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ABSTRACT

Many emerging smartphone applications require position informa-
tion to provide location-based or context-aware services. In these
applications, GPS is often preferred over its alternatives such as
GSM/WiFi based positioning systems because it is known to be
more accurate. However, GPS is extremely power hungry. Hence
a common approach is to periodically duty-cycle GPS. However,
GPS duty-cycling trades-off positioning accuracy for lower energy.
A key requirement for such applications, then, is a positioning
system that provides accurate position information while spending
minimal energy.

In this paper, we present RAPS, rate-adaptive positioning sys-
tem for smartphone applications. It is based on the observation
that GPS is generally less accurate in urban areas, so it suffices
to turn on GPS only as often as necessary to achieve this accu-
racy. RAPS uses a collection of techniques to cleverly determine
when to turn on GPS. It uses the location-time history of the user
to estimate user velocity and adaptively turn on GPS only if the
estimated uncertainty in position exceeds the accuracy threshold.
It also efficiently estimates user movement using a duty-cycled ac-
celerometer, and utilizes Bluetooth communication to reduce po-
sition uncertainty among neighboring devices. Finally, it employs
celltower-RSS blacklisting to detect GPS unavailability (e.g., in-
doors) and avoid turning on GPS in these cases. We evaluate RAPS
through real-world experiments using a prototype implementation
on a modern smartphone and show that it can increase phone life-
times by more than a factor of 3.8 over an approach where GPS is
always on.
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Figure 1: Accuracy of GPS, WPS, and GSM-based Positioning
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1. INTRODUCTION

Many emerging smartphone applications require position infor-
mation to provide location-based or context-aware services. Our
Urban Tomography [13] system is a good example. It allows a
user to capture video clips, tags each with the most recent posi-
tion information, and then automatically uploads each video to a
server. Many participatory sensing applications, where the phone
is autonomously recording ambient conditions or user activity, also
continuously record position information. Other applications that
make continuous use of location or context information are Micro-
Blog [11], TrafficSense [16], Pothole Patrol [8], MetroSense [7],
Placelts [23], PeopleNet [17], MyExperience [10].

In these applications, GPS is often preferred over its alternatives
such as GSM/WiFi based positioning systems because it is known
to be more accurate. Figure 1 plots two example locations from
which we have collected positioning data using all three position-
ing systems: GPS, WPS (WiFi-based positioning system from Sky-
HookWireless [22]), and GSM-based positioning on a N95 smart-
phone over the AT&T cellular network. Both locations had a clear
view of the sky and usable WiFi access points so that GPS and
WPS could work. The figure clearly shows that WPS is less accu-
rate than GPS, and GSM-based positioning has an error as high as
300 meters. For these reasons, the use of GPS for location-based
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Figure 2: Power consumption of GPS on N95 smartphone (Re-
peated 30 seconds on and 90 seconds off)

applications is unlikely to diminish; it may, however, be augmented
with these other positioning methods.

However, it is also well-known that GPS is extremely power-
hungry. Our measurements of the power consumption! (shown in
Figure 2) agrees with the results published by others [26, 3] and
confirms that the internal GPS on Nokia N95 smartphones uses
around 0.37 Watt of power on top of ~0.06 W idle power. Keep-
ing GPS activated continuously would drain the 1200 mAh battery
on an N95 smartphone in less than 11 hours, even in the absence of
any other activity. This is clearly a significant roadblock on the way
to all-day smartphone usage, and a more intelligent and energy-
efficient activation of GPS is the subject of our paper.

The key insight that motivates our work is the observation that,
when used by pedestrians in urban areas, GPS can exhibit errors
in the range of 100m. GPS inaccuracy in urban “canyons” is well-
known, but we have found that, even in relatively benign environ-
ments such as college campuses or residential neighborhoods, GPS
can exhibit this kind of inaccuracy, especially for pedestrian smart-
phone usage. Location-based applications will have to deal with
this level of error using application-specific methods, such as map-
matching or map-snapping. So we ask: if applications can tolerate
this position error, why not trade off some position accuracy for re-
duced GPS energy usage? A simple way to do this is to periodically
duty-cycle GPS. This trades-off positioning accuracy for lower en-
ergy. However, the key challenge in this periodic GPS duty-cycling
is to decide on a suitable time period; for almost any choice, there
exists a user mobility pattern that will result in unbounded position
error (Section 2).

To avoid this, a thread of research has examined different heuris-
tics to cheaply determine a change of position so that GPS can be
selectively activated [12, 5, 27, 9, 6, 3]. Our work follows in this
thread, but makes two contributions. First, it introduces novel tech-
niques for cheaply inferring whether and when GPS activations are
necessary. More important, rather than merely considering each
technique in isolation, we design a complete system that uses a
collection of techniques in concert to reduce energy usages.

At the core of our approach is a method to estimate user velocity
from a history of previously measured velocities at the same loca-
tion and the same time-of-day; intuitively, this velocity estimation
leverages consistency in user behavior. When the estimated dis-
tance traveled approaches a user-specified accuracy bound, our sys-

! We have used the Power Monitor device from Monsoon Solutions
Inc. for all of our power measurements and cross-verified it with
the Nokia Energy Profiler v1.2 software tool.

Figure 3: GPS trace plot showing the inaccuracy of GPS in
urban areas.

tem (called RAPS, the rate-adaptive positioning system) activates
GPS. This decision to activate GPS is delayed if the user’s current
average activity level, as measured by a duty-cycled accelerometer,
is inconsistent with historical activity at that position and time-of-
day. Similarly, RAPS delays activation if the identifier and the
signal strength from the currently active cell-tower indicates that
previous activation attempts at locations with comparable identifier
and signal strength information failed frequently. Finally, RAPS
delays GPS activation if it learns, over Bluetooth, of a more recent
position fix completed by an opportunistic contact.

We have implemented these techniques in a complete RAPS
prototype on the Nokia N95 smartphones and have experimented
with it on our university campus. Our evaluation reveals that RAPS
has over 3.8x longer lifetime than a scheme in which GPS is always
on, and about 1.9x longer lifetime than a periodic GPS scheme with
comparable error rate. We also break down the contributions of
each technique in RAPS towards these performance gains. Finally,
we demonstrate that RAPS can be easily adapted to work atop a
WiFi-based positioning system, WPS [22]. In general, our evalua-
tion is encouraging and suggests that RAPS can obtain substantial
energy savings without sacrificing the accuracy of periodic GPS.

2. PROBLEM

In this section, we first present our observations on the inaccu-
racy of GPS readings taken from a smartphone. We demonstrate
that, in urban environments and especially for pedestrian use, there
is significant uncertainty in GPS-reported positions, and location-
aware applications must adapt to this using application-specific meth-
ods. We then explore whether, by periodically duty-cycling GPS
readings, it is possible to achieve significant energy savings with-
out sacrificing accuracy. This motivates the problem we tackle in
this paper, that of designing an energy-efficient rate-adaptive duty-
cycling for GPS based positioning.

Figure 3 plots a part of a GPS trace collected for a period of 1
week using a smartphone that continuously logged GPS positions
every 1 second. To obtain this figure, we wrote a small program
that records raw GPS readings using the Location API provided by
the Android OS. Later, we used the Google Maps API v3 to plot the
points in the figure. An analysis of this trace reveals an interesting
result. The “ground truth” path is labeled ‘A’ in Figure 3, but the
trace contains a phantom path, labeled as ‘B’ in the figure, parallel
to the ground truth path, which was never taken during trace collec-
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Figure 4: GPS ground truth verification: Distance error of GPS
reading vs. GPS ground truth

tion. (That the phantom path aligns with a walkway on our campus
is, we believe, accidental: to the best of our knowledge, the Google
Maps API does not do any map-matching when provided with the
GPS coordinates.). Moreover, the trace had position logs that were
much further south on campus, labeled as ‘C’, which were never
visited during trace collection.

While GPS inaccuracy for automotive navigation applications in
urban canyons is well known, our finding suggests that such inac-
curacies might be much more prevalent, and may affect pedestrian
or outdoor use of GPS even on campuses or moderately populated
neighborhoods with modest-height multi-story structures. To un-
derstand the prevalence of this problem we decided to further in-
vestigate the accuracy of GPS on smartphones.

