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Abstract. The climatic scenarios show a strong signal of careful description of precipitation probability density func-

warming in the Alpine area already for the mid-XXI century. tions conditioned to the model outputs. This technique al-
The climate simulations, however, even when obtained withlowed for reducing the strong precipitation overestimation,
regional climate models (RCMs), are affected by strong er-arising from the use of RCMs, over the Alpine chain and to
rors when compared with observations, due both to their dif-reproduce well the monthly behaviour of precipitation in the
ficulties in representing the complex orography of the Alps control period.

and to limitations in their physical parametrization.

Therefore, the aim of this work is to reduce these model bi-
ases by using a specific post processing statistic technique, in
order to obtain a more suitable projection of climate changel Introduction
scenarios in the Alpine area.

For our purposes we used a selection of regional climatel he Alps are a region very sensitive to the impacts of climate
models (RCMs) runs which were developed in the frame-change: the temperatures increased here more than the world
work of the ENSEMBLES project. They were carefully cho- average (Ciccarelli et al., 2008) and the projections for the
sen with the aim to maximise the variety of leading global XXI century show again an increase higher than the average.
climate models and of the RCMs themselves, calculated on Piedmont region is located in north-western Italy, at the
the SRES scenario A1B. The reference observations for th§outh-western edge of the Alpine chain. The Environmen-
greater Alpine area were extracted from the European datasé®l Protection Agency of Piedmont region is in charge of
E-OBS (produced by the ENSEMBLES project), which have producing reliable scenarios of the variation of climatic
an available resolution of 25 km. For the study area of Pied-Parameters in the changing climate, to allow the evalua-
mont daily temperature and precipitation observations (covtion of the impacts on mountain hydrology (project AC-
ering the period from 1957 to the present) were carefully QWA, www.acqwa.cli on the wildfire potential (project
gridded on a 14 km grid over Piedmont region through theALPFFIRS, www.alpffirs.ey for more details see Cane et
use of an optimal interpolation technique. al., 2013a), on the permafrost (project PERMAN&Ww.

Hence, we applied the multimodel superensemble techPermanet-alpinespace.gu/on the Alpine lakes (project
nique to temperature fields, reducing the high biases ofSILMAS, www.silmas.e), on mountain biodiversity (EU-
RCMs temperature field compared to observations in thd NTERREG project “Biodiversi una risorsa da conser-
control period. vare”), on heat waves in the Po Valley towns (Nicolella and

We also proposed the application of a brand new prob_Cane, 2012) and on any other study of impacts affecting the
abilistic multimodel superensemble dressing technique, alf€gional environment.
ready applied to weather forecast models successfully, to The temporal target of our work is the mid-XXI century,

RCMS: the aim was to estimate precipitation fields, with 0 drive conclusions that can be used for tangible adaptation
measures to climate change in a reasonable time.
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Then we chose to focus on a single scenario instead of a
range of different scenarios as, for our time interval of inter-
est, the largest variations occur among the different models,
while the different scenarios do not differ so much (Randall
etal., 2007). SEE

In this work we applied multimodel techniques on several
regional climate model (RCM) outputs, which are combined
together to obtain collective evaluations.

Multimodel combination is a pragmatic approach to es- : i . -
timating model uncertainties and to make climate projec- .
tions more reliable. Their use in the climatic simulatior_15 is Fig. 1. The greater Alpine area map.
recommended by the Intergovernmental Panel on Climate
Change (Knutti et al., 2010). The simplest multimodel tech-

