
Trusted Spanning Trees for Delay Tolerant Mobile
Ad Hoc Networks

Apivadee Piyatumrong and Pascal Bouvry
University of Luxembourg,

FSTC - CSC,
Luxembourg

Email: apivadee.piyatumrong@uni.lu,
pascal.bouvry@uni.lu

Frédéric Guinand
Le Havre University,

LITIS,
Le Havre, France

Email: Frederic.Guinand@univ-lehavre.fr

Kittichai Lavangnananda
School of Information Technology,

King Mongkut’s University
of Technology Thonburi (KMUTT),

Bangkok, Thailand
Email: kitt@sit.kmutt.ac.th

Abstract—Delay Tolerant Networks (DTNs) are an extension
of Mobile Ad-Hoc Networks (MANETs). Global knowledge in
DTNs cannot be obtained or guaranteed due to their dynamicity,
decentralized nature and non-permanent structure. Managing
such networks optimally is very difficult, if not impossible. Trust
management in such networks receives much attention recently
due to their potential application. One solution for managing
information within DTNs lies in constructing and maintaining
spanning forests. DA-GRS is a local computation based model
for the description of decentralized algorithms designed for dy-
namically distributed environments like Delay-Tolerant MANETs
(DTMs). DA-GRS proposes a framework for constructing and
maintaining a spanning forest in such an environment. This
work introduces the notion of trust into DA-GRS resulting in
T-DA-GRS algorithm. The goal of the proposed algorithms is to
construct and maintain robust trusted spanning tree where less
trustable nodes are leaves. Three cost functions are suggested as
means to assess the robustness of trusted spanning trees. T-DA-
GRS is also further improved by incorporating greedy algorithm
to become T-GDA-GRS. These algorithms were tested with four
different networks generated by a DTM simulator known as
Madhoc. Efficiency of these algorithms is compared with optimal
values.

I. INTRODUCTION

Delay Tolerant Mobile Ad Hoc Networks (DTMs) are
fluctuating networks populated by a set of moving materials
equipped with wireless communicating devices. These mate-
rials are called stations, nodes or devices. They can sponta-
neously interconnect each other without any pre-existing in-
frastructure [1]. What makes the management of such network
difficult is their nature. DTMs are mobile, ad hoc configuring,
and frequently partitioned. At a given moment, two stations
belonging to distinct partitions can neither communicate di-
rectly nor undirectly (using multi-hop communications).

The most popular wireless networking technologies avail-
able nowadays for building MANETs are Bluetooth and
IEEE802.11 (WiFi). This implies that devices communicate
within a limited range, and stations may move while commu-
nicating. A consequence of mobility is that the topology of
such networks may change quickly and unpredictably. This
dynamical characteristic constitutes one of the main obstacles
for performing efficient communications. Furthermore, acquir-
ing global information in this kind of network is difficult
and impractical if not impossible. Therefore management

information within this network needs to be done locally, but
yet effective globally. Then, algorithms designed for DTMs
have to be decentralized and robust to cope with both, the
dynamic and the partitioned nature of the environment.

Dynamicity Aware - Graph Relabeling System (DA-GRS)
[2] is a local computation based model for the description of
decentralized algorithms intended to operate in dynamically
distributed environments like DTMs. In [3] the author presents
an algorithm for constructing and maintaining a spanning
forest in DTMs. Such a structure may be of valuable help for
exchanging information efficiently between different stations
for instance. The presented algorithm relies on the use of
tokens (a token is an information agent). Each tree in a
spanning forest owns one unique token that moves randomly
within its own tree. When two tokens meet, they merge stored
information from both token and become only one token. As
the previous two tokens become one token, their corresponding
spanning trees are merged to form a new and larger spanning
tree.

The work introduces a trust management algorithm in
DTMs by cooperating the notion of trust into the existing
algorithm used in DA-GRS (T-DA-GRS). The work assumes
that the trust level of every node in the communication graph
has been assessed. The goal of the algorithms in this work is
to construct robust trusted spanning trees where less trustable
nodes are leaves. The efficiency is furthered improved by
cooperating the ’greedy algorithm’ concept to form T-GDA-
GRS.

II. RELATED WORK

A. Delay Tolerant Mobile Ad Hoc Networks (DTMs)

DTMs constitute an emerging subclass of mobile ad hoc
networks that feature frequent and long-duration partitions [4].
In a DTM network, each station can reach a subset of the
other stations using wireless communication abilities. Such
communication ability is typically defined by a communica-
tion range and constrained by natural obstacles (e.g. walls,
buildings, etc.).