We collected GPS position readings from 70 different locations
in the greater Los Angeles area including the USC campus, West
Los Angeles, Glendale, Korea Town, and other areas. These loca-
tions were selected to cover a variety of operating conditions such
as wide-open spaces, areas with trees, streets between buildings, in-
doors near windows, inside vehicles, and so on. We then compared
the error in collected positions relative to “ground truth” positions
obtained by manually marking each location on Google Maps and
extracting the corresponding coordinates. While Google Maps it-
self might be inaccurate, many location-aware applications do map
matching against Google Maps (or other online map services), and
our errors are representative of the errors those applications would
see.

Figure 4 presents the result of this experiment. Black and gray
bars represent the average and maximum error, respectively, for
each tested location, and the figure is sorted by increasing aver-
age error. Generally speaking, we have found that this ordering
corresponds to decreasing visibility of the sky, from left to right.
(Our observation is clearly qualitative: without access to the satel-
lites visible to the GPS receiver at each location, clearly we cannot
quantify visibility.) With good visibility, GPS errors are relatively
low, but still range from 5 to 35 meters and occasionally go up to
as high as 120 meters. As we move to the right, the average er-
ror increases up to around hundred meters, with maximum error at
times of over 300 meters. Finally, there were several places where
GPS was completely unavailable. In fact, in the one-week GPS
trace from which Figure 3 was drawn, GPS was available for only
11.2% of the time. This result is consistent with other reports [1]
of low GPS availability on human-carried devices. This discussion
confirms our observation in Figure 3: GPS may provide inaccu-
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Figure 5: Distribution of horizontal accuracy reported by GPS
on N95 smartphone

rate positioning with average errors as high as 100 meters or more
across a wide range of urban locations.

Where do these errors come from? A GPS receiver requires sig-
nals from 4 satellites, along with their ephemeris data, to calculate
the time and position of the receiver in latitude, longitude, and alti-
tude. As long as the receiver has a position fix using complete sig-
nals from at least 4 satellites, these errors are known to be within 15
meters. The sources of error in this case are ionospheric effects (5
meters), shifts in the satellite orbits (2.5 meters), satellite clock
errors (£2 meters), multipath effects (&1 meters), tropospheric ef-
fects (0.5 meters), and calculation and rounding errors (1 me-
ters) [21]. However, when GPS receivers do not have complete
signals or complete ephemeris data from all 4 satellites, then the
errors can increase significantly. For example, if signals from only
3 satellites are available, a GPS receiver must guess its location by
assuming either perfect time sync or mean sea-level altitude.

When its guesses a position, a GPS receiver provides accuracy
estimates. Figure 5, which plots the distribution of the horizon-
tal accuracy estimates obtained from the GPS on the Nokia N95
smartphone, shows that the GPS itself often reports low confidence
in its position results. Receivers use proprietary methods for com-
puting accuracy estimates and for correcting errors when less than
4 satellites are visible, so it is difficult to infer the exact cause for
the inaccuracy. However, what we do know is that there may ex-
ist significant inaccuracy in the position reported by these devices.
(So far, we have reported GPS accuracy only on a single platform.
In Section 4.4, we demonstrate that this problem may be pervasive:
similar inaccuracies exist in at least three other platforms, running
different phone operating systems. Moreover, we show that the
use of Assisted-GPS does not improve accuracy, but can reduce the
time to first-fix.)

Moreover, smartphone GPS receivers are more likely to be in-
accurate than, say, automotive GPS systems. Smartphones have
smaller antennae, are often carried in clothing or bags, are often in-
doors, and frequently powered off. As such, location-aware smart-
phone applications will have to have application-specific ways to
deal with these inaccuracies: techniques such as map-matching [4]
and map-snapping are, by now, well-established methods for ad-
dressing this problem. On the other hand, smartphone GPS use is
known to be an energy drain, and many power users likely manu-
ally activate and de-activate GPS to conserve battery. In this pa-
per, we ask the question: can we cleverly activate GPS only when
necessary, and sacrifice a little accuracy (since location-aware ap-
plications will have to deal with this loss of accuracy anyway), in
exchange for significant reductions in energy usage by GPS?

The simplest approach to trade-off accuracy for energy in GPS-
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Figure 7: Update interval vs. average distance between GPS
updates for periodic GPS.

based locations services is to periodically duty-cycle GPS. This ap-
proach is commonly used in many real-world applications. For ex-
ample, the Urban Tomography application [13] activates GPS every
7 minutes and tags the videos taken by the user with the position in-
formation closest in time. Similarly, PEIR [18] collects GPS read-
ings approximately every 30 seconds. However, the key challenge
in this periodic GPS duty-cycling is to decide the time interval at
which to turn on and off GPS. If the GPS is activated too often, it
will waste a lot of energy when the phone is mostly stationary. If
the GPS is activated too infrequently, accuracy will suffer.

To illustrate these tradeoffs with periodically duty-cycled GPS,
consider Figure 6. To obtain this figure, we conducted an experi-
ment in which, for a specific choice of period (3 mins), we mea-
sured the position uncertainty (the reported distance between two
GPS readings in our trace taken at 3 minute intervals). The uncer-
tainty is less than 40 meters for 28% of time, but may often exceed
100 meters and go as high as 300 meters. Clearly, this uncertainty
depends upon the movement pattern of the user during the experi-
ment. However, because periodic duty-cycles are oblivious to the
actual mobility, this approach can incur high error.

Moreover, there exists no single satisfactory value for the duty-
cycle period, as shown in Figure 7. Figure 7 plots the average dis-
tance between two consecutive position updates as a function of
the periodic duty-cycling interval. This figure was generated from
an experiment in which we collected GPS reading every 5 seconds
for 48 hours. We simulated the different intervals by appropriately
sub-sampling the experimental trace. The figure shows that as the
interval increases enabling lower energy usage, the uncertainty in-
creases linearly, with no obvious sweet spot.

Another approach is to tune the GPS duty-cycling period to an

application-specified average error bound. In Figure 7 if that an
application could tolerate a 100m uncertainty, its GPS could be
activated every 80 seconds. However, this may not help reduce
energy significantly. GPS can take up to several tens of seconds af-
ter activation to get a position fix, and many GPS receivers have a
power-down delay of around 30 seconds ([12]). So, an 80 seconds
duty-cycling interval will likely result in minimal savings. To be
more precise, if we assume an ideal case where first-time-to-fix is
always 6 seconds, then the GPS would be on for 36 sec (6 + 30sec
power off delay) every 80 seconds, which translates into spend-
ing 600 Joule per hour. This means that on N95 smartphones with
1200mAh batteries, the battery will last for less than 27 hours even
when GPS duty-cycling is the only task on the phone. In practice,
however, GPS times out when satellite views are unavailable. If
this happens as frequently as it did in our traces (88.8% of the GPS
attempts), then the battery will last less than 13 hours. Even at this
cost, the errors are non-negligible.

In summary, we have made two important observations in this
section: 1) GPS is generally less accurate in urban areas, and 2) pe-
riodic duty-cycling with a fixed interval can introduce significant,
potentially unbounded, error without necessarily providing signifi-
cant energy benefits. This motivates the need for a positioning sys-
tem that provides position information with reasonable error while
expending minimal energy. In the rest of the paper, we present
RAPS, a rate-adaptive positioning system for smartphone applica-
tions.

3. RATE-ADAPTIVE POSITIONING SYSTEM

In this section, we start by describing the goal of RAPS, a rate-
adaptive positioning system for smartphone applications, and dis-
cuss how it is designed to meet that goal. We then delve into the
details of the individual components of RAPS: 1) user movement
detection using a duty-cycled accelerometer, 2) velocity and uncer-
tainty estimation using space-time history, 3) GPS unavailability
detection using celltower-RSS blacklisting, and 4) position uncer-
tainty reduction using Bluetooth. We conclude with a discussion of
RAPS’s limitations.

3.1 Overview

RAPS is designed for smartphone applications that require po-
sition information for location-based context-aware services. It is
based on the observation that GPS is generally less accurate in ur-
ban areas, so it suffices to turn on GPS only as often as necessary
to achieve this accuracy. Thus the goal of RAPS is to reduce the
amount of energy spent by the positioning system while still pro-
viding sufficiently accurate position information.

To achieve this goal, RAPS uses a collection of techniques to
cleverly determine when to turn on GPS, and when not to. First, it
uses a duty-cycled accelerometer to efficiently estimate user move-
ment. RAPS detects whether the user is moving or not, and also
measures the activity ratio, the fraction of time that the user is in
motion between two position updates. The movement detection is
used to prevent RAPS from activating GPS when the user has been
stationary. The activity ratio is used to estimate the current velocity
based on historical correlations between velocity and activity (see
below); this lets RAPS activate GPS only if the estimated uncer-
tainty in position exceeds the accuracy threshold.