nique is the “Poor Man Ensemble”, which is an average of For the study area of Piedmont, daily temperature and pre-
different models, without any bias correction or weighting cipitation observations (covering the period from 1957 to the
(“equal weighting”), while more sophisticated approachespresent), collected by the Environmental Protection Agency
suggest applying model weights according to some measurgf Piedmont region, were carefully gridded on a 14 km grid
of performance (“optimum weighting”). The results confirm over Piedmont region by using an optimal interpolation (OI)
that equally weighted multimodels on average outperformiechnique. More details can be found in Sect. 2.
the single models (Krishnamurti et al., 1999, 2000; Yun et |n the multimodel superensemble technique (Krishnamurti
al., 2003), and that projection errors can in principle be fur-et al., 1999) the models are unbiased and weighted with an
ther reduced by optimum weighting. However, this not only adequate set of weights calculated during the so-called train-
requires accurate knowledge of the single model skill, buting period, with comparison to the observations. This tech-
the relative contributions of the joint model error and unpre-nique is widely applied to weather forecast models (an ex-
dictable noise also need to be known to avoid biased weightgmple in Piedmont can be found in Cane and Milelli, 2006)
(Weigel et al., 2010). Many weighting procedures were pro-and to seasonal climate forecasts (Krishnamurti et al., 2000).
posed on seasonal, decadal and climatic models (Giorgi angthe standard multimodel superensemble technique was here
Mearns, 2002; Palmer et al., 2004; Coppola et al., 2010; Fengpplied to the temperature fields regarding the period 1961—
etal., 2011). Christensen et al. (2010) showed that the use 0of980 as training dataset to calculate weights and to obtain
model weights is sensitive to the aggregation procedure andaily fields of reanalyses (1981-2000) and scenarios (1981—
showed different sensitivities to the selected metrics. They2050).
did not find compelling evidence of an improved description A new probabilistic multimodel superensemble dressing,
of mean climate states using performance-based weights iith careful description of precipitation probability density
comparison to the use of equal weights. They suggested thatinctions conditioned to the model outputs was applied to
model weighting adds another level of uncertainty to the gen+the precipitation fields. This technique allows for a better cor-
eration of ensemble-based climate projections, which shoulgection of precipitation biases depending on the value of the
be suitably explored, although their results indicate that thisforecast precipitation. For more details, please see Sect. 2.
uncertainty remains relatively small for the weighting proce-  The multimodel uncertainty evaluation is usually ad-
dures examined. dressed by multimodel uncertainty post-processors like the
Our evaluation is based on regional climate modelsBayesian Model Averaging (BMA) introduced by Raftery et
(RCMs) calculated by the EU project ENSEMBLES on the 3|, (2003, 2005) and the Model Conditional Processor (MCP)
SRES scenario A1B basis: all the model runs refer to thedeveloped by Todini (2008).
same grid including Europe. In this work, we applied a simple evaluation of multimodel
We established two study areas: the greater Alpine aregncertainty on the multimodel superensemble technique in
(GAR, Fig. 1), including all the Alps (coordinates: 3.00— the hypothesis of multi-normal distribution. In the case of the
20.25'E, 41.50-51.25N, and a smaller box covering Pied- probabilistic multimodel superensemble dressing the model

mont region (OI, Fig. 2) with higher resolution data (coordi- uncertainty was evaluated directly by using a MonteCarlo
nates: 6.5625-9.437%, 44.0625-46.437N). technique (see Sect. 2 for more details).

The reference observations for the GAR are extracted from |n Sect. 3 we described our results, first of all through a

the European gridded dataset E-OBS produced by the EWalidation of the multimodel techniques in the control period
project ENSEMBLES (Haylock et al., 2008). Daily tempera- in Piedmont region, and then evaluating the future scenario
ture and precipitation observations (covering the period frompoth in Piedmont and in the whole Alpine area.

1961 to the present) which are derived from this dataset are

available at a resolution of 25 km.
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2.2 Optimal interpolation of Piedmont data
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Regarding the gridded dataset of daily temperature and pre-
cipitation data over Piedmont, an optimal interpolation (OI)
technique was used to assimilate the row and high density
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ground station data, arbitrarily displaced in the region, on a
selected regular three-dimensional grid map based on a back-

1
ground field (BF) (Kalnay, 2003).

U ; ; : Only for temperature, the background field is obtained by a

aar a linear tri-dimensional downscaling of ERA-40 archive span-
ning from 1957 to 2001 and of the ECMWF objective analy-
sis from 2002 to 2009 on a selected grid (0.12&solution,
with careful description of the complex orography of the re-
gion).

The use of ERA-40 on the regional area is suggested by
checking that the main climatological signals (trends, etc.)
were congruent with the signals resulted from a station subset
working in the period 1950-2000 in Piedmont (Ciccarelli et
2.1 Regional climate models and large scale al., 2008). Where this preliminary congruence checking was

observed data not clear (i.e. for precipitation) the row station data them-
selves provided the background field at first level of gridding
The RCMs simulations used in this paper are a selection ofrocess.
7 RCMs runs resulting from the ENSEMBLES project (Ta- The method enables to weight the contribute to the temper-
ble 1), carefully chosen in order to maximise the variety ature/precipitation value on each grid point from the near-
of leading global climate models and of the RCMs them- est observation data, through suitable parameters. A care-
selves, and with a data amount compatible with our elaboraful modulation of these parameters as a function of the data
tion and storage facilities. Models descriptions can be founddensity and the use of an external background field help to
athttp://ensemblesrt3.dmi.dk/ achieve the time homogeneity and the spatial coherence of
For each model, the reanalysis runs from the ECMWFthe final dataset.
ERA-40 reanalysis (1961-2000) and the scenario runs
(1961-2100) on SRES scenario A1B are available on acom2.3 Standard multimodel superensemble technique on
mon grid at a resolution of 25 km. temperature fields

We interpolated the daily data from the models on the
GAR and OI domains as defined in the Introduction, with The conventional superensemble forecast (Krishnamurti et
a simple bi-linear interpolation. The use of such an inter-al., 2000) constructed with bias-corrected data is given by
polating technique can introduce biases, but the multimodel
techniques include a bias removal before applying the model
average. E—

As for observation data, in this study we employed theS =0 +Zai (F’ _m' @
E-OBS dataset, produced by the EU project ENSEMBLES. =1

This dataset is an European land-only daily high—resolutionWhere F: is the ith model forecastF; is the mean of the
. A L ) ; ;

gridded data set for precipitation a_nd minimum, Maximum, , ., ¢ ecast over the training perio@, is the observed mean

and mean surface temperature which spans from 1950 to thgver the training periodg; are regression coefficients ob-

present. The data set has been designed to provide the best ?s.- Lo ) .