At a given moment t, the communication graph, G(t), of
such network is a pair (Vt(G), Et(G)), where Vt(G) is a finite
set of elements, called vertices, Et(G) is a binary relation on

Vt(G) - a subset of pairs of elements of Vt(G). The elements
of Et(G) are called edges and constitute the edge set of G(t).
An edge between node xi and xj indicates that, at time t, it
is possible for xi and xj to exchange information. G(t) may
be partitioned into a set of m subgraphs: G(t) =

⋃
1..m

Pi(t)

B. Dynamicity Aware - Graph Relabeling System (DA-GRS)

The DA-GRS model was invented as a help for design and
analysis of decentralized applications and algorithms targeting
dynamically distributed environments like DTMs. Normally,
such applications and algorithms are often very difficult to set
up, describe and validate [3]. Using DA-GRS is a convenient
way to design algorithms for DTMs, since its outstanding
properties are localized in a dynamic working manner. In
the context of the study, DA-GRS approach proposes a way
of designing a decentralized algorithm for constructing and
maintaining a spanning forest in DTMs, relying on a careful
rule-based token management. Hence forth this concept will be
referred to as ’DA-GRS’ for brevity. The work in [3] described
rules to handle four different scenarios, (a) tokens traversal
in general case, (b) when a token meets another token, (c)
partition occurs at a node which belongs to the spanning tree
that possess the token, (d) partition occurs at a node which
belongs to the spanning tree which does not possess the token.
As DA-GRS constructs random spanning trees, quality (in
term of trust) of each spanning tree ought to be assessed.

Let Γi be the set of all possible spanning trees for Pi. DA-
GRS randomly selects γdagrs ∈ Γi. An ideal situation is to be
able to select γoptimal ∈ Γi , or at least to select preferable
γ∗ such that γdagrs ≤ γ∗ ≤ γoptimal

C. Trust Management

In human society, trust has become the basis of almost all
activities, such as communications, work, etc. People gradually
form the standard of mutual trust, and they also refer to
opinions of the third-party in assessing the trust. Trust can be
regarded as a criterion for making a judgment under complex
social conditions and can be used to guide further actions [5].
In summary, trust can be viewed as the expectation or the
belief that a party will act kindly and cooperatively with the
trusting party [6]. It is no surprise that some research related
to security or mutual cooperation on multi-agent system paid
particular attention to trust factor in various facets, [7], [8],
[9].

In early stage of trust and security on MANETs, several trust
and security establishments relied on cryptographic methods,
authentication codes and hashing chains for their solutions.
Although these schemes are effective, they are centralized
system which produced significant communication overheads
from both preprocessing and during processing periods, as well
as energy consuming. These approaches are also not applicable
to DTMs. In the last few years, cooperation enforcement meth-
ods (avoidance the effect of selfish nodes on the networks’
robustness [10]), and reputation schemes [6], [11], [12] have
been proposed for trust establishment in MANET. Recent

literature suggests that the cooperation enforcement techniques
are more appropriate if the primary goals are availability,
robustness of the network, and the overall throughput. A
comprehensive survey on cooperation enforcement can be
found in [13], while detailed discussion on peer-to-peer key
and trust management approach can be found in [14].

Quality of service is a key issue in DTMs where members,
mobile stations may present different level of services. In [10]
different strategies for mobile nodes are examined. In this
work, trust is used in establishing on-the-fly security (in term
of robustness) in a purely self-organized manner of DTMs
(no pre-established relationship among nodes or off-line key
distribution). An assumption is made that a trust model has
been established and provision of trust information to different
nodes is assumed.

III. TRUSTED SPANNING TREES

Trusted spanning tree in this work is a spanning tree which
is cooperatively built in a cluster/partition of trusted nodes in
order to manage information embedded in a MANET. Trust
level of a node n, denoted by trust(n), where trust(n) ∈ Z+,
defines the level of quality of services it can provide. Whether
a node n can be trusted is determined by a given threshold.
Let Θt = {n′ ∈ Vt(G)|trust(n′) ≤ threshold} be the set of
all non-trustable nodes at moment t. A node in a cooperative
network can have low level of trust for various reasons such
as low battery, poor communication signal, moving out of
communication range, etc. An ideal situation is to determine
an optimal trusted spanning tree among many possibilities in
a given cooperative network. To date, there is no efficient
algorithm which can generate an optimal spanning forest in
DTMs due to their dynamic and decentralized characteristics
and lack of global knowledge in the cooperative network.
Nevertheless, more robust trusted spanning trees are preferable
to arbitrary ones. In order to determine robust trusted spanning
trees, this work introduces quality measurement for trusted
spanning trees by means of three cost functions.