Second, RAPS stores the space-time history of user movements
(where the user has been and at what time) to estimate when to
activate GPS. Whenever RAPS gets a new position update, it cal-
culates the average velocity relative to the previous position, and
associates this velocity and the recent activity ratio with the pre-
vious space-time coordinate. It uses averages of the velocity and



activity ratio to estimate, during a subsequent visit to the same lo-
cation at the same time-of-day, the likely user velocity. This in turn
enables RAPS to estimate positioning uncertainty, allowing it to
selectively activate GPS.

Third, RAPS employs celltower-RSS blacklisting to detect GPS
unavailability (e.g., indoors) and avoids turning on GPS in these
places. Whenever it succeeds or fails in obtaining new position
update, it records the current celltower ID and the received sig-
nal strength (RSS) information and associates with that success or
failure. Then, when it determines that it is time to activate GPS, it
checks the celltower-RSS table for the historical probability of GPS
availability and defers GPS activation if it believes that GPS is not
likely to be available, thus avoiding unnecessary energy usage.

Finally, RAPS utilizes Bluetooth communication to reduce posi-
tion uncertainty among neighboring devices. Whenever it receives
a new position update, it broadcasts this information to Bluetooth
peers so that they can update their position without activating GPS
themselves. If a device receives a position update from a peer that
has greater uncertainty than its own estimate, it replies with its more
accurate information. Eventually, all devices in the neighborhood
synchronize to the position information with least uncertainty.

All the techniques that RAPS uses can be realized on the current
generation of smartphones. As we discuss later, we have imple-
mented a complete RAPS prototype on a smartphone, the Nokia
NO5. In the following subsections, we discuss each of these tech-
niques in more detail.

3.2 Movement

Many, if not all, modern smartphones are equipped with an ac-
celerometer. There is a significant literature on the effectiveness
of using an accelerometer to detect whether the user is moving or
not [12, 27, 3]. Others have explored techniques to estimate ve-
locity [15] using the accelerometer. Given that we are interested in
estimating user speed to minimize GPS activation, we too use the
accelerometer to detect motion. However, our use of the accelerom-
eter differs from the prior literature in two important ways. First,
unlike most prior work that either uses the accelerometer as a bi-
nary sensor to detect movement or non-movement, or restricts it to
detect pedestrians, we use the accelerometer to measure the activity
ratio, defined as the fraction of a given time window during which
the user is in motion. We then use this activity ratio along with the
history of velocity information (Section 3.3) to estimate the current
velocity of the user. Second, given the high power consumption of
the accelerometer, we carefully duty-cycle it to save energy with-
out significantly sacrificing accuracy. We describe each of these
two aspects below in more detail.

From a continuous sequence of accelerometer samples, it is pos-
sible to detect whether a user is stationary or not using an onset de-
tection technique [20]. This technique can reliably detect the start
and duration of significant user activity. It does this by maintaining
running estimates of the signal envelope (dynamic upper and lower
bounds of the signal) and compares these against the noise mean
(which is 1g, or gravity, in our case) and the standard deviation. It
is designed such that the onset is detected as soon as possible after
the beginning of a period of significant activity. Moreover, the end
of the period is declared conservatively, i.e., only after the envelope
of the acceleration magnitude has decayed below and has then not
exceeded one standard deviation from the noise level, indicating
quiescence. Figure 8 illustrates the behavior of the onset detector
where the acceleration signal and its envelope of user movement
are plotted in solid gray lines along with the onset detection result
in dotted black line. RAPS uses this onset detection method and
calculates the activity ratio as the fraction of the time during a mea-
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Figure 9: Power consumption of accelerometer sensor on N95
phone

surement period that the user was active. This value is later used to
estimate the user velocity, which we describe in Section 3.3.

However, RAPS cannot use the accelerometer continuously be-
cause measuring acceleration can incur significant energy usage.
Figure 9 plots the power usage from our measurement on an N95
smartphone when the accelerometer was turned on and off at 30
second intervals. This measurement shows that the accelerometer
consumes around 0.08 Watt, which means that turning on the ac-
celerometer for 5 minutes consumes more energy than activating
GPS for 1 minute. In other words, if the accelerometer is always
on and GPS was turned on every 5 minutes on average, then over
50% of the energy would be used by the accelerometer, and we
might as well turn on GPS every 2.5 minutes instead.

Given that energy-efficiency is a major goal of our design, we
argue that operating the accelerometer continuously is not a vi-
able option. RAPS duty-cycles the accelerometer carefully, using
a duty-cycling parameter derived empirically, as described below.

Our method for deriving a good duty-cycling parameter involved
first collecting continuous acceleration measurements for five dif-
ferent kinds of common human activities: being stationary, fre-
quent walking and stopping, fast walking, driving in a car, and
milling about in a coffee shop. Although these five activities do
not cover every possible human movement, our intention is to il-
lustrate a plausible methodology for selecting a duty-cycling pa-
rameter. It is possible to optimize the parameter selection method,
and we have left that to future work. For each activity, we obtained



a 5-minute long acceleration trace. For each trace, we calculated
the reference activity ratio for the always-on accelerometer case
using the onset detector. Then, we performed offline analysis that
emulated duty-cycling on these logs for various ON and OFF peri-
ods, and calculated the error in the activity ratio with respect to the
reference always-on case. The parameters we emulated range from
5% ~ 50% for the duty-cycle, and 2 ~ 15 seconds for the ON pe-
riod. Our goal was to select the lowest duty-cycle parameter which
resulted in less than 10% average error across all five activities.

Figure 10 plots the average error (averaged over five activity
logs) as a function of the duty-cycle with various ON periods. From
this figure, the approximate knee of the bounding curves corre-
sponds to a duty-cycle parameter of 12.5% with 2 and 14 seconds
ON/OFF periods; this incurs 3% error on average and less than
10% error across all the activities. Intuitively, RAPS is able to de-
tect human activity which has a timescale larger then multiples of
16 seconds, by simply turning on the accelerometer for a short frac-
tion of that time window. In doing so, the accelerometer consumes
1/8 of its original power, which is 0.01 Watt, which significantly
alters the balance of power usage between GPS and the accelerom-
eter.

Could we have used a similar accelerometer duty cycling tech-
nique to estimate user speed (and therefore distance), rather than
just activity? In theory, distance is a simple integral of velocity,
which in turn is another integral of acceleration once we know the
exact orientation of the phone.

To determine this, we used the continuous accelerometer traces
obtained above, and computed the horizontal displacement of the
user using a technique proposed in [15]. To do this, we needed to
estimate the gravity vector, which can be obtained by performing
a running average of accelerometer samples (when the magnitude
of the acceleration vector is close to 1g, the gravity). This gravity
vector estimate, in turn, enables estimation of the vertical compo-
nent and the magnitude of the horizontal component of the user’s
motion regardless of the orientation of the three-axis accelerometer.
Using this idea, we calculate the distance that the user has moved
as follows:

d=a—g : user acceleration minus gravity
d-g .
p= a g : vertical component of d
h=d-p : horizontal component of d
V= / h-dt : velocity vector

distance =

/v~dt

We conducted extensive experiments that revealed that this calcu-
lation is roughly correct when the orientation of the phone does not
change too frequently and the acceleration is greater than the noise
level during the period of movement. However, it often overesti-
mates distance when the user is handling the phone in her hands,
and underestimates distance when sitting quietly on a cushioned
car seat.

Furthermore, using a method similar to that described above, we
found that a duty cycle of 50% or more is required to estimate the
distance moved by the user within 10% error of the always-on case.
This makes it a less attractive option for us, so RAPS uses only
the activity ratio whenever we have sufficient history to perform
velocity estimation, and falls back to using both the distance es-
timation and the activity ratio only if there is insufficient history.
We describe this in more detail later when we explain our RAPS
algorithm in full.
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Figure 10: Accelerometer duty-cycle parameter selection: we
select 12.5% as our accelerometer duty-cycle which incurs 3%
error on average, and less than 10% error for five different ac-
tivity modes (stationary, walks & stops, fast walking, driving in
a car, slow walking with conversation)

3.3 Space-Time History

A key component of RAPS is the space-time table that records
the past history of user movements. Specifically, RAPS main-
tains the average user velocity and the average estimated activity
ratio (Section 3.2) associated with each space-time unit in a 3-
dimensional (latitude, longitude, time-of-day) coordinate system.
Whenever RAPS needs to decide when to activate GPS, it looks
up the history of average user velocity and activity ratio associated
with the current position and time, and then calculates the current
position uncertainty based on the estimated current velocity and the
activity ratio.

