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Abstract

This paper identifies the major drawbacks of a very com-

putationally efficient and state-of- the-art-tracker known as

the Kernelized Correlation Filter (KCF) tracker. These

drawbacks include an assumed fixed scale of the target in

every frame, as well as, a heuristic update strategy of the fil-

ter taps to incorporate historical tracking information (i.e.

simple linear combination of taps from the previous frame).

In our approach, we update the scale of the tracker by max-

imizing over the posterior distribution of a grid of scales.

As for the filter update, we prove and show that it is possi-

ble to use all previous training examples to update the filter

taps very efficiently using fixed-point optimization. We val-

idate the efficacy of our approach on two tracking datasets,

VOT2014 and VOT2015.

1. Introduction

Visual object tracking is a classical and very popular

problem in computer vision with a plethora of applications

such as vehicle navigation, human computer interface, hu-

man motion analysis, surveillance, and many more. The

problem involves estimating the location of an initialized

visual target in each frame of a video. Despite numerous ob-

ject tracking methods that have been proposed in recent year

[25, 21, 24, 22], most of these trackers suffer a degradation

in performance mainly because of several challenges that

include illumination changes, partial or full occlusion, mo-

tion blur, complex motion, out of plane rotation, and camera

motion.

In this paper, we build upon a correlation based tracker

popularly known as the Kernelized Correlation Filter (KCF)

tracker [13, 12]. KCF has achieved impressive results on

the visual tracking benchmark [24] and ranked third in the

VOT2014 challenge [14] achieving real-time performance.

KCF, similar to other correlation filter based trackers, tries

to find the best filter taps that maximize the response when

correlated with a target template that looks similar in ap-

pearance to the training data. KCF solves the problem of

tracking by solving a simple rigid regression problem over

Figure 1: Comparsion between our method and KCF on 3

sequences from the VOT2015 dataset.

training data in the dual form, which allows the use of

both multi-dimensional features and nonlinear kernels (e.g.

Gaussian).

The combination of multi-dimensional features and ker-

nels when learning the filter taps pushed the tracker to be

among the best performers. This is made possible because

of the over-sampling strategy used in KCF. Instead of taking

random samples of the target to train over, an over-sampling

method is used to consider all possible translations of the

target in a given window. This over-sampling was consid-

ered previously to be a drawback because of the large num-

ber of redundant samples that are required. However, when

these samples are collected and organized properly, they

form a circulant matrix that has very desirable properties,

the most interesting of which is that its diagonalization can

be efficiently computed using the DFT matrix. Using this

over-sampling (in both training and detection), this DFT di-

agonalization property is used in formulating and solving

the dual rigid regression problem entirely in the frequency

domain. In fact, the only necessary operations are elements-

wise addition, element-wise multiplication, and the FFT.
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Due to the attractive properties highlighted above, KCF

can accurately predict the target’s location in the video

frame in real-time. However, two performance-impeding

drawbacks with KCF are its use of a fixed target scale in de-

tection [15, 9] and a heuristic filter update rule that makes

use of only one template at a time. We solve the issue

of scaling through a voting scheme, which selects a scale

that maximizes the posterior probability when the prior is

Gaussian centered around the scale selected in the previous

frame.

Our second contribution lies in how the filter taps are

updated from frame-to-frame. In the landmark KCF paper

[13, 12], it is argued that the filter taps can be computed in

either the primal or the dual form each with its own limita-

tions. Solving the problem in the primal form allows multi-

ple base template in training, but only with one-dimensional

features (i.e. gray scale images). On the other hand, solv-

ing it in the dual form allows the use of multi-dimensional

features (e.g. HoG) and non-linear kernels, but only with

a single training template. It was stated in [13] that us-

ing both multiple templates and multi-dimensional features

is not possible. As can be seen in Table 1, using multi-

ple templates in training with a linear kernel in the primal

formulation gives very interesting results even outperform-

ing KCF with non-linear kernels. In fact, using the primal

formulation with multiple templates ranks first among all

the considered trackers that use the same features. This ob-

servation motivates us to develop a kernelized correlation

filter scheme that incorporates multiple multi-dimensional

templates in training within the dual formulation, while re-

using properties of the resulting circulant matrix structure.