A. Cost functions

A trusted spanning tree in this work is evaluated by three
cost functions, these are weight(), weight penalty() and
isolating low trusted node(). In order to summarize the
quality of created trust spanning tree, the value of functions
from different studied algorithms will be compared where a
higher value indicates a better quality. These functions will be
applied to an optimal trusted spanning tree and will be used
as best-case. Figure 1(a) and (b) are examples to illustrate the
idea behind these cost functions which the threshold of being
non-trustable node is defined as equal to one.

1) weight() function: In general case, nodes with higher
trust level are more likely to be able to complete their tasks
than lower ones. weight() function introduced here, can
be used to assess trust spanning trees with respect to this
objective. The weight() function of a trusted spanning tree

Node: D

Token: -

Trust(A): 3

communication edge

trusted spanning tree edge

Node: B

Token: -

Trust(B): 1

Node: A

Token: -

Trust(A): 1

Node: F

Token: -

Trust(D): 1

Node: C

Token: Tc

Trust(C): 4

(a)

Node: E

Token: -

Trust(D): 5

Node: D

Token: -

Trust(A): 3

Node: B

Token: -

Trust(B): 1

Node: A

Token: -

Trust(A): 1

Node: F

Token: -

Trust(D): 1

Node: C

Token: Tc

Trust(C): 4

Node: E

Token: -

Trust(D): 5

(b)

Fig. 1. An example scenario for illustrating cost functions used in this study

can be determined by the following equation:

weight(γ) =
∑

x∈V (γ)

trust(x) ∗ degree(x) (1)

The function degree(x) represents the degree of node x.
Figure 1 is used to illustrate how the weight function can
assess this quality. In Figure 1(a), the node with lowest trust
level gets the highest degree, while the node with highest level
gets the lowest degree (i.e the node A has a trust level of 1
and degree of 3, while the node E a trust level of 5 and degree
of 1), hence the weight() function for this trusted spanning
tree is 22. Figure 1(b) depicts the opposite (i.e. the node with
highest trust level possess highest degree (node E), while the
node with lowest level possess lowest degree (node E)). The
weight() function for this trusted spanning tree is 34.

With more specific case, having nodes with low trust levels
localized on leaves is advantageous since they would not
be responsible for forwarding information to others. Further-
more, loosing them at these positions has little effect to the
overall structure. On the contrary, as low trust level nodes
have tendency to break away from the network, allowing
them to have high degrees presents a difficult task of re-
connecting the trusted spanning trees as a result of their break-
ing away. Therefore, in order to minimize the re-connecting
task, nodes with lowest trust levels should be assigned the
lowest degree position in the trees. The next two functions
isolating low trusted node() and weight penalty() func-
tions are introduced as means to assess trusted spanning trees
with respect to the objective.

2) isolating low trusted node() function: This function
indicates the efficiency of a trusted spanning tree by not-
ing how well it can isolate non-trustable nodes. The func-
tion measures the percentile of n′ nodes at terminal po-
sition. The higher value of isolating low trusted node()
function signifies better quality trusted spanning tree. Let
Θ∗(γ) = {n′ ∈ Θ(γ)|n′ is at terminal position of γ}. The
isolating low trusted node() function can be determined
by the following equation :

isolating low trusted node(γ) =
(

Θ∗(γ)
Θ(γ)

)
100 (2)

Hence, the isolating low trusted node value for Figure 1(a)
is 33.33% while this value is 100% for Figure 1(b).

3) weight penalty() function: This function assigns an
additional penalty to non-trustable nodes Θ(γ) which are not
leaves and is used in conjunction with the weight() function.
This additional penalty can be determined by the following
equation:
weight penalty(γ) =

(
∑

x∈V (γ)

trust(x)∗degree(x))−(
∑

n′∈Θ(γ)

degree(n′)−1) (3)

As all non-trustable nodes with degrees higher than 1 are
assigned additional penalty. Therefore, the trusted spanning
tree in Figure 1, (a) incurs additional penalty of 19, while the
one in Figure 1, (b) does not as there is no node with lowest
trust level possesses the degree of more than 1 (i.e. all nodes
with trust level of 1 are at terminal).