The intuition behind this idea is that there is, often, consistency
in user behavior at a given point in the space/time coordinate sys-
tem. For example, a person is, in general, more or less stationary
for extended durations when at the office during the work hours or
at home overnight. A person is likely to move at walking speed at
places that she usually walks, and also likely to move fast on roads
that she usually drives in a vehicle. Conversely, a person is not
likely to be stationary in the middle of a street, and also not likely
to walk on a freeway. This is the intuition that lies behind our use
of space-time coordinates to associate user movement history, and
to estimate speed. (One might obtain more precise estimates by
maintaining a week-long history, and using day-and-time-of-week
to index into this history: we have left that to future work).

RAPS updates and uses this space-time history as follows. First,
for scaling reasons, it quantizes both the space and time dimen-
sions. The space coordinates are quantized into a 2-D grid by
rounding latitude and longitude values to 3 decimal places; 0.001°
x 0.001” grid box. In the Southern California area, this approx-
imately corresponds to a 92.2m x 111.2m square area. In other
locations, RAPS quantizes the history so that the size corresponds
to about 100m, the lower bound on the position accuracy we target.
The time-of-day dimension is quantized into bins of size 30 mins
each. The quantized space-time coordinate system is illustrated in
Figure 11.

Next, RAPS associates with each grid box in this quantized co-
ordinate system two quantities: a history of average velocity and
the average activity ratio seen in the box. More precisely, when-
ever it receives a new position Pg at time 73, it calculates a velocity
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Figure 11: Conceptual view of the 3-D space-time coordinate
system used for maintaining history of user mobility.

at time T}, and uses V to update the average velocity V 4 associated
with the space-time grid box S(p, 7,). In a similar manner, it also
reads the activity ratio during this time interval updates the average
activity ratio R, associated with that space-time grid box.

This space-time history is used to estimate uncertainty as fol-
lows. Suppose that the user was last known to be at (Py,Ty) (P is
the last recorded position fix). To calculate the uncertainty U () at
some time t > Ty, RAPS uses the following equations:

_7. . RO
Vi =Var (1)

Ut)=V({t)x({t—Ty)+ Uy )

where V4 and Ry are the average velocity and activity ratio asso-
ciated with (P4, Ty), and Uy is the last uncertainty of position Py
at time Ty, R(¢) is the current activity ratio, and V() is the esti-
mate of the current velocity. If RAPS does not find information
associated with (P4, Ty ), it falls back to using only the position in-
formation and finds an entry that matches P4 only. This uncertainty
calculation is based on the assumption that the average velocity in
a space-time coordinate location is proportional to the average ac-
tivity ratio in that location; i.e. V4 o< Ry.

Intuitively, we use the activity ratio as a surrogate for veloc-
ity. This can lead to better estimates of GPS activation times than
simply using history or detecting movement, and can have lower
energy (as we have discussed earlier) than estimating velocity by
keeping the accelerometer always on.

To understand how RAPS works in practice, consider the fol-
lowing example. For illustration, assume that the decisions are
made after every unit of time. If a user moves into a position A,
is stationary for 4 units of time and moves out of position A in
the next unit of time at a velocity of 10m/s and activity ratio of
0.5. Then the velocity and activity ratio associated with position A
during this period is {0,0,0,0, 10} and {0,0,0,0,0.5} respectively,
resulting in average values of 2m/s and 0.1 stored in the history.
Later on, when the user revisits position A, there are two possible
cases; if the user is stationary, the current activity ratio R(¢) will be
zero, and thus the estimated velocity V (¢) is zero by Eq. 1. When
the user is moving out of position A with R() close to 0.5, V(7)
becomes 2% 0.5/0.1 = 10m/s thereby correctly estimating the user
velocity and thus the uncertainty. This approach allows RAPS to
cheaply estimate user movement, activating GPS only when user
movement may have exceeded the accuracy bound.
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Figure 12: CDF of the distance between two consecutive GPS
locations 5 seconds apart; with and without a GSM cellld
change.

3.4 Celltower-RSS Blacklisting

Prior work has proposed the use of GSM signatures, which in-
clude information about visible cell-towers and their RSS (Received
Signal Strength), to detect large scale movement [6] or recognize
mobility modes [24]. In this section, we investigate whether or
not such signatures can be used to detect motion, so we can reg-
ulate how often GPS needs to be activated. GSM data comes for
free — as long as the phone is on and has an active service sub-
scription, GSM data can be retrieved without incurring additional
energy cost. However, most prior work on GSM-based localization
has assumed sufficient knowledge of the location and RSS infor-
mation from all visible cell towers. In practice, this information is
often not available to third party application developers on many
platforms. At least for both Symbian-OS on Nokia-N95 phone and
Android on G1 phone, only one cell tower information is visible at
a time, and there is no information about the location of the tower.
This is one reason why much of the prior work on GSM localization
has been evaluated only in simulation.

To determine the feasibility of using cell-tower information to
adaptively activate GPS, we first empirically examined whether in-
formation from a single cell-tower can reliably detect user move-
ment. Figure 12 plots the cumulative distribution of the distance
between two consecutive GPS locations when there was a change
in cellld. 1t also plots the CDF of the maximum distance between
two positions within the same cellld. Each GPS update was ob-
tained every 5 seconds.

One observation from the figure is that, 58.3% of the time, a
less than 10m difference in GPS positions can result in a change in
cellld. The rest of the time, when a cellld changes, the difference in
GPS positions can be uniformly anywhere between 10m and 150m.
Conversely, the maximum distance between two positions within
same cellld is greater than 100m for 28.2% of the time (CDF of
71.8% within 100m). Thus, these results imply that simply using
the cellld itself provides insufficient information about whether the
user has moved a significant distance or not.

Our next step was to see whether the signal strength difference
within a cellld can be an indicator of change in position. Figure 13
plots the maximum, average, and minimum distance between two
GPS updates with different RSS values within same cellld. Al-
though the average distance plot shows a rough trend in which an
increasing RSS difference correlates with increasing distance, the
variance of the distance is too high to be used as a measure of dis-
tance. This variability is not too surprising given the complexity
of the urban environment we live in. These results together show
that using the identifier of, and the signal strength from, a single
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cell-tower cannot reliably identify user movement, at least in urban
areas with irregular cell deployment.

Since we are merely interested in determining whether and when
GPS should be activated, we considered the following question: in-
stead of using cell towers to detect motion, can we directly detect
whether users are in an environment (e.g., indoors) where it would
be futile to turn on GPS? To understand this question, we first stud-
ied the relationship between GSM cellld and their RSS values, and
GPS availability. We define GPS availability as the fraction of at-
tempts for which it is possible, at a given location, to get a position
fix within 2 minutes starting from power-off state. This 2-minute
time-to-first fix timeout follows from GPS receiver properties: a
GPS receiver requires information from 4 satellites to get a posi-
tion fix and receiving full ephemeris data for a satellite takes 30
seconds each.

For a given cellld, we expected to see some correlation between
RSS and GPS availability, since GSM signals indoors are heav-
ily attenuated. Figure 14 plots the GPS availability probability as
a function of signal strength for two different cellld’s. We note
several features. First, there is a good RSS range at which GPS
is available most of the time, and also a bad RSS range at which
GPS is mostly unavailable. Examples of extremely bad locations
include elevators and underground parking lots. Second, there is
a variable RSS region where there exists a high variability in the
GPS availability. In this region, it is difficult to derive a strong re-
lationship between RSS value and availability, suggesting that GPS
availability must be estimated probabilistically. Finally, note that
these region boundaries differ for different celllds.

From these results, it is clear that there may not exist a univer-
sal way to predict GPS availability from cell-tower information.