In this paper, we show that this can be done through an iter-

ative scheme where each iteration solves for multiple filters

each corresponding to a training example with a set of con-

straints that encourage these filters to be the same. By incor-

porating multiple templates (e.g. tracking results from pre-

vious frames), our approach allows for a more systematic

update scheme for the filter taps, as compared to the heuris-

tic update rule used in KCF, KCF based trackers, and many

other correlation filter based trackers [13, 17, 16, 7]. This

iterative update scheme does not tradeoff performance and

accuracy for computational efficiency, owing to the under-

lying circulant matrix structures that arise. By integrating

both updates, we demonstrate that our tracker is superior

to the original KCF formulation and other state-of-the-art

trackers.

2. Related Work

Trackers in general can be divided into two main cate-

gories: generative and discriminative trackers. Generative

trackers adopt an appearance model to describe the target

observations. The main aim of the tracker is to search for

the target that is the most similar in appearance to the gener-

Acc. Rank Rob. Rank Rank

KCF Gauss HoG 3.23 2.83 3.03

KCF Lin HoG 3.35 2.79 3.07

KCF Lin Gray Multi 3.41 3.20 3.30

KCF Gauss Gray 3.79 3.00 3.39

KCF Lin Gray 3.99 4.04 4.02

Table 1: Multi-templates vs single template updates

ative model. Therefore, the major contribution of this type

of tracker is in developing complex generative representa-

tive models that can reliably describe the object even when

it undergoes different appearance changes. Examples on

generative models include mean shift tracker [8], incremen-

tal tracker (IVT) [20], fragment-based tracker (Frag) [2],

L1-min tracker [19], multi-task tracker (MTT) [27], low-

rank sparse tracker [26], and structural sparse tracking [28]

to name a few.

On the other hand, discriminative trackers formulate vi-

sual object tracking as a binary classification problem that

searches for the target location that is the most distinctive

from the background. Examples of discriminative track-

ers include multiple instance learning tracking (MIL) [5],

ensemble tracking [4], support vector tracking [3], and all

the correlation filter based trackers. Correlation filters have

been used for a long time in classification problems, where

the objective is to learn filter taps that minimize the energy

response of the filter [18] or minimize the variance of the re-

sponse over a set of given training examples [23]. The filter

taps are usually computed in the time domain in a simple

least squares formulation. Later, Bolme et al. proposed a

method for learning the taps in the frequency domain [7],

thus, achieving impressively high frame rates since all the

necessary computations degenerate to elementary addition-

s and multiplications. The correlation filter was extended

even further to handle multi-dimensional features (beyond

gray scale), when its kernelized version (KCF) was pro-

posed in [13, 12]. KCF solves for the filter taps very effi-

ciently by utilizing kernel functions and the circulant struc-

ture of the underlying kernel matrix. Since then, using cor-

relation filters for tracking has attracted more attention in

the vision community. For example, some trackers use mul-

tiple KCF trackers to represent different parts of the object

and track them jointly [16]. In [17], they learn an online

random fern classifier over a larger region to identify fail-

ures and re-detect the object in case of long term occlusion

or when the target exits out of the field-of-view. Despite

KCF’s popularity and versatility, some drawbacks of the

method remain. We investigate and address two of these

drawbacks in this paper, namely multiple template training

and scale adaptation.

We organize the rest of the paper as follows. Section 3 is

a brief description of the KCF tracker, while Section 4 de-

scribes our method. Section 5 provides empirical evidence
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for our method as compared to other trackers, while Section

6 concludes the paper.

3. Review of KCF Tracker

KCF tracker has gained attention recently for achiev-

ing very impressive results on the visual tracking bench-

mark [24], as well as, a high rank in the 2014 visual ob-

ject tracking (VOT) competition [14]. Moreover, KCF has

very attractive computational properties, since it can easi-

ly reach real-time frame rates. Much like other detection

based trackers, KCF can be trained using a set of training

templates. At the first frame, only one template is available.