B. Optimal tree

Since problem in this work is a multi-criteria one, the opti-
mal tree can be viewed in different facets among the three cost
functions proposed. For example, the optimal tree respecting to
the weight() function, at any particular time t, can be defined
as: γoptimal ∈ Γi, |∀γ ∈ Γ, weight(γ) ≤ weight(γoptimal)

IV. ALGORITHMS FOR BUILDING TRUST SPANNING TREES

Trust management within a partition of DTM is very
difficult because of its dynamicity, decentralized nature and
non-permanent connection that can break up into two or
more partitions at any moment. Although cooperative working
manner among stations (i.e. nodes) within a DTM can be
assumed, any trust management algorithm has to work at local
level as global knowledge of the network cannot be acquired.

Spanning tree is a structure which facilitates trust manage-
ment where communication among the set of nodes in the tree
is possible via its edges (i.e. communication edges). In [2],
the authors introduce an algorithm to manage spanning forest
within a DTM environment. It constructs possible spanning
trees in a DTM by means of using tokens. Token can be
seen as an information agent, initially possessed by each node,
that becomes obsolete as it connects to another spanning tree.
Hence, each spanning tree owns a unique token. In this work,
trust level is assumed to be from 1 to 5 (1 being the lowest
and vice versa).

A. T-DA-GRS

In this work, trust management in DTM is maintained by
incorporating the notion of trust into the algorithm in DA-
GRS. Hereafter, this algorithm will be referred to as T-DA-
GRS for ease of reference. In T-DA-GRS, trusted spanning
trees are initially constructed in the same way as in DA-
GRS. Each token moves within their own trusted spanning
tree. Merging of two trusted spanning trees occurs when two
tokens meet. After the merge is complete, a new and larger
trusted spanning tree is formed, and the two tokens also merge
in one unique token. Figure 2, illustrates this operation. There
are four trusted spanning trees and their tokens are at nodes
A, B, C and D respectively. These tokens are within each

(a) (b)

communication edge trusted spanning tree edge a trusted spanning tree

Node: A

Token: Ta

Trust(A): 4

Node: D

Token: Td

Trust(D): 5

Node: B

Token: Tb

Trust(B): 1

Node: C

Token: Tc

Trust(C): 3

Node: D

Token: Td

Trust(D): 5

Node: C

Token: Tc

Trust(C): 3

Node: A

Token: -

Trust(A): 4

Node: B

Token: Tab

Trust(B): 1

Fig. 2. An example merging using T-DA-GRS

others access range. T-DA-GRS merges trusted spanning trees
randomly. In this example, the trusted spanning tree with token
at node A happens to merge with another trusted spanning tree
with token at node B. Note that no consideration is given to
the trust level of each node.

B. T-GDA-GRS

Since T-DA-GRS constructs and merges trusted spanning
trees randomly, robustness of each trusted spanning tree is
left to chance. Therefore, T-DA-GRS is more likely to result
in trusted spanning trees with low cost function values. In
order to improve the possibility of generating more robust-
ness of spanning trees, T-GDA-GRS is further improved by
incorporating greedy algorithm concept. The principle of this
improvement arises from the fact that merging tokens located
on highest trust level nodes is likely to result in a more robust
trusted spanning tree (i.e. a trusted spanning tree with higher
cost function values). Hereafter, this algorithm will be referred
to as T-GDA-GRS for brevity. The extension in the merging
operation in T-GDA-GRS is described below.

Algorithm 1 Look for other trees (tokens) around token τi
1: τ best is the most trusted token in one hop neighbourhood
2: if τ best 6= {} then
3: Merge With(τi, τ best) //merge the two tokens
4: else
5: Move Token(τi) //continue to move the token ran-

domly
6: end if

Figure 3 illustrates this improvement. In this instance,
merging of two trusted spanning trees occurs where tokens
are at nodes with highest trust level resulting in a larger and
more robust trusted spanning tree than in Figure 2.