However, we believe that maintaining a history of GPS availability
per-cellld can help accurately predict whether a GPS fix is likely
to be successful, given a specific cellld and the current RSS read-
ing. Indeed, RAPS uses exactly this idea. Whenever a GPS read-
ing is successfully obtained or the request has timed-out, it stores
this information in a celltower-RSS blacklist. To do this, it reads
the current cellld and RSS values and increments the success or
fail counter for the corresponding cellld in the list. Then the GPS
availability for that particular cellld is simply the fraction of suc-
cessful attempts. It also updates one of two RSS threshold val-
ues associated to each cellld; RSSGood_Thresh 1S the best RSS value
that resulted in GPS update failure, and RSSgag_Thresh is the worst
RSS value that resulted in successful GPS update. The list is called
blacklist because RAPS uses it to maintain locations at which GPS
activation is more likely to fail, so it can delay activation and save
energy. To do this, RAPS uses an eviction policy that discards
the cellld entry with the best GPS availability when the list is full.
RAPS conservatively assumes GPS availability if no prior history
exists in the blacklist.

Then, when the position uncertainty indicates that it is time to get
a GPS update, RAPS checks the blacklist for the GPS availability
predicted for the current cellld-RSS reading. If the list indicates
that the user is in the good or variable region, RAPS turns on GPS
with a probability equal to the historically-observed availability. If
it finds itself in the bad region, it waits until either there is a change
in GSM data (either cellld or RSS) or until a maximum timeout
time has passed.

In summary, the goal of celltower-RSS blacklisting is to estimate,
based on a history of GPS attempts at locations with specific cel-
[Id and RSS readings, locations where turning on GPS is unlikely
to provide a position fix. Our method can be robust to cell-tower
density, unlike schemes that attempt to detect mobility using cellld
information. However, its performance is, of course, heavily de-
pendent on user motion, on the surrounding environment, and on
cell-tower placement. We quantify the performance benefits of this
approach in Section 4.

3.5 Bluetooth-based Position Synchronization

In this section, we discuss the use of Bluetooth communication
to synchronize position information between neighboring devices.
This enables phones to save energy by reducing the number of GPS
activations. Consider a scenario where there are two smartphones,
A and B, in direct communication range of each other. If A has re-
cently activated GPS and received a position fix, then it is possible
for B to get the position information from its neighboring node us-
ing peer-to-peer communication without the need to activate GPS
itself. If B happens to have better position (lower uncertainty) than
A, then it can immediately notify A of that fact and A can use B’s po-
sition to update itself. The goal is to opportunistically synchronize
the position information with Bluetooth contacts to lower overall
uncertainty and reduce energy usage.

Bluetooth is a good candidate for such a position synchronization
for several reasons. First, the communication range of Bluetooth in
smartphones is in general less than 10 meters. Thus, the added un-
certainty in position at the receiving node is less than 10 meters
relative to the transmitting node. If the transmitting node transmits
its uncertainty along with its last position, then the uncertainty at
the receiving node can conservatively be set as the received uncer-
tainty plus the max communication range, 10 meters.

Second, the energy cost of Bluetooth is considerably less than
that of GPS. Figure 15 plots the actual power consumption on smart-
phones for a master-slave pair while running our implementation
of the position synchronization protocol (which we describe be-
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Figure 15: Power consumption of Bluetooth on N95 phone

low). Using Bluetooth, most of the power is consumed on the mas-
ter node while discovering the nearby devices and their services.
This contributes around 0.15 Watt of power relative to idle state for
around 15 ~ 20 seconds. The actual transmissions (~0.07W) and
receptions (~0.09W) take less than one second, and listening for
and detecting incoming discovery requests consumes almost neg-
ligible power, less than 0.01W relative to idle state. During one
synchronization cycle depicted in the figure, the slave node used
0.09J, and the master node used 3.07J, averaging 1.58J per node.
For comparison, if a GPS receiver was turned on and stayed on
for 60 seconds to get a position fix, it would have spent around
0.37W % 60sec = 22.2]J. Thus, if a single Bluetooth exchange could
avoid GPS activation at one of the two nodes, about 43% reduction
in energy usage (overall, across both nodes) would be achieved.

Furthermore, due to the master-slave communication architec-
ture of Bluetooth technology, the energy cost of device discovery
is amortized over the number of nodes in the neighborhood. For
example, if there are 5 nodes in the area and one node acts as
a master while others as slaves, then, if a GPS activation at one
node, followed by Bluetooth communication can avoid GPS acti-
vations at the other 4 nodes, the energy cost for the two cases is
5%22.2 =111] versus 22.2+3.07 +4%0.9 = 28.87] resulting in a
74% reduction in energy.

Finally, Bluetooth is available on almost all mobile phones, not
just smartphones, and many users enable Bluetooth for frequent
everyday use. We see this likely to persist, with the passage of leg-
islation requiring drivers to use hands-free headsets, many of which
use Bluetooth. Thus, we envision a future where many smartphones
run our RAPS software to energy-efficiently get their position from
neighboring devices. Furthermore, it is also possible to imagine
future Bluetooth access points that provide accurate location bea-
cons for fine-grained infrastructure-based location services at pub-

lic places and places where GPS is unavailable (i.e. positioning in
tunnels, subways, or for advertisements in shopping malls [2]).

Our Bluetooth-based Position Synchronization protocol (BPS),
which we have prototyped on a Nokia N95, works as follows. By
default, every node becomes a Bluetooth slave node and stays in
idle listening state awaiting incoming device discovery requests.
Once a node decides to transmit its position and uncertainty in-
formation, it assumes the role of a Bluetooth master and scans its
neighborhood for device and service discovery. If any neighboring
slave nodes exist, the master connects to all of them, and broadcasts
its position information. Each slave, upon reception of the position
information from the master, compares its uncertainty and updates
its own position if the received position has lower uncertainty. If
the received uncertainty is higher than its own, the slave replies to
the master with better position and uncertainty values. When the
master receives a reply from the slave, it also compares the uncer-
tainty, updates its own position if the received position has lower
uncertainty, and rebroadcasts that information. At this point, the
uncertainty value of all connected devices are synchronized.

Finally, recall that when a node receives a better position esti-
mate from another node, it adds a 10m uncertainty (the nominal
Bluetooth range). If it re-propagates this estimate to another neigh-
bor, that neighbor will conservatively add 10m again to the esti-
mate. However, this uncertainty propagation is not serious: a node
accepts a neighbor’s estimate only if that estimate, plus the 10m
uncertainty, is better than its own estimate. Thus, at every step,
Bluetooth synchronization results in improved accuracy estimates.

To determine when to transmit, BPS employs two simple rules.
A node decides to become a master and initiate synchronization
when either 1) it has received a fresh GPS position update, or 2)
when a GPS update was requested but was unavailable for a speci-
fied interval. In Section 4.1, we present a result showing that BPS
can be effective in reducing the number of required GPS activa-
tions.

3.6 Discussion

Three details of RAPS are worth mentioning briefly. First, the
user space-time history and the celltower-RSS blacklist must be
populated for RAPS to work efficiently. While this data is being
populated, RAPS aggressively activates GPS, and frequently mea-
sures celltower-RSS information. Second, our velocity estimation
based on activity ratio can be misled by handset activity not related
to human motion. For users who continuously fiddle with their mo-
bile phone while sitting in one location, for example, RAPS will
record an inflated activity ratio with respect to velocity. Subse-
quent velocity estimates at that location can underestimate the true
velocity. Finally, accelerometers on smartphones may need a one-
time per-device calibration of the offset and scaling before running
RAPS. Before our experiments, we have manually calibrated the
accelerometer offline.

Our Bluetooth-based position synchronization requires user co-
operation. This protocol raises privacy and security concerns, which
we have not considered in this paper: our objective was merely to
explore the energy-reduction potential of Bluetooth synchroniza-
tion. It would also require incentivizing users appropriately to share
their position with Bluetooth-neighbors, a topic beyond the scope
of this paper. We observe, however that, given the way our protocol
works, each node is roughly equally likely to avoid GPS activations
as a result of Bluetooth-based synchronization, so there may exist
a natural incentive to participate.



History Accel. C-R Blacklist BPS
RAPS @) 0) @) @)
RAPS-B O O O X
RAPS-BC O O X X
RAPS-BCA O X X X
Always-On Periodic GPS with 20 seconds interval
Periodic Periodic GPS with 180 seconds interval

Table 1: Six different schemes used for evaluation. ()-mark
and x-mark represent enabled and disabled, respectively.

4. EVALUATION

In this section, we present results from real world experiments
using our prototype implementation of RAPS on a modern smart-
phone. We have implemented RAPS in Symbian C++ for the Sym-
bian S60 3rd FP1 devices. In all our experiments, we have used the
Nokia N95-3 smartphone, which has GPS, a built-in accelerome-
ter, Bluetooth, WiFi and 3G/EDGE interfaces, and a 2GB micro-
SD card. We have experimented with our RAPS implementation
in and around the USC campus.