Some methods generate more templates by sampling patch-

es around the first patch to collect more training data. On

the other hand, KCF exhaustively samples the whole region

around the target by taking advantage of cyclic shifts, which

simulate translations of the target object.

Assuming for simplicity all examples are 1D and x rep-

resents the base template at the first frame, then Px =
[xn, x1, ..., xn−1]

T represents one circular shift of that base

patch, where P is a permutation matrix. Then, the set rep-

resenting all possible circular shifts is given by {Pix|i =
0, ..., n − 1}. Obviously in case of 2D signals, there will

be two possible shifts one in either direction. The matrix

containing all possible circular shifts is a circulant matrix

X, which is also known as the data matrix.

The goal of KCF training is to learn the filter taps w that

minimize the error between the filtered circular shifts of the

training template x and the regression targets y, which take

on Gaussian values the highest of which is at the middle of

the patch (i.e. when no circular shift exists).

min
w

n
∑

i

(f(w;Pix)− yi)
2 + λ||w||22 (1)

The representation function is given as f(w) =
wTφ(x), where φ(x) denotes a mapping of the template

x into another space that can possibly be of a higher dimen-

sion. Therefore, Eq (1) can be re-written as,

min
w

||Φw − y||22 + λ||w||22 (2)

where Φ contains the mapping of all the circular shifts of

template x. The most efficient solution to Eq (2) highly

depends on the nature of the mapping function φ(.).

φ is linear. In this case, φ(x) = x, Φ = X, and the solu-

tion is known to be: w = (XTX+ λI)−1XTy. In fact, Eq

(2) can be solved directly and efficiently in terms of the fil-

ter taps w (primal formulation) by exploiting the circulant

matrix structure of X (i.e. it can be diagonalized using the

DFT matrix), as follows:

ŵ∗ =
x̂∗ ⊙ ŷ

x̂∗ ⊙ x̂+ λ
(3)

where ẑ and ẑ∗ denote the FFT of signal z and its complex

conjugate, respectively. Interestingly, when multiple tem-

plates are available in training, it can easily be shown that

the optimal filter taps can be computed in a similar way [6]:

ŵ∗ =

∑m

j=1
x̂∗

j ⊙ ŷ
∑m

j=1
x̂∗

j ⊙ x̂j + λ
(4)

φ is non-linear. In this case, the single template x can be

chosen to have multiple features (e.g. HoG), but the solu-

tion to Eq (2) cannot be computed efficiently in the primal

form. However, using a kernel decomposition of the filter

taps to transform the problem into its dual form, which is

also a ridge regression problem. The dual variable solution

α for this kernelized version, w = ΦTα, in the dual form

can be shown to be: α = (K+ λI)−1y, where K = ΦxΦ
T
x

which is known as the kernel matrix. This kernel matrix

evaluates the kernel (e.g. Gaussian) on all pairs of the cir-

cular shifts of the template x, thus, these shifts can contain

multiple features, as opposed to the case when φ is linear.

As shown in [13], if the kernel used is permutation invari-

ant, matrix K is also circulant and thus we can exploit its

DFT diagonalization property to compute the dual solution

α (in the frequency domain) efficiently, as follows:

α̂∗ =
ŷ

k̂xx + λ
(5)

where k̂xx is defined to be the FFT of the kernel correlation,

and ŵ, ŷ denotes the FFT of the filter taps and the target

patches respectively.

Target Detection. After the optimal taps are learned for

the template x, some variants of KCF trackers update these

taps as a convex combination of these taps and those from

a previous frame [13, 7, 15]. In this way, historical infor-

mation can be propagated, despite the fact that it is done

heuristically and non-adaptively. Detecting the target in the

next frame can be simply done by applying the filter w to

some search regions in the frame. In other words, we apply

f(z;w) = wTφ(z) where z is the sample to be evaluat-

ed over, and Φx̃ is the latest model that has been updat-

ed. If the dual form of the solution is computed, then the

detection formula is: f(z;α) = αTΦx̃φ(z). To measure

the response over all circular shifts (i.e. translations) of the

signal z, the mapping of these circular shifts is computed

in the same way it is done in the training, namely using
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a circulant matrix Φz . In this case, all the filter respons-

es (in the frequency domain) can be computed efficiently:

f̂(z;α) = (k̂x̃z ⊙ α̂), where k̂x̃z is the FFT of Φx̃Φ
T
z . It is

worthwhile to note that it was stated in [13] that solving the

ridge regression problem in Eq (2) for multi-dimensional

feature vectors with non-linear kernels, as well as, multiple

templates is not possible. We will address this issue next.

