributed systems using the MapReduce software

framework, including the difficulty of scalably building indexes.

We focus on Hadoop, the most popular MapReduce

implementation. Our discussion and analysis are motivated by our

construction of SHARD, a massively scalable, high-performance

and robust triple-store technology on top of Hadoop. We provide

a general approach to construct an information system from the

MapReduce software framework that responds to data queries.

We provide experimental results generated of an early version of

SHARD. We close with a discussion of hypothetical MapReduce

alternatives that can be used for the construction of more scalable

distributed computing systems.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design – methodologies.

General Terms

Design, Algorithms, Software Engineering, Performance, Design,

Experimentation.

Keywords

Distributed computing, MapReduce, Programming, Systems,

Semantic Web, Graph Data, SPARQL, Performance Evaluation.

1. INTRODUCTION
Lately there have been a number of advances in software

frameworks, such as MapReduce [4], that can be used to address

the challenges inherent to the construction of highly parallel, high-

performance and highly scalable distributed computing systems

much easier. Although MapReduce has been very successful as a

distributed computing substrate for relatively simple highly

parallel applications like search and data storage, there have been

few more complex systems such as scalable data management

systems built using this or similar frameworks. We speculate that

this is primarily because these frameworks (and MapReduce in

particular) are too low-level [5].

In this paper we focus on the design aspects inherent to using the

MapReduce software framework to construct highly-parallel,

high-performance and scalable information management systems.

We also suggest alternative software frameworks for the easier

design and development of highly-scalable information

management systems. Our insight and discussions in these areas

are motivated by our experience designing, constructing and

evaluating our initial implementation of the SHARD (Scalable,

High-Performance, Robust and Distributed) triple-store. A triple-

store is an information storage and retrieval environment for

graph data, traditionally represented in RDF formats [17]. (RDF

is a standard data format for representing triples which are edges

in data graphs.) SHARD persists graph data as RDF triples and

responds to queries over this data in the SPARQL query language.

We use the Hadoop implementation of MapReduce to construct

SHARD. We discuss lessons learned and insight for future

revisions of our design and implementation. To support these

claims, we present our initial experimental results evaluating

SHARD with the standard LUBM benchmark for triple-stores [6].

The problem context driving our information system design is the

need for web-scale information systems. For example, one of the

singular advancements over the past several years in the Semantic

Web domain has been the explosion of graph data available in

semantic formats [10]. Unfortunately, Semantic Web data

processing technologies, which rely on graph data information

systems, are designed for deployment on a single (or a small

number of) machine(s). This is fine when data is small, but

current methodologies to design high-level information systems

for graph data are limited by data processing and analysis

bottlenecks with graphs on the order of a billion edges [10][18].

These scalability constraints are the greatest barriers to achieve

the fundamental web-scale Semantic Web vision and have

hindered the broader adoption of Semantic Web technologies.

Other scalable approaches to triple-store design based on key-

value and column stores (such as Cassandra [3] and Project

Voldemort [16], among many others) are feasible. However,

these other technologies do not provide the native data processing

capabilities supported by MapReduce implementations like

Hadoop that enable more efficient query processing.

We discuss work-in-progress to address these scalability

limitations in the Semantic Web by designing and developing

SHARD using the MapReduce software framework. In particular,

we describe initial results from deploying an early version of

SHARD into an Amazon EC2 cloud [1] and running the standard

LUBM triple-store benchmark. We find that SHARD already

performs better than current industry-standard triple-stores for

datasets, on the order of a billion triples.

The remainder of this paper is organized as follows. In Section 2

we provide an introduction to MapReduce, Hadoop, and their

relevant properties for the design of information management

systems. In Section 3 we provide a brief overview of relevant

SHARD design goals and graph data processing concepts. In

Section 4 we describe the design of information management

systems such as SHARD using the MapReduce software

framework. In Section 5 we describe our experimental results

from the deployment of an early version of SHARD into an

Amazon EC2 cloud. In Section 6 we discuss design insight we

gained from experimentation. We conclude in Section 7 with a

discussion of ongoing and alternative designs for high-

performance, massively scalable information systems.

2. MAPREDUCE AND HADOOP
MapReduce is a software framework for processing and

generating large data sets [4]. Users specify a map function that

splits data into key/value pairs and a reduce function that merges

all key/value pairs based on the key. Many real world low-level

tasks are expressible in this model including word counting and

the Page-rank algorithm.