V. SIMULATION OF TRUSTED SPANNING TREES IN DTMS

Classical DTM applications include Military Ad-Hoc Net-
works, Vehicle Ad-Hoc Network (VANETs), Exotic Media
Networks, and etc. Suitable networks for simulation of any
MANET ought to comprise lay-out of nodes (citizens), en-
vironmental properties and radio propagation (communication
link) which reflect real-world situations. The networks used in
this work were generated by Madhoc [15] (an ad-hoc networks
simulator that provides mobility models allowing realistic

(b)

communication edge trusted spanning tree edge a trusted spanning tree

(a)

Node: A

Token: Ta
Trust(A): 4

Node: D

Token: Td
Trust(D): 5

Node: B

Token: Tb
Trust(B): 1

Node: C

Token: Tc
Trust(C): 3

Node: C

Token: Tc
Trust(C): 3

Node: A

Token:Tad
Trust(A): 4

Node: D

Token: -

Trust(D): 5

Node: B

Token: Tb
Trust(B): 1

Fig. 3. An example merging using T-GDA-GRS

motion of citizens in variety of environments). Simulations
in this work are divided into two main categories, static
and dynamic. In each category, two different characteristic
networks are selected. To ensure validity of the simulation,
three different networks of each characteristic are generated.
Altogether, twelve networks were selected, Table 1 summa-
rizes the networks and their characteristics in each category
used in this work.

Static Dynamic

Random City Street Shopping Mall Highway

Network Category

random 3

random 2

random 1

street 3

street 2

street 1

mall 3

mall 2
mall 1

highway 3

highway 2

highway 1

Fig. 4. Summary of graphs used according to its characteristic

Properties of each type of networks is discussed in the
following sub-sections.

A. Static Networks

While dynamic networks are more appropriate in simulation
of this type, the use of static networks was not be overlooked
as they provided good starting point to investigate flaws and
short comings of proposed algorithms. Random and city street
scenarios were selected for static networks. Figures 5(a) and
5(b) depict examples of random and city street networks
respectively. Tables I and II summarize properties of each
networks in the static category.

(a) Random. (b) City Street.

Fig. 5. Examples of Random and City Street Networks

B. Dynamic Networks

The duration consists of 40 simulation steps, a simulation
step was taken at 0.25 seconds interval. A duration in a

TABLE I
PROPERTIES OF RANDOM NETWORKS (STATIC)

random 1 random 2 random 3
number of stations 100 100 100

average number of degrees 4.50 4.86 4.22
maximum number of degrees 10 15 10
minimum number of degrees 0 0 0

total connections 331 356 331

TABLE II
PROPERTIES OF CITY STREET NETWORKS (STATIC)

street 1 street 2 street 3
number of stations 100 100 100

average number of degrees 28.12 32.16 43.05
maximum number of degrees 50 57 65
minimum number of degrees 1 1 1

total connections 1,408 1,585 2,158

TABLE III
PROPERTIES OF SHOPPING MALL NETWORKS (DYNAMIC)

mall 1 mall 2 mall 3
number of stations 99 99 99

average number of degrees 7.13 7.68 7.69
average of max. number of degrees 13.20 16.10 14.83
average of min. number of degrees 2 1.07 1

average number of total connections 344.49 371.17 371.27

TABLE IV
PROPERTIES OF HIGHWAY NETWORKS (DYNAMIC)

highway1 highway2 highway3
number of stations 80 80 80

avg. number of degrees 11.07 11.51 39.61
avg. of max. number of degrees 19.10 19.41 55.34
avg. of min. number of degrees 2.61 2.39 19.44

avg. number of total connections 433 448.60 1,547.05

simulation was set to last 10 seconds. The duration was
selected carefully to reflect what may happen in practice. In
reality, changes in a highway network are likely to occur more
often than in a shopping mall network. Figures 6(a) and 6(b)
depict initial configurations at t0 of the shopping mall and
highway networks respectively. Tables III and IV summarize
properties of each networks in the dynamic category.

VI. SIMULATION RESULTS

As stated earlier in Section III, determination of an optimal
spanning tree in MANETs is extremely difficult due to their
dynamic and lack of global knowledge and no algorithm exists
to date. Since the networks used in this work were generated
by Madhoc, global knowledge and changes in their dynamicity
could be predetermined. Therefore, optimal spanning trees
can also be obtained. This advantage makes it possible for
the efficiency of the two algorithms, the three cost functions
proposed and robustness of spanning trees generated in this
work to be evaluated. Hereafter, all values which can be
predetermined from optimal spanning trees will be referred
to as optimal value for ease of reference. In order to ensure
validity of the study, 375 runs were carried out for each of
the four networks. Referring to the number of stations in each
communication graph used in this simulation which is state in
the previous section, the overall average percentage of trusted

(a) Shopping Mall. (b) Highway.