4. Multiple Template Scale Adaptive KCF

The following subsections will provide a detailed deriva-

tion of our proposed tracker.

4.1. Multiple Templates

Although the primal formulation of the rigid regression

problem allows for training with multiple templates (i.e.

more than one circulant matrix X) [6], it does not direct-

ly allow the use of multi-dimensional features and non-

linear kernels. Experimental results in Table 1 demonstrate

a significant performance improvement when using multi-

ple templates in training as compared to using only one,

while utilizing the same features. In the seminal KCF work

[13], the authors argue that multiple templates are feasi-

ble only for linear kernels in the primal formulation. On

the other hand, the dual form allows for non-linear, mul-

tidimensional features, but using only one template. They

argue that using both is not possible. In this paper, we show

how filter taps can be computed using multiple templates

with multi-dimensional features and non-linear kernels in

the dual formulation.

We formulate the problem as follows. Ideally, at frame

n + 1, there are n samples, on which the filter w should

be trained. In this case, the data matrix containing the tem-

plates and all their shifted versions is no longer circulant,

but rather blockwise circulant. In fact, the augmented data

matrix X = [X1,X2, ...,Xn]
T , where each Xi is a circu-

lant matrix generated from the ith template (i.e. the detected

patch at frame i). Therefore, the multiple template kernel-

ized correlation problem can be formulated as:

min
w

∥

∥

∥

∥

∥

∥

∥

∥









Φ1

Φ2

...

Φn









w −









y

y
...

y









∥

∥

∥

∥

∥

∥

∥

∥

2

2

+ λ||w||22 (6)

Note that Φi is the mapping matrix evaluated for tem-

plate xi and its circulant shifts. Since Xi is circulant, Φi

is also circulant. In what follows, we will provide details

on how this optimization problem can be solved iterative-

ly using the inherent properties of block circulant matrices.

Without loss of generality, our derivation will be highlight-

ed for 1-D signals with two training examples (i.e. n = 2),

but the results can be easily extended to 2-D signals and to

multiple training examples. The resulting problem can then

be written as:

min
w

∥

∥

∥

∥

(

Φ1

Φ2

)

w −

(

y

y

)∥

∥

∥

∥

2

2

+ λ||w||22 (7)

By adding auxiliary variables, Eq (7) can be re-written

by considering two independent filters under the constraint

that these filters are the same, as follows:

min
w1,w2

∥

∥

∥

∥

(

Φ1w1 − y

Φ2w2 − y

)∥

∥

∥

∥

2

2

+ λ

∥

∥

∥

∥

(

w1

w2

)∥

∥

∥

∥

2

2

subject to: w1 = w2.

(8)

This problem can be solved by replacing the hard con-

straint with a soft one in the objective: µ
2
||w1 − w2||

2
2.

This additional regularizer encourages that both filters be

the same. The value of µ is increased in each iteration. In

each iteration, we solve for both w1 and w2 via alternating

fixed-point optimization. The method starts by initializing

a solution for w2 and uses that to update w1. Then, we use

the updated w1 to solve for w2, so on and so forth, until

a stopping criterion has been met. Since the original prob-

lem is convex, this strategy is guaranteed to converge to a

global minimum. We initialize the filters with the solution

to the single-template KCF. Therefore, in the jth iteration,

we solve the following two coupled problems:

min
w1

||Φ1w1 − y||22 + λ||w1||
2
2 + µ||w1 −w

j
2||

2
2 (9)

min
w2

||Φ2w2 − y||22 + λ||w2||
2
2 + µ||w2 −w

j+1

1 ||22

Solving Eq (9) Note that the problems above have the ex-

act same form, so we will only derive the solution to one of

them. To solve Eq (9), we formulate its dual in Eq (10) to

allow for non-linear kernel functions and multidimensional

features.