The MapReduce software framework is easily parallelizable for

execution on large clusters of commodity machines. This enables

the construction of high-performance, highly-scalable

applications. One of the more popular MapReduce

implementations is Hadoop [8]. Hadoop takes care of the details

of managing data on compute nodes through the Hadoop

Distributed File System (HDFS), scheduling the program's

execution across a set of machines, handling machine failures, and

managing the required inter-machine communication. This allows

for the design and implementation of high-level functionality

using the MapReduce framework to construct high-performance

and highly scalable applications.

A key aspect of the MapReduce software framework, as expressed

in the Hadoop implementation, is the use of a special, centralized

compute node, called the NameNode. The name node directs the

placement of data onto compute nodes through HDFS, assigns

compute jobs to the various nodes, tracks failures and manages

the shuffling of data after the Map step completes.

There are several benefits as well as drawbacks from using

MapReduce to design high-performance information systems,

irrespective of how those information systems are designed.

These benefits include that MapReduce implementations such as

Hadoop are generally easy to set up and debug, and applications

are easy to write efficiently in several programming languages.

The drawbacks of the Hadoop implementation of the MapReduce

framework include that only Java programs can be used natively

for more complex applications, it is difficult to run Java code on

compute nodes that need runtime customization, NameNode

creates a bottleneck for HDFS access, and NameNode failures can

be catastrophic.

Figure 1: A Small Graph of Triple Data.

3. DESIGN GOALS
Our primary information system design motivations are the ability

to persist and rapidly query very large data graphs. To align with

Semantic Web data standards, we consider graphs represented as

subject-predicate-object triples [2][7]. A small example graph can

be seen in Figure 1 that contains 7 triples – Kurt lives in

Cambridge, Kurt owns an object car0, car0 is a car, car0 was

made by Ford, car0 was made in Detroit, Detroit is a city and

Cambridge is a city.

We use SPARQL [19] as a representative query language - it is

the standard Semantic Web query language. SPARQL semantics

are general purpose and similar to the more well-known SQL. An

example SPARQL query for the above graph data is the

following:

SELECT ?person

WHERE {

 ?person :owns ?car .

 ?car :a :car .

 ?car :madeIn :Detroit .

 }

The above SPARQL query has three clauses and asks for all

matches to the variable ?person such that ?person owns an

entity represented by the variable ?car which is a car and was

made in Detroit. Note that the above query can be represented as

a directed graph as seen in Figure 2.

Figure 2: A Directed Graph Representation of a Query.

Processing of SPARQL queries in the context of a data graph such

as the one above consists of identifying which variables in the

query clauses can be bound to nodes in the data graph such that

the query clauses align with the data triples. This alignment

process for query processing is fairly general across many data

representations and query languages. An example of this

alignment for our example query and data can be seen in Figure 3.

Figure 3: An Alignment of SPARQL Query Variables with Triple

Data.

Our functional design goals for the SHARD triple-store are to:

1. Serve as a persistent store for triple data in RDF format.

2. Serve as a SPARQL endpoint to process SPARQL

queries.

There have been a number of other design approaches for triple-

stores with similar if not the same functional design goals [18].

Several of these triple-stores have achieved very good

performance on single compute-node systems by using designs

based around memory mapping index information [11]. However,

disk and memory limitations have driven the need for distributed

computing approaches to triple-stores [12][14]. There have been

a number of recent attempts to develop designs of triple stores

using distributed computing frameworks [20].

4. SYSTEM DESIGN

4.1 Data Persistence
In order to use a distributed computing approach to information

management system design, it is generally infeasible to pass large

volume input data directly to and from the user. This data passing

would involve the coordinated transfer of data onto and off of the

compute nodes when data needs to be processed. The large scale

of data makes this approach impractical due to data churn.

Consequently, large input (data, queries) and output (query

results) data sets need to be stored directly on the compute nodes.

In order to best leverage the MapReduce software framework and

its Hadoop implementations to construct an information

management system, we made this design decision with the

understanding that the input data and output results are generally

very large and not feasible to output directly to the user. The data

storage directly on compute nodes is done natively using the

Hadoop implementation of MapReduce by placing data in the

HDFS distributed file system.

We persist SHARD data in flat files in the HDFS file system such

that each line of the triple-store text file represents all triples

associated with a different subject. Consider the following

exemplar line saved in SHARD from the LUBM domain that

represents three triples associated with the entity subject Pub1:

Pub1 :author Prof0 :name "Pub1" a

:Publication

This line represents that the entity Pub1 has an author entity

Prof0, Pub1 has a name “Pub1” and that Pub1 is a publication.