Our evaluation is designed to answer four questions:

e How much, in absolute terms, does RAPS increase lifetime,
and how much do each of its components contribute to this
improvement?

e Could a periodic GPS activation strategy have performed just
as well?

e [s RAPS flexible enough to be incorporated with a WiFi-
based positioning system?

e Are the GPS errors that motivated the design of RAPS per-
vasive?

We discuss these questions in the following sub-sections.

4.1 Quantifying the Benefits of RAaPs and its
Components

In this sub-section, we present two kinds of evaluation. First,
we demonstrate the energy savings achieved by RAPS, relative to
an always-on GPS schemes. Second, we quantify the benefits of
each of our techniques: mobility detection using a duty-cycled ac-
celerometer, celltower-RSS blacklisting, and Bluetooth-based po-
sition synchronization.

Methodology. To conduct this evaluation, we programmed six
smartphones to use different GPS activation strategies, as discussed
below. All of these six phones were placed in a single bag, and
carried by one of the authors for almost two entire days. During
a single run of the experiment, the experimenter went about his
normal daily activities, mostly inside and around the USC campus.
These activities involved a variety of mobility modes, including oc-
casional trips in a car. There was no intentional repetition nor any
artificial movement. Moreover, the phones were not used for any
other activities, such as browsing, or calling. Figure 16 shows the
locations visited by the experimenter during a run of the experi-
ment; the geographic spread of the locations is over 3 miles. We
conducted several runs, and report the result of one of these; other
runs show qualitatively similar results.

Of the six phones, two ran RAPS with all of its components
enabled, while three phones ran a variant of RAPS each with a
different combination of the heuristics enabled; mobility detection
using a duty-cycled accelerometer, celltower-RSS blacklisting, and
Bluetooth-based position synchronization. (The space-time history
based velocity estimation is a fundamental component of RAPS
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Figure 16: GPS trace plot of our experiment
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that cannot be disabled.) In describing our results, we use the fol-
lowing notation (Table 1): RAPS denotes results from the phone
running RAPS with all of its components enabled; RAPS-B de-
notes RAPS without BPS (Bluetooth-based position synchroniza-
tion); RAPS-BC denotes RAPS without BPS and without celltower-
RSS blacklisting; and RAPS-BCA is RAPS without BPS, celltower-
RSS blacklisting, and accelerometer-based velocity estimation. Fi-
nally, another phone was programmed with alternative GPS acti-
vation schemes: Always-On denotes a scheme in which GPS is
never turned off. Our experimental methodology, of carrying six
phones in one bag, ensures that each phone sees the same GPS
and celltower availability, and user activity. Moreover, all phones
are within Bluetooth communication range of each other, and those
phones that have BPS installed can benefit from synchronization.
We seeded each phone with two days worth of prior space-time
history and blacklist information. The battery was fully charged
before starting the experiment, and the experiment ran until the
battery capacity dipped below 14% of full charge (level 1, out of
7 levels) at which point we intentionally terminated the application
on that phone. This ensured graceful termination of the application,
and safe retrieval of experimental logs. Our actual experiment ran
for approximately 34 hours for the longest lasting phone while the
Always-On phone terminated in approximately 9 hours.

Lifetime. Our first performance metric is lifetime: the time from
when the experiment was started until the battery indicator for the
phone reached 14% of full charge. Figure 17 shows the lifetime
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Figure 18: Event timeline of the three phones; two with BPS
enabled, and the other with BPS disabled

of each phone from our experimental run. There are several obser-
vations to be made in this figure. First, RAPS’s lifetime is 3.87
times longer than that of Always-On, extending life of the smart-
phone on a single charge by more than 25 hours. By comparison,
the state-of-the-art scheme [12] shows a 50% energy improvement
over Always-On in an emulated scenario.

Figure 17 also shows the lifetime of RAPS variants, from which
we can infer each RAPS component’s contribution to lifetime sav-
ings.

By comparing the lifetime of RAPS with that of RAPS-B, we
see that BPS increased lifetime by 2 hours and 48 minutes. This
corresponds to about 10.8% of the total RAPS lifetime increase
over the Always-On case. Although it might seem that our eval-
uation methodology might overestimate the performance benefits
from BPS, since phones were carried in close proximity, we be-
lieve this is not always true. If BPS penetration were high, then it
is quite conceivable that the average number of Bluetooth contacts
seen in an urban or campus setting could be considerably higher
than the one that we have in our experiment, and our evaluation
could underestimate energy savings.

To understand how BPS enables energy savings, it is instruc-
tive to look at a timeline of Bluetooth messaging and GPS acti-
vation. Figure 18 shows an excerpt of a timeline containing two
phones running full RAPS, and one running RAPS-B. Three kinds
of events are shown in the figure: GPS activation, Bluetooth trans-
mission attempts, and Bluetooth reception. Notice how Bluetooth
communication clearly defers GPS activation in the two RAPS
phones, relative to the RAPS-B phones. Also, notice that BPS
benefits are not unidirectional: each RAPS phone benefits from
the other. This provides a natural incentive for BPS adoption; by
adopting BPS, users will not only benefit others, but will also im-
prove their own phone lifetimes. Of course, in our timeline, a GPS
activation event may or may not result in a GPS position update
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Figure 19: Content of the celltower-RSS blacklist

since GPS may timeout due to unavailability. Nevertheless, activa-
tion consumes energy regardless of whether it results in a position
fix or not. Moreover, Bluetooth transmission attempts also include
both successful and failed transmissions. Failures happen when
both nodes attempt to become a master at the same time and nei-
ther was listening to become a slave device. This happened several
times in our experiment because all phones were in the same bag
and their activities and positions were closely synchronized: in this
case, our evaluation methodology is somewhat adversarial with re-
spect to BPS. Because of these failure modes, two phones running
BPS may activate GPS at different times because they can have
different uncertainty estimates.

By comparing RAPS-B and RAPS-BC, we see that celltower-
RSS blacklisting contributed a significant increase to lifetime; it
extended the lifetime by 15 hours and 11 minutes, or 59.0% of the
total lifetime increase. To understand why this RAPS component
is effective in increasing lifetime, consider Figure 19. This figure
depicts the content of the celltower-RSS blacklist at the end of our
experiment. Bar graphs represent the failure/success counts of GPS
activations for each celltower that was observed when GPS was ac-
tivated. The continuous line shows the corresponding success ratio,
and celltowers on the x-axis are ordered by decreasing success ra-
tio. Two features are evident from this graph. First, for a majority
of cell-towers (those on the middle and left of the plot), GPS posi-
tion fixing never fails. Second, for a smaller number of cell-towers,
which also happen to be frequently visited, GPS failures do oc-
cur. We conjecture that this latter set includes cell-towers observed
when a user is indoors; in this case, the GPS failures represent the
cost of learning the different RSS values to blacklist. As we shall
see below, celltower-RSS blacklisting can significantly increase the
average interval between GPS activations (or, equivalently, can re-
duce the number of GPS activations).

By comparing RAPS-BCA with the Always-On case, we see that
our space-time history-based velocity estimation, together with the
idea of trading-off accuracy for energy and allowing uncertainty
to be as high as 100 meters, extends the lifetime by 7 hours and
22 minutes over the Always-On case, contributing to 28.5% of the
energy savings.

On the contrary, the use of accelerometer for velocity estima-
tion actually resulted in only about 1.5% lifetime savings (compare
RAPS-BC and RAPS-BCA). As we show later, RAPS-BC does
have notably fewer GPS activations than RAPS-BCA. However,
for the user in our experiments, clearly the energy cost of using the
accelerometer (even a duty-cycled one) almost cancels the benefits
of fewer GPS activations. This brings out an important aspect of
RAPS; the performance benefits depend strongly on many factors
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(human behavior, environmental conditions), and not all compo-
nents will necessarily provide significant energy savings under all
conditions. We have left an exploration of this to future work.

Average GPS Activation Interval. Figure 20 shows how often
GPS was activated (in the Always-On case, GPS was activated al-
ways and a position update was logged every 20 seconds). The
figure shows that RAPS activated GPS every 630.9 seconds on av-
erage. Moreover, as expected, we also see progressively smaller
intervals as we disable components of RAPS one-by-one: RAPS-
B activates GPS every 588.5 seconds, RAPS-BC every 259.5 sec-
onds, and RAPS-BCA every 135.4 seconds. Note that the longer
experiments lasted for over 24 hours and include the time when the
user was sleeping.