min
w1

∑

i

(w1
Tφ(xi)− yi)

2 + λ||w1||
2
2 + µ||w1 − b||22

(10)

Here, we take b = w
j
2 for readability. Following the

same strategy as in [13], we set the gradient of Eq (10)

to zero and identify the left hand side to the right. By

doing so, we obtain: w1 = ΦT
1 a1 + kb, where ai1 =

− 1

λ+µ
(w1

Tφ(xi) − yi) and k = µ
λ+µ

. By substituting the

dual formulation of w1 into Eq (10) and setting its gradient

to zero, we obtain the following linear system:

(Φ1Φ
T
1 + (λ+µ)I)a1 = y−

(kI+ (λk + µ(k − 1))(Φ1Φ
T
1 )

−1)b̃ (11)
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where b̃ = Φ1b = Φ1Φ
T
2 a2. Now Eq (11) looks very sim-

ilar to the solution derived using a single training sample

in the original KCF formulation but with an extra additive

term. A similar approach can be used to solve this linear

system efficiently. Using the FFT diagonalization of both

Φ1Φ
T
1 and Φ1Φ

T
2 (both are circulant matrices), we can in-

vert the left hand side and compute the right hand side effi-

ciently, as follows:

b̃ = Fdiag(k̂x2x1)FHa2 = F(k̂x2x1 ⊙ â∗2) (12)

where k̂x2x1 is the FFT of the correlation kernel vector be-

tween the two signals x1 and x2. Similarly,

(Φ1Φ
T
1 )

−1b̃ = F((k̂x1x1)−1 ⊙ k̂x2x1 ⊙ â∗2) (13)

This result extends easily to 2-D signals and to multiple

features, as in [13]. Therefore, the final solution would be

very similar to the solution given in [13] with a modified tar-

get vector. In this way, we avoid using heuristics to combine

the effect of the current template with historical information

as done in previous work [13, 7, 15].

â1 =
ψ̂

k̂x1x1 + (λ+ µ)
(14)

where ψ̂ = F(−(kI+ (λk + µ(k − 1))(Φ1Φ
T
1 )

−1)b̃+ y).
As stated earlier, we update w1 and w2 (equivalently â1

and â2) by increasing the tradeoff coefficient µ in each it-

eration. Upon convergence, we obtain the solution to the

original problem in Eq (7). The stopping criterion we use

in our experiments depends on the variation in the overall

objective cost in previous iterations. Once that variation is

small enough, the optimization process is terminated. Here,

we note that evaluating the cost function efficiently is non-

trivial; however, we can use diagonalization ideas similar to

those seen earlier to compute it very quickly.

4.2. Scale Integration

One of the main drawbacks of KCF is that it does not

address the target scale issue. We use a simple yet effective

method (similar in spirit to [15, 9]) to counteract this issue.

Specifically, we apply max-pooling over multiple scales in

the detection phase of the tracker. The main difference be-

tween our approach and previous work is that we maximize

over the posterior probability instead of the likelihood, as

illustrated in the following equation.

max
i

P (si|y) = P (y|si)P (si) (15)

where si represents the ith scale and P (y|si) is the like-

lihood that is defined by the maximum detection response

at the ith scale: f̂(z) = (k̂x̂z ⊙ α̂). The prior term P (si)
is assumed to follow a Gaussian distribution, which is cen-

tered around the previous scale and has a standard deviation

σ which is set experimentally. This will allow for smooth

transition between scales, since the target’s scale is assumed

to not change much between consecutive frames. This strat-

egy produces more stable detections than previous methods

[15, 9] that only use the likelihood.