Although this approach to persisting triple data as flat text files is

rudimentary as compared to other information management

approaches, we found that it offers a number of important benefits

for several general application domains. For one, this approach,

particularly in the HDFS implementation, brings a level of

automated robustness by replicating data and MapReduce

operations across multiple nodes. The data is also stored in a

simple, easy to read format that lends itself to easier, user focused

drill-down diagnostics of query results returned by the triple-store.

Most importantly, however, although this approach to storing

triples is inefficient for query processing that requires the

inspection of only a small number of triples, this approach is

efficient in the context of Hadoop for scanning over large sets of

triples to respond to queries that will generate a large number of

results, as Hadoop natively scans over input data during the Map

stage of its Map-Reduce operations.

4.2 Query Processing
MapReduce provides only simple data manipulation techniques

by splitting data into key-value pairs, and accumulating all values

with the same keys. In order to provide more advanced query

processing that can leverage highly scalable implementations of

the MapReduce software framework, information systems would

need to iterate over clauses in queries to incrementally attempt to

bind query variables to literals in the triple data while satisfying

all of the query constraints. Each iteration consists of a

MapReduce operation for a single query clause. This iteration is

non-trivial because results of previous clauses would need to be

continually joined with the results of more recent clauses over the

iterations of the MapReduce steps. We describe here how we

designed these iterations with a focus on joining intermediate

results as an approach to constructing more complex systems.

We use our SHARD context of graph data and SPARQL queries

to concretely discuss a design for this iterative query processing

using the MapReduce software framework. A schematic

overview of this iterative query binding process for the graph data

and SPARQL context can be seen in Figure 4. This schematic

consists of multiple MapReduce operations.

Figure 4: A Schematic Overview of the Iterative Algorithm to process

SPARQL queries with Triple Data.

The first map MapReduce step maps the triple data to a list of

variable bindings which satisfy the first clause of the query. The

key of the Map step is the list of variable bindings. The Reduce

step removes duplicate results and saves them to disk with the

variable bindings as the key.

The intermediate query binding steps continue to iteratively bind

variables to literals as new variables are introduced by processing

successive query clauses and/or filtering the previous bindings

which cannot fit the new clauses. The intermediate steps perform

a MapReduce operation over both the triple data and the

previously bound variables which were saved to disk.

The ith intermediate Map step identifies all variables in the triple-

data which satisfy the ith clause and saves this result with the key

being any variables in the ith clause which appeared in previous

clauses. The value of this Map step is the bindings of other

variables not previously seen in the query clauses, if any. This

iteration of the Map set also rearranges the results of the previous

variable bindings saved to disk to the same name of a variable key

in the ith clause that appeared in previous clauses. The value of

this key-value pair is the list of variable bindings which occurred

in previous clauses but not in the ith clause.

The ith Reduce step runs a join operation over the intermediate

results from the Map step by iterating over all pairs of results from

the previous clause and the new clause with the same key

assignment.

This iteration of map-reduce-join continues until all clauses are

processed and variables are assigned which satisfy the query

clauses. SHARD is designed to save intermediate results of the

query processing to speed up the processing of similar later

queries. The storage of intermediate results is a byproduct of the

Hadoop MapReduce implementation.

The final MapReduce step consists of filtering bound variable

assignments to satisfy the SELECT clause of the SPARQL query.

In particular, the Map step filters each of the bindings, and the

Reduce step removes duplicates where the key value for both Map

and Reduce are the bound variables in the SELECT clause.

5. EXPERIMENTATION
To test the performance of our general design of a scalable

information management system based on the MapReduce

framework, we developed an early version of SHARD using the

Cloudera version of the Hadoop implementation that we deployed

onto an Amazon EC2 cloud environment of 20 XL compute nodes

[1] running RedHat Linux and Cloudera Hadoop. The version of

SHARD we deployed for evaluation supports basic SPARQL

query functionality (without support for prefixes, optional clauses

or results ordering) over full RDF data. This unimplemented

functionality is generally associated with the pre- or post-

processing of queries and we don‟t expect that adding this extra

functionality will substantially detract from the performance

exhibited by the current implementation of SHARD. Although

possible to implement, the deployed version of SHARD does not

perform any query manipulation/reordering/etc… normally done

for increased performance by SPARQL endpoints in mature

triple-stores. Also, the deployed version of SHARD does not yet

take advantage of any possible query caching made possible by

our design choices.

5.1 LUBM Benchmark
We used the LUBM benchmark to evaluate the performance of

SHARD. The LUBM benchmark creates artificial data about the

publishing, coursework and advising activities of students and

faculty in departments in universities.