Fig. 6. Example of Shopping Mall and Highway Networks at t0

nodes in simulations is 24. Their findings are discussed below:

A. Results from Static Networks

Tables V and VI summarize the averages for the three cost
function values for the optimal trusted spanning trees and those
generated by T-DA-GRS and T-GDA-GRS for random and city
streets networks respectively.

TABLE V
AVERAGES OF COST FUNCTION VALUES (RANDOM NETWORKS)

weight weight penalty isolating low trusted node
Optimal Value 632.73 623.63 97.07
T-GDA-GRS 577.60 554.07 65.01
T-DA-GRS 518.73 489.13 48.32

TABLE VI
AVERAGES OF COST FUNCTION VALUES (CITY STREET NETWORKS)

weight weight penalty isolating low trusted node
Optimal Value 747.40 743.17 99.20
T-GDA-GRS 717.30 693.60 87.05
T-DA-GRS 546.07 508.07 49.88

For both static networks, T-DA-GRS achieved the average of
77.15% for weight value, 72.96% for weight penalty value
and 50.03% for isolating low trusted node value of their cor-
responding optimal values. These values are 93.82%, 91.28%
and 77.47% for T-GDA-GRS respectively. For both dynamic
networks, T-DA-GRS achieved the average of 56.24% for
weight value, 53.16% for weight penalty value and 46.78%
for isolating low trusted node value of their corresponding
optimal values. These values are 67.23%, 65.12% and 73.53%
for T-GDA-GRS respectively.

B. Results from Dynamic Networks

Tables VII and VIII summarize the averages for the three
cost function values for the optimal trusted spanning trees and
those generated by T-DA-GRS and T-GDA-GRS for shopping
mall and highway networks respectively.

TABLE VII
AVERAGES OF COST FUNCTION VALUES (SHOPPING MALL NETWORKS)

weight weight penalty isolating low trusted node
Optimal Value 776 769.03 97.6
T-GDA-GRS 643.80 619.97 75.84
T-DA-GRS 537.03 504.07 48.12

TABLE VIII
AVERAGES OF COST FUNCTION VALUES (HIGHWAY NETWORKS)

weight weight penalty isolating low trusted node
Optimal Value 972 968.10 99.8
T-GDA-GRS 531.45 511.21 69.31
T-DA-GRS 446.13 419.37 44.23

C. Discussion

While both T-DA-GRS and T-GDA-GRS could not yield op-
timal performances, trusted spanning trees generated by both
algorithms were comparable to optimal ones and ought to be
applicable in practice. In all three aspects of cost functions, T-
GDA-GRS yielded superior performances and hence it can be
concluded that T-GDA-GRS is an improvement to T-DA-GRS.
The interesting value of isolating low trusted node in both
types of networks emphasize the improvement of T-GDA-GRS
over T-DA-GRS. While the T-GDA-GRS algorithm need only
another 25% to reach the optimal value, the other algorithm
has up to 50% to improve. Another interesting information lies
in the optimal value crossing with isolating low trusted node
function from both table showing us that the optimal value
cannot isolate all non-trustable node to terminal position, the
value is not 100%. The loss number happens because of
’articulate node’, the node in which removal can create a
disconnected graph. In order to connecting through a network
partition, the algorithms cannot isolate these articulate nodes
to leaf of the tree. Hence, this articulate node can be seen
as a point of failure in a partition which cannot be avoid
in the assumption of this study. In static networks, more
efficient trusted spanning trees in city street networks could
be generated than in random networks. This is due to the
fact that city street networks, in general, are more dense
than random networks. In dynamic networks, density of the
networks was not an important factor in determination of
effective trusted spanning trees as dynamicity has more direct
influence. A crucial factor which prevents maintaining efficient
trusted spanning trees is that existing ones cannot be altered
or modified unless break away of node(s) or merge(s) with
other trees occur. This suggests that trusted spanning trees in a
MANET may need to posses an ability to adapt and learn from
their experience and local knowledge under the assumption
that global knowledge cannot be assumed.