5. Experimental Results

We conduct two experiments to evaluate the efficiency

and accuracy of our proposed tracker. First, we compare

our tracker against state-of-art trackers that participated in

the VOT2014 challenge [14], which comprises 25 challeng-

ing sequences. Secondly, we evaluate our tracker using the

VOT2015 toolkit [1] on a set of 60 challenging videos. We

show how each of the proposed modifications to the original

KCF tracker (i.e. the use of multiple templates in training

and scale adaptation in detection) leads to improvement in

overall performance.

5.1. Features and Parameters

In the implementation, we used HoG features with a

Gaussian kernel function. The σ used in the Gaussian k-

ernel is set to 0.5, as in [13]. The HoG cell size is 4x4 and

the number of orientation bins is 9. The extracted feature

vector is multiplied by a Hanning window, as described in

[7]. The regularization parameter over the energy term is

set experimentally to λ = 10−4. Also, we set µ = 10−5 as

an initial value and it is doubled every iteration. The search

grid of scales is set to be [0.76, 0.80...1.20, 1.24] of the o-

riginal size of the target. The stopping criterion used in the

optimization of Section 4.1 is based on the standard devia-

tion of the overall cost in the past 5 iterations. The stopping

threshold for this standard deviation is set to η = 10−5.

5.2. Experimental Setup

In all our experiments, we run our proposed approach

in MATLAB on an Intel(R) Xeon(R) 2.67GHz CPU with

32GB RAM.

Datasets: We conduct the experiments on 2 differ-

ent datasets, namely VOT2014[14] and VOT2015[1].

VOT2014 has 25 annotated videos in total, while VOT2015

comprises 60 videos. Both datasets pose challenging prob-

lems to object tracking, including partial occlusion, illumi-

nation change, motion blur, and background clutter. Both

datasets have annotations to account for non-standard rect-

angles that can be rotated or scaled.

Evaluation Methodology: We use the VOT2015 toolk-

it to evaluate the results for both VOT2014 and VOT2015.

The toolkit reports three measures of evaluation: accuracy,
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robustness, and speed, along with the overall tracking score.

Our proposed tracker is deterministic, so it is evaluated by

the toolkit three consecutive times and the average score

over the three turns is recorded. As for accuracy, we use the

same criterion used in the Pascal VOC, namely the overlap

ration (VOR) [10], which is defined as:

VOR =
area(ROITi

∩ROIGi
)

area(ROITi
∪ROIGi

)
(16)

where T and G denote the target and ground truth bounding

boxes respectively. As for robustness, it measures the num-

ber of times the tracker loses the object. Therefore, a robust-

ness score of 0 means the tracker does not lose the object at

all, during the video throughout the 3 runs. A failure is

defined when the overlap measure is below some threshold

for a certain number of consecutive frames. The toolkit au-

tomatically re-initializes the tracker when a failure happens

allowing the tracker to resume from the re-initialized frame.

Obviously, a smaller robustness score is desired. The toolk-

it also reports the speed of the tracker in processing each

frame.

5.3. Results

VOT2014 Experiments: We compare our method with

some of the available results of the state-of-art trackers on

the VOT2014 dataset. The trackers we used for compar-

isons were NCC (baseline), Struck [11], MIL[5], IVT[20],

KCF [13], and KCF Scale trackers. In the VOT2014 chal-

lenge, a scaled version of KCF was introduced which we

denote as KCF Scale. Since the parameter setup for this

tracker is not available and to ensure a fair comparison with

our method, we run KCF Scale with the same methodology

used in VOT2014 but with the same parameters we use in

our tracker. It is clear from Table 2 that our method (incor-

porating KCF with multiple templates and scale adaptation)

substantially surpasses all the other trackers in both accura-

cy and robustness.

Acc. Rank Rob. Rank Rank FPS

Ours 2.68 2.96 2.82 25.1

KCF Scale 3.00 3.48 3.24 47.42

KCF 3.46 3.13 3.29 66.5

Struck 3.68 3.85 3.75 19.77

MIL 5.02 3.88 4.45 1.94

IVT 5.00 4.65 4.81 27.51

NCC 5.21 6.08 5.65 27.9

Table 2: Comparison on the VOT2014 dataset.