The LUBM code natively generates OWL ontology files [15].

OWL ontology files represent relationships between properties,

but because our early version of SHARD takes N3 (an RDF

serialization format) data as input, we provided functionality to

convert the generated LUBM data into N3 format over many

universities and automatically store this generated data in the

SHARD HDFS backend using Hadoop. We used code from the

LUBM benchmark to generate triple data for 6000 universities

which is approximately 800 million triples to parallel the

performance evaluations made in a previous triple-store

comparison study [18].

After loading the triple data into the SHARD triple store, We

evaluated the performance of SHARD in responding to queries 1,

9 and 14 of LUBM as was done in the previous triple-store study.

Query 1 is very simple and asks for the students that take a

particular course and returns a very small set of responses. Query

9 is relatively more complicated query with a triangular pattern of

relationships - it asks for all teachers, students and courses such

that the teacher is the adviser of the student who takes a course

taught by the teacher. Query 14 is relatively simple as it asks for

all undergraduate students (but the response is very large).

5.2 Performance
SHARD achieved the following query response times for 6000

universities (approx. 800 million triples) using the LUBM

benchmark when deployed on an Amazon AWS cloud with 20

compute nodes:

Query 1: 404 sec. (approx 0.1 hr.)

Query 9: 740 sec. (approx 0.2 hr.)

Query 14: 118 sec. (approx 0.03 hr.)

We generally found the SHARD performance increased with the

number of compute nodes, but we found this performance

increase to be sub-linear. This sub-linear increase was mostly

likely due to the communication overhead of the MapReduce

steps.

For comparison, in the triple store study [18] the industrial single-

machine DAMLDB triple-store (released as the open-source

project Parliament 1) was able to achieve the following

performance on the same queries coupled with the Sesame2 and

Jena3 Semantic Web frameworks to aid query processing.

Sesame+DAMLDB took:

Query 1: approx 0.1hr.

Query 9: approx 1 hr.

Query 14: approx. 1 hr.

For Jena+DAMLDB we have no data on performance over 550

million triples due to the difficulty of loading triples into this

dataset, but based on observed trends this triple-store probably

would of taken the following:

Query 1: approx 0.001 hr.

Query 9: approx 1 hr.

Query 14: approx. 5 hr.

Note that the only query where SHARD performed noticeably

worse than DAMLDB was on query 1. Query 1 returns a very

small subset of literals bound to variables. Although MapReduce

is traditionally used to build indices, its implementations (e.g.

Hadoop) provide little native support for accessing data stored in

HDFS files. Conversely, DAMLDB has some special indexing

optimizations for simple queries like that for Query 1, that are not

yet implemented in SHARD. We discuss how this aspect of

MapReduce may be improved upon below. Except for this one

exception, SHARD performed better than other known

technologies due to the highly parallel implementations of the

MapReduce framework that we leverage in our design of

SHARD. Also, due to the inherent scalability of the Hadoop and

HDFS approach to the SHARD design, the SHARD triple-store

could potentially be used for extremely large datasets (more than

billions of triples) without requiring any specialized hardware, as

is required for other monolithic triple-stores.

6. DESIGN INSIGHTS
The performance of SHARD over previous triple-store

implementations demonstrate the viability of our information

system design approach based on MapReduce. Our design

enables the efficient search through data to find matches that

satisfy queries. This design is easily distributed across many

compute nodes for highly parallel and highly scalable operation.

It is also low-cost as it can run on commodity hardware.

There are a number of areas for improvement in an alternative to

the MapReduce software framework and its implementations for

the easier design of information systems in general and triple-

stores in particular. Most notably, the MapReduce, and

consequently our design, are biased towards operations over large

1 http://parliament.semwebcentral.org/

2 http://www.openrdf.org/

3 http://jena.sourceforge.net/

datasets without the search for individual key-value pairs. This

could be improved upon with native indexing capabilities,

possibly supported during pre-processing operations. These pre-

processing operations could also be used to reason over the data,

so that SHARD could correctly respond to queries that require

reasoning.

A more advanced modification to support information system

design would be an alternative software framework that provides

better data linking. Instead of having to store lists of data in flat

files in an HDFS-like construct, a software framework could

provide a native linked-data construct that pairs data elements

with pointers to related data. This linked data framework would

provide faster localized query processing without requiring

exhaustive search of the data set on every query request.

7. ONGOING WORK
Development work is ongoing with our information system design

based on the MapReduce software framework. Based on our

experience with the initial SHARD deployment, we have several

short- and long-term activities to further improve performance and

applicability from both a design and software framework

perspective.