VII. CONCLUSION AND FUTURE WORK

As trust management in MANETs receives much attention
recently due to its immense application and is an active re-
search area, management of DTMs is even more problematic,
and in turn, presents a greater challenge. While algorithms
to manage trusted spanning trees proposed in this work may
not be comprehensive and several other aspects are yet to
be considered, they present a good starting point in trust
management in DTMs. This work affirms the advantage of
greedy strategy and demonstrates its benefit in spanning trees
traversal in such networks where less trustable nodes are at
leaves. Ability to assess and select effective spanning trees
among many possibilities is crucial, this work proposes a

method to assess them by means of three different cost
functions. Their use may be beneficial in similar applications.

Future work can be carried out in several facets. T-DA-
GRS and T-GDA-GRS merit further investigation. They can be
tested on other types of network models. Good candidates of
these are city traffic and city centre models as they may reveal
some useful properties. As discussed in the previous section,
an ideal trusted spanning tree is the one which can adapt
itself for better efficiency. This suggests that the solution lies
in invention of an adaptive trust management algorithm that
is capable of learning from experience and local knowledge
even under the assumption that global knowledge cannot be
assumed because of dynamicity and decentralized nature of
DTMs.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the financial support
from Ministére de la Recherche, réf BFR05/037, Grand-Duche
de Luxembourg and the Ministry of Science and Technology,
Thai Government, for Miss A. Piyatumrong throughout the
period of this research.

REFERENCES

[1] K. Fall, “A delay tolerant network architecture for challenged internets,”
Proceedings of ACM SIGCOMM 2003, Computer Communications
Review, vol. Vol 33, August 2003.

[2] A. Casteigts and S. Chaumette, “Dynamicity aware graph relabeling
systems (da-grs), a local computation based model to describe manet
algorithms,” International Conference on Parallel and Distributed Com-
puting Systems, pp. 231–236, November 2005.

[3] A. Casteigts, “Model driven capabilities of the da-grs model,” ICAS
’06: Proceedings of the International Conference on Autonomic and
Autonomous Systems, p. 24, 2006.

[4] L. Hogie, Mobile Ad Hoc Networks: Modelling, Simulation and
Broadcast-based Applications. PhD thesis, Univerity of Le Havre,
University of Luxembourg, April 2007.

[5] A. W. J. David Lewis, “Trust as a social reality,” Social Forces, vol. 63,
pp. 967–985, June 1985.

[6] T. D. Huynh, N. R. Jennings, and N. R. S. Shadbolt, “An integrated
trust and reputation model for open multi-agent systems,” Autonomous
Agents and Multi-Agent Systems, vol. 13, pp. 119–154, September 2006.

[7] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation of trust
and distrust,” International World Wide Web Conference (WWW2004),
2004.

[8] S. Buchegger and J.-Y. L. Boudec, “Performance analysis of the CON-
FIDANT protocol: Cooperation of nodes — fairness in dynamic ad-hoc
networks,” in MobiHOC, IEEE, June 2002.

[9] S. David and T. J. Pinch, “Six degrees of reputation: The use and abuse
of online review and recommendation systems,” First Monday, vol. 11,
March 2006.

[10] M. Seredynski, P. Bouvry, and M. A. Klopotek, “Preventing selfish
behavior in ad hoc networks,” in Congress on Evolutionary Computation
(CEC 2007), pp. 3554 – 3560, IEEE Computer Society, September 2007.

[11] S. Sukumaran and R. E. Blessing, “Reputation based localized access
control for mobile ad-hoc networks,” in ADHOC-NOW, Lecture Notes
in Computer Science, pp. 197–210, Springer, 2006.

[12] Q. He, D. Wu, and P. Khosla, “Sori: A secure and objective reputation-
based incentive scheme for ad-hoc networks,” WCNC2004, 2004.

[13] G. F. Marias, P. Georgiadis, D. Flitzanis, and K. Mandalas, “Cooperation
enforcement schemes for manets: a survey: Research articles,” Wirel.
Commun. Mob. Comput., vol. 6, no. 3, pp. 319–332, 2006.

[14] J. V. D. Merwe, D. Dawoud, and S. McDonald, “A survey on peer-to-
peer key management for mobile ad hoc networks,” ACM Comput. Surv.,
vol. 39, no. 1, p. 1, 2007.

[15] L. Hogie, F. Guinand, and P. Bouvry, “The madhoc metropolitan adhoc
network simulator.” http://litis.univ-lehavre.fr/∼hogie/madhoc/.