Expected Average Power Consumption. The average GPS acti-
vation interval is an important indication of energy consumption,
but a more complete picture emerges when we consider the break-
down of power consumption across other hardware components
(Bluetooth and accelerometer). Figure 21 shows the estimated av-
erage power consumption for each of the tested schemes. This fig-
ure was generated by averaging out the power usage of all compo-
nents over the average GPS activation interval in Figure 20. For
Always-On case, it is the power consumption of the GPS itself.
From the figure we see that, as expected, GPS consumes the most
power. By contrast, Bluetooth and the accelerometer contribute rel-
atively small portions to the overall power consumption. This val-
idates our strategy of adapting GPS activation intervals, at the cost
of a little additional energy expenditure by using other sensors.

Distance Between GPS Position Updates. The goal of RAPS
is to trade-off position uncertainty for reduced energy use. Thus,
RAPS activates GPS when it estimates the position uncertainty to
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Figure 22: Median distance between two consecutive GPS po-
sition updates for each of the tested schemes

be near the 100m limit. Hence, ideally, the distance between two
consecutive GPS readings should be exactly 100 meters. Of course,
this is not a hard limit and can be exceeded due to various rea-
sons: RAPS uncertainty estimates may not be precise; after GPS
is activated, the user might have moved some distance before a fix
is obtained; a GPS activation may fail, because GPS is unavail-
able at the user’s new location. Thus, in practice, we expect that
100m bound to hold only in a statistical sense. Figure 22 shows the
median distance between two consecutive GPS position readings
for each of the tested schemes. In general, RAPS, RAPS-B and
RAPS-BC all have median distances of around 80 to 110 meters,
which is an encouraging result. However, RAPS-BCA has a lower
median distance than other RAPS variants because it frequently
over-estimated the uncertainty, without being able to detect non-
movement of the stationary user, and turned on the GPS. Without
an accelerometer, RAPS-BCA uses the historical average of the
velocity even when a user has been stationary, and this accounts for
the overestimate.

4.2 Comparing rRAPS to Periodic GPS Activa-
tion

In this subsection, we investigate how RAPS compares with pe-
riodic GPS activations. To conduct this experiment, we used two
phones: one phone ran RAPS with all of its components enabled,
and another phone was programmed to collect a GPS reading every
5 seconds. The experiment began with no prior space-time history
or blacklist information (an adversarial setting for RAPS), and ran
for approximately 8 hours and 2 minutes. The methodology for this
experiment was otherwise identical to that discussed in Section 4.1.

In this experiment, RAPS achieved an average GPS activation
interval of 465.1 seconds with average position uncertainty of 85.5
meters and a success ratio of 72.2%. Position uncertainty is defined
as the distance between the two GPS positions, and success ratio
is the fraction of times that the distance between two GPS readings
was within 100 meters (our target uncertainty bound). To compare
this to periodic GPS with various intervals, we used the log of GPS
readings collected every 5 seconds and simulated the different in-
tervals by sub-sampling at the appropriate frequency.

Figures 23 and 24 depict the average position uncertainty and
the success ratio of periodic GPS, respectively, as a function of the
periodicity. Using these two metrics, we find the periodicity that
matches the performance achieved by RAPS. To have comparable
average uncertainty as RAPS, periodic GPS duty-cycling requires
its period to be around 270 seconds as indicated by arrows in Figure
23. For comparable success ratio, periodic GPS requires a period
of 180 seconds, as shown in Figure 24. We compare RAPS against
these two benchmarks.



Avg.GPS Interval

RAPS 465.1 sec
Periodic (T=180) 180.0 sec
Periodic (T=270) 270.0 sec

Avg.Uncertainty (Dev.)  Success Ratio ~ Avg.Power
85.8 m (69.2 m) 72.2% 0.064 W
61.9 m (84.6 m) 72.3% 0.123 W
84.1 m (88.6 m) 69.4% 0.082 W

Table 2: Comparison of the RAPS against periodic GPS with fixed duty-cycle
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Figure 23: Average position uncertainty of periodic GPS from
experiment as a function of duty-cycling interval
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Figure 24: Success ratio of periodic GPS from experiment as a
function of duty-cycling interval

Table 2 summarizes the result. In this table, the average GPS
interval is the time between GPS activations, regardless of whether
they resulted in a successful position fix or not. The average power
is the estimated power usage for each case, which includes the
power consumed by GPS and the accelerometer (when enabled),
averaged over the average GPS time interval. The average uncer-
tainty is the average distance between the two consecutive position
updates. The table also shows the deviation of this distance from
the 100m uncertainty tolerance target. Although the average loca-
tion uncertainty and its deviation seem large, the large deviations
can be attributed to GPS unavailability, and the results show that
RAPS’s deviation is comparable to that of periodic GPS.

To achieve a comparable success ratio, periodic GPS consumes
1.92 times the power used by RAPS, while to achieve comparable
average uncertainty, it uses /.28 times the energy used by RAPS.
To get some insight into these numbers, let us consider a scenario
where these positioning systems are used on an N95 smartphone
with 1200mAh batteries without any other service running. Then,
the battery will last for 35 hours with RAPS whereas it will last
only for 23.8 and 30.8 hours for periodic GPS with intervals 180
and 270 seconds respectively. This result clearly shows the energy
saving benefits of RAPS over periodic GPS schemes with fixed
period.
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Figure 25: Power consumption of WPS on N95 phone

4.3 Integration with a WiFi Positioning Sys-
tem

RAPS has been designed to work with GPS in mind. However,
all the techniques used in RAPS are oblivious to GPS, so RAPS
can be used atop another underlying positioning system as long
as it provides reasonably accurate positions. To validate this, we
have implemented and tested a WPS [22] version of RAPS, namely
RAPS-WPS.

WPS is a WiFi-based positioning system from Skyhook Wire-
less [22]. It determines location based on Skyhook’s database of
known Wi-Fi access points. The key advantage of WPS is that it
can provide position information in urban areas and indoors given
that a database exists for those areas. However, since it requires
detection of beacons from 3 or more known WiFi APs, it does not
work well when moving fast (i.e. driving), nor in places where WiFi
APs are sparse. Also, the power consumption of WPS is compa-
rable to GPS because of the cost of WLAN scanning and of com-
municating with the Skyhook database server, as we show below.
Finally, it is generally known that WPS provides less accurate po-
sition than GPS at outdoor locations, which agrees with our exper-
iments (Figure 1).

Figure 25 plots the power usage on the phone when WPS po-
sitioning was requested three times with 30 seconds interval. It
shows that a single WPS positioning request, which involves scan-
ning for visible WiFi APs and communicating with the database
server, consumes around 1.05 Watt on average for a duration of
approximately 6 seconds per request. Using this number, we can
estimate the average power used by RAPS when WPS is used as
the underlying positioning system. Table 3 summarizes the re-
sult along with the original RAPS for comparison. It shows that
RAPS-WPS uses lower power, but has higher average uncertainty.
However, higher average uncertainty is not due to the fact that
RAPS-WPS activated WPS on fewer occasions, but because WPS
is inherently less accurate; in fact, the average positioning inter-
val was smaller for RAPS-WPS, which means that it was activated
more frequently. The estimated average power usage of RAPS-
WPS is lower than that of GPS because WiFi scanning is faster, so
consumes less energy.

To summarize, RAPS can be used with positioning systems other
than GPS, such as WPS. It consumes less energy when used with



180 1 MW GPSwith G1 (avg. error: 38.4m)
160 . WA-GPSwith G1 (avg. error: 36.1m)
GPS with N95 (avg. error: 20.2m)

140 1 g AGPS with N95 (avg. error: 19.1m)

120 A
100 -

80 -

Distance (meter)

60 -

40 -

Samples (35 Locations)

Figure 26: Assisted-GPS vs. GPS : Position error comparison

WPS because it can obtain a position fix faster, but its accuracy is
lower than when using GPS because WPS is inherently more inac-
curate.

Avg Positioning Avg.Power  Avg.Uncertainty (Dev.)

Interval
RAPS GPS 465.1 sec 0.064 W 85.8m (69.2 m)
RAPS WPS 387.3 sec 0.035 W 122.9 m (108.1 m)

Table 3: Comparison of the RAPS with GPS and WPS.