VOT2015 Experiments: Since the tracking results of

other trackers has not been released on VOT2015 just yet,

we use this dataset to demonstrate how each of our pro-

posed components (multiple templates and scale adapta-

tion) contributes to the overall improvement of our ap-

proach over the original KCF tracker. To do this, we com-

pare the KCF tracker with: (KCF+MT) which is our mul-

tiple template version of the KCF (refer to Section 4.1) and

(KCF+MT+Sc) which is the latter tracker but with scale

adaptation (refer to Section 4.2). In Table 3, we compare

the performance and runtime of these three trackers. Clear-

ly, adding any of the two components to the original KCF

tracker improves its performance. By adding both, the im-

provement in performance is even more significant. It may

be noted that the improvement by adding the multiple tem-

plate update may not be as significant as for adding the s-

cale for this dataset. This is primarily due to the fact that

this dataset in particular includes examples of a target ob-

ject undergoing substantial variations in scale. The effect of

adding the MT component is more evident in the VOT2014

dataset, where less scale variations are encountered. For a

detailed per-video comparison, we show the accuracy of our

method and KCF on all 60 VOT2015 videos in Figure 2. It

is clear from the plot that our tracker outperforms KCF in

the majority of videos.

Acc. Rank Rob. Rank Rank FPS

KCF+MT+Sc 1.80 1.95 1.88 24.3

KCF+MT 2.04 2.04 2.04 31.54

KCF 2.16 2.01 2.08 44.76

Table 3: Comparisons on the VOT2015 dataset.

6. Conclusion

We have identified the main drawbacks of the KCF track-

er that cause failure and we propose two components to ad-

dress these drawbacks. First, we show that it is possible to

incorporate multiple multi-dimensional templates in com-

puting the optimal filter taps. By reformulating the kernel

correlation problem and by using fixed-point optimization,

we demonstrate that using multiple templates improves the

performance of the original KCF tracker that uses only one

template and a heuristic update scheme. Second, we address

the problem of fixed scale tracking. We use a similar grid

search approach as in previous methods, but we week the

scale with maximum posterior instead of likelihood. This

subtle difference makes the tracker more robust to gradual

scale changes. Our experimental results on VOT2014 and

VOT2015 show that our tracker substantially outperforms

many state-of-the-art trackers.
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Figure 2: Accuracy results on VOT2015 dataset for 60 videos, comparing our proposed method and KCF.

7. Appendix

7.1. Derivation of Eqs (12) and (13)

This section shows a detailed derivation of Eq (12) as fol-

lows:

b̃ = (Φ1Φ
T
2 )a2 = Fdiag(k̂x2x1)FHa2 (17)

= Fdiag(k̂x2x1)â∗2 (18)

= F(k̂x2x1 ⊙ â∗2) (19)

and for Eq. 13:

(Φ1Φ
T
1 )

−1b̃ = (Fdiag(k̂x1x1)FH)−1b̂ (20)

= Fdiag−1(k̂x1x1)FH b̂ (21)

= Fdiag−1(k̂x1x1)(k̂x2x1 ⊙ â∗2) (22)

= F((k̂x1x1)−1 ⊙ k̂x2x1 ⊙ â∗2) (23)

7.2. Efficient Computation of Objective Function

Here, we show a more detailed derivation for how to effi-

ciently compute the regression cost that will be used in the

stopping criterion for the alternating fixed-point optimiza-

tion of Eq. (10)

||Φ2w2 − y||22 = (Φ2w2 − y)H(Φw2 − y) (24)

= wH
2 ΦH

2 Φ2w2 −wH
2 ΦH

2 y − yHΦ2w2 + yHy (25)

= aH2 Φ2Φ
H
2 Φ2Φ

H
2 a2 − aH2 Φ2Φ

H
2 y

− yHΦΦHa2 + yHy (26)

= aH2 F(k̂22 ⊙ k̂22 ⊙ â∗2)− aH2 F(k̂22 ⊙ ŷ∗

2)

− yHF(k̂22 ⊙ â∗) + yHy (27)
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