First among the improvements is a more effective method to index

data. This will most likely need to be supported by an alternative

to the MapReduce framework that supports native indexing

instead of basic Map operations over all data elements.

Additional performance improvement of our design in a targeted

production environment could be provided by using cached partial

results both locally for high-performance parallel operations and

globally by a NameNode-like entity that tracks local caching of

partial results.. This will require additional capability in a

software framework to track partial results that were previously

cached and possibly to track which cached results could be thrown

out to save disk space in the cloud (if this is a deployment

concern.)

There is a general need for improved tools for high-level highly-

parallel computations in clusters. The MapReduce tools we

explore operate at a low level. It is difficult to coordinate the

storage and use of intermediate results in parallel without

frequent, temporally expensive disk access. An enhanced

software framework might provide this by caching data in

memory and persisting data to disk as a backup for failure

recovery.

8. ACKNOWLEDGMENTS
The authors would like to thank Gail Mitchell, Doug Reid and

Prakash Manghwani from BBN, Philip Zeyliger from Cloudera

and Hanspeter Pfister from Harvard University for their

assistance.

9. REFERENCES
[1] Amazon. (2010) Amazon EC2 Instance Types. Retrieved

from http://aws.amazon.com/ec2/instance-types/

[2] Berners-Lee, Tim; James Hendler and Ora Lassila (May 17,

2001). "The Semantic Web". Scientific American Magazine.

[3] Cassandra. (2010) Retrieved from

http://cassandra.apache.org/

[4] Dean J. and Ghemawat S., MapReduce: Simplified data

processing on large clusters. In Proceedings of the USENIX

Symposium on Operating Systems Design & Implementation

(OSDI), pp. 137-147. 2004.

[5] DeWitt D., Stonebraker M. MapReduce: A major step

backwards. databasecolumn.com.

http://databasecolumn.vertica.com/database-

innovation/mapreduce-a-major-step-backwards/. Retrieved

2010-08-29.

[6] Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL

knowledge base systems. Journal of Web Semantics 3(2)

(2005) 158–182

[7] Grigoris A., van Harmelen F. A Semantic Web Primer, 2nd

Edition. The MIT Press, 2008.

[8] Hadoop. (2010). Apache Hadoop. Retrieved from

http://hadoop.apache.org/

[9] Hendler J., Web 3.0: The Dawn of Semantic Search. In

IEEE Computer, Jan. 2010.

[10] Kiryakov A., Tashev Z., Ognyanoff D., Velkov R.,

Momtchev V., Balev B., Peikov I. "Validation goals and

metrics for the LarKC platform." LarKC Report FP7 –

215535. Retrieved from http://www.larkc.eu/wp-

content/uploads/2008/01/larkc_prefinal-

version_d552_validation-goals-and-metrics-for-the-larkc-

platform.pdf. 2009.

[11] Kolas D., Emmons I. and Dean M., Efficient Linked-List

RDF Indexing in Parliament. In the Proceedings of the

Scalable Semantic Web (SSWS) Workshop of ISWC „09,

2009.

[12] Li P., Zeng Y., Kotoulas S., Urbani J., and Zhong N., "The

Quest for Parallel Reasoning on the Semantic Web," in

Proceedings of the 2009 International Conference on Active

Media Technology, LNCS, 2009.

[13] LinkingOpenData. (2010) Retrieved from

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProj

ects/LinkingOpenData

[14] Mika, P. and Tummarello, G. 2008. Web Semantics in the

Clouds. IEEE Intelligent Systems 23, 5 (Sep. 2008), 82-87.

[15] OWL. (2010) Web Ontology Language (OWL.) Retrieved

from http://www.w3.org/TR/owl2-overview/

[16] Project Voldemort. (2010) Retrieved from http://project-

voldemort.com/

[17] RDF. (2010) Resource Description Framework (RDF)

Retrieved from http://www.w3.org/RDF/

[18] Rohloff K., Dean M., Emmons I., Ryder D., Sumner J.. “An

Evaluation of Triple-Store Technologies for Large Data

Stores.” 3rd International Workshop On Scalable Semantic

Web Knowledge Base Systems (SSWS '07), Vilamoura,

Portugal, Nov 27, 2007.

[19] SPARQL. (2010) SPARQL Query Language for RDF

http://www.w3.org/TR/rdf-sparql-query/

[20] Urbani J., Kotoulas S., Oren E., and van Harmelen F.,

"Scalable Distributed Reasoning using MapReduce," In

Proceedings of the ISWC „09, 2009.