4.4 Are GPS errors Pervasive?

In Figure 4 of Section 2, we showed the inaccuracy of GPS by
collecting position readings from several known locations. In this
section, we validate this observation by answering two questions:

e Does Assisted-GPS result in lower error?

e Are there significant differences in the error characteristics
across different handset platforms?

At least from the experiments we have conducted, the answer to
both these questions is negative, suggesting that the instance of rel-
atively high GPS error is a function of the environment, not of the
platform.

Assisted GPS. Figure 26 compares the position inaccuracy results
for GPS and Assisted-GPS, on both N95 and G1 phones, at 35 dif-
ferent known locations. As the figure shows, we have found negli-
gible difference in position accuracy between A-GPS and GPS for
either platform. This result is consistent with our personal expe-
rience using N95 phones where Assisted-GPS is superior to GPS
only in the Time-To-First-Fix (TTFF) and not in the positioning
accuracy. Although the term A-GPS is broadly used to include
various forms of assistance (which could possibly include sophis-
ticated position estimation techniques), it usually refers to an en-
hanced version of GPS that retrieves almanac and ephemeris data
over a data connection (e.g. GPRS or 3G) for a faster fix. At least
for the phones that we have used in our measurements, this does
not improve positioning accuracy.

Different Platforms. Figure 27 compares the position (in)accuracy
results for four different handset platforms: Android G1, Nokia
NO5, MotoDriod, and WinMobile HTC. As the figure shows, there
isn’t a qualitative difference in position accuracy between different
types of mobile phone except for the G1 phone; other three phones
had similar performance. The Android G1 phone did often report
slightly higher distance errors than other phones especially when
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Figure 27: Comparison of position error for four different
types of mobile smartphones

there was relatively less clear view to the sky. However, we believe
that this fact does not significantly affect our design nor the result
of RAPS.

4.5 Summary and Future Work

The results we have presented so far suggest that significant energy-
saving gains can be obtained with a collection of techniques that
permit delayed GPS activation. Of course, much work remains to
be done before RAPS can become truly practical. Our parameter
settings (for example, the accelerometer duty-cycling) can be op-
timized. Although we believe the system has the right incentives
for the adoption of Bluetooth synchronization, privacy and security
considerations need to be considered. Finally, we intend to per-
form a more careful evaluation of the parameter space, which is
exceedingly large: performance critically depends on user consis-
tency and phone handling behavior, on environmental conditions,
GPS visibility, celltower placement density, and so forth.

S. RELATED WORK

A few prior pieces of work have attempted to duty-cycle loca-
tion determination. The piece of work most closely related to ours
is EnTracked [12]2. It uses the accelerometer as a binary sensor
to distinguish between stationary and in-motion users, and deter-
mines user velocity from the estimate reported by GPS. Based on
this estimation of mobility, it schedules the next position update to
save energy. However, it does not leverage user history nor does
it employ the concept of activity ratio as a surrogate for velocity,
as we do. It also does not consider the high power consumption of
the accelerometer, nor infer GPS availability using celltower infor-
mation, and it does not adapt to movement changes until the next
decision point. Moreover, the system has an inherent circularity
which can potentially degrade performance: it uses a velocity esti-
mate to decide when to turn on GPS, but also uses GPS to get the
velocity estimate. Most importantly, it does not consider the case
where GPS is not available (e.g., indoors), and the system has been
evaluated only in scenarios where GPS is always available.

Some work has explored the energy-accuracy tradeoff in ways
different from RAPS. EnLoc [5] uses dynamic programming to

2 As of this writing, the code for EnTracked is not publicly avail-
able. So, we present only a qualitative comparison with this
scheme. However, both protocols have compared their perfor-
mance relative to the case when GPS is always on, so the reader
can assess the relative performance difference between RAPS and
EnTracked.



find the optimal localization accuracy for a given energy budget
and decides which one of GPS/WiFi/GSM localization methods to
use. It uses the space-time history in its human mobility profile,
but does not associate this with the accelerometer-based user ac-
tivity. Micro-Blog [11] exploits the accuracy-energy tradeoff of
GPS, WiFi, and GSM based localization for energy-aware local-
ization. Specifically, depending on the accuracy requirement of the
application, it uses a lower energy method over a higher method
when possible. Contemporaneously, a-Loc [14] proposes to dy-
namically trade-off location accuracy and energy use, using prob-
abilistic models of user location and sensor errors. It uses these
models to choose among different localization methods and tune
the energy expenditure to meet the dynamic location accuracy re-
quirements specified by applications. It also discusses a method
to automatically determine the accuracy requirements for certain
applications such as mobile search and social networking. In con-
trast to all these pieces of work, RAPS leverages the observation
that applications will need to tolerate intrinsic GPS errors in urban
obstructed environments in order to trade-off accuracy for lower
energy.

We have also built upon other duty-cycle determination meth-
ods. You et al. [27] propose a signal-strength based indoor local-
ization scheme that adapts the sampling rate to the target’s esti-
mated mobility level for energy-efficient operation. This work uses
a positioning error model similar to ours and also employs the ac-
celerometer to detect whether the target is stationary or not. How-
ever, unlike RAPS, it is tailored for RF-based indoor localization
and assumes walking as the only mobility mode. Farrell et al. [9]
also use a similar positioning uncertainty model and propose an al-
gorithm that controls when to perform GPS updates for efficient
positioning. However, they do not estimate velocity but simply
assume a maximum walking velocity for uncertainty calculation.
Moreover, this work has been evaluated only in simulations.

There are several pieces of work that are related to individual

components of RAPS. Deblauwe and Treu [6] propose GSM signature-

based triggering to avoid activating the GPS receiver for as long
as possible in order to save energy while still being able to de-
tect entering and leaving a zone. Their basic idea is to compare
the device’s current GSM measurements with the ones taken the
last time the GPS was switched on. This work is based on a simi-
lar intuition as ours, but assumes that cellld-RSS information from
several celltowers are available at the smartphone, which, as we
have discussed, contradicts current practice. Senseless [3] uses
accelerometer triggering to detect the existence of user movement
and turns off GPS when not moving, and reports that this can be
effective in reducing the number of GPS activations. EEMSS [26]
employs the idea of using low power sensors (i.e. the accelerome-
ter) to detect user state and context, and trigger activation of high
power sensors (i.e. GPS) only if necessary. While doing this, they
duty cycle each sensor to further save energy. Concurrent with our
own work, Zhuang et al. [29] have proposed a location-sensing
framework that includes four design principles — accelerometer-
based suppression, location-sensing piggybacking, substitution of
location-sensing mechanisms, and adaptation of sensing parame-
ters when battery is low — to improve the energy efficiency of lo-
calization on smartphones that run multiple location-based applica-
tions.

Several pieces of work have attempted to learn mobility patterns.
BreadCrumbs [19] uses the space history of a user to train a mo-
bility model for each specific user and use it to schedule network
usage using the connectivity forecasts. Zheng et al. [28] use su-
pervised learning to infer motion modes (e.g., walking, bus, driv-
ing) from their GPS logs. Sohn et al. [24] also recognizes mobility

modes, but using coarse-grained GSM data instead of GPS data.
Although RAPS does not explicitly infer users’ motion modes us-
ing GPS or GSM logs, it estimates user velocity (which is a func-
tion of the mobility mode).

Finally, several other attempts have been made to address short-
comings with GPS. Pure WiFi-based [1, 22] and GSM-based [25]
systems attempt to save energy by inferring location using other
means. In contrast, RAPS focuses only on adapting the rate of
GPS activations and can, in theory, be incorporated into these sys-
tems.

6. CONCLUSIONS

In this paper, we presented RAPS, rate-adaptive positioning sys-
tem for smartphone applications. It is based on the observation
that GPS is generally less accurate in urban areas, so it suffices to
turn on GPS only as often as necessary to achieve this accuracy.
RAPS uses a collection of techniques that could be implemented
on current generation of smartphones to cleverly determine when to
turn on GPS. We have evaluated RAPS through real-world experi-
ments using a prototype implementation on a modern smartphone
and show that it increases lifetime by more than a factor of 3.8 rel-
ative to the case when GPS is always on. Several interesting issues
remain for future work including: examining optimal duty-cycling
parameters for the accelerometer, better methods for distinguishing
human motion from other activities that cause phone motion, and
larger-scale evaluations.
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