. . ) ained by a minimisation procedure during the training pe-

timate of grid box averages rather than point values to enabk?iod andV is the number of forecast models involved

direct cqmparison with RCMs (here the 25km resolution The calculation of the parametetsis given by the rﬁin-

dataset 1S employed). Th? agthors em_ploy a three-step pro|Fnisati0n of the mean square deviation in the training pe-

cess qf interpolation, by first interpolating the mon_thly P fiod 7. The sets of parametey are estimated for each single

c!pltathn totals_ and monthlly mean temperatur(_a using thn.ae_pixel and not as an overall weighting of models as in BMA

dimensional thin-plate splines, then interpolating the dallyhence the number of parameters is very high: the number,of

anomalies using indicator and universal kriging for precipi- models times the number of pixels '

tation and kriging with an external drift for temperature, then P ’

combining the monthly and daily estimates. Interpolation un- r

certainty is quantified by the provision of daily standard er- G = Z (Si — Op)? )

rors for every grid square. =

lat

Fig. 2. The optimal interpolation map. In the detailed map the grid-
point elevation £z) is showed.

2 Available data and description of the technique
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Table 1. The models used in the multimodel superensemble evaluation.

Acronym Reg. Clim. Model Global Clim. Model Run by

DMI HIRHAM5 Arpege Danish Meteorological Institute

ICTP REGCM3 ECHAMS5 The Abdus Salam Intl. Centre for Theoretical Physics
HC HadRM3QO0 HadCM3QO0 Hadley Centre for Climate Prediction and Research
CNRM RM4.5 Arpege Mteo-France CNRM/GMGEC/EAC

ETHZ CLM HadCM3QO0 Swiss Institute of Technology (ETHZ)

KNMI RACMO2 ECHAM5 The Royal Netherlands Meteorological Institute

MPI REMO ECHAM5 Max Plank Institute — Hamburg

By derivation (g—G = 0), we obtain a set ofV equations, —
. a[ . (NetCDF files) (NetCDF files) (NetCDF files) | ****** (NetCDF files)

whereN is the number of models involved.
We then solve these equations using Gauss—Jordan methoduepeon e " terpolaion

(Press et al., 1992). | Gntrain
A scheme of the technique can be found in Fig. 3.
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(NetCDF files)

The standard multimodel superensemble technique wasg Weight calculation in the training period
applied to the temperature fields by using the period 1961— == S~
1980 as training dataset to calculate weights and to obtain Moddwaighs | |
daily fields of reanalyses (1981-2000) and scenarios (1981—
2050)- Multimodel SuperEnsemble calculation

ERA-40-driven RCMs have specific weights calculated
from the comparison between their daily values in the train-rig. 3. Scheme of the standard multimodel superensemble tech-
ing period and observations, GCM-driven RCMs have dif- nique.
ferent weights calculated from their own values. The weights
and biases are calculated independently for each model and

grid-point, but do not depend on time (i.e. we applied the We tested the temperature conditional probability density
same bias correction and weights for any day of the year). in the very begin of our work and, as expected, it is very close
While in the ERA-40-driven model data we can expect ato a normal distribution. The combination of many models
certain degree of correlation between model data and obseto a resulting multi-normal distribution can introduce het-
vations, in the scenario-driven models the difference betweerroscedasticity in our multimodel: heteroscedasticity does
the model and the observed values are partly due to the sperot cause ordinary least squares coefficient estimates to be
cific parametrization of each numerical model and partly duebiased, although it can cause ordinary least squares estimates
to the necessary uncorrelation between GCM scenarios angf the variance of the coefficients to be biased, possibly above
reality. So, the weights we calculated are not employed toor below the true population variance.
disentangle these contributions, but rather to evaluate which We evaluated the multimodel superensemble dressing un-
is the best way to average the two different contributions incertainty with a explicit calculation of the model vari-
order to obtain the best approximation of observations (al-ances and covariances in the training period, and combining
ways on average). While applying multimodel superensem-them with the multimodel weights to obtain the final mul-
ble, we are making two strong hypotheses: timodel variance (here calculated in the hypothesis of non-
independent models):
1. for any given point, the (annual averaged) biases of the
models in the future scenario will remain the same way N )
they were in the past scenario (training period); oMM = Zaia/‘(’ (Fi. Fj). ©)
LJ

2. for any given point, the weights of the models, hence The use of any kind of metrics on multimodel evaluation
their relative contribution to the final result, will remain highlights some features of the ensemble and carries with
the same. From our experience, if you are using fixedit some limitations (Knutti et al., 2010). Multimodel su-
weights for a multimodel, it is better to have the largest perensemble technique on RCMs data imposes a very simple
possible training period; whereas if you are interestedmetrics (a weighted average of un-biased models), which is
in a better correction, you must use short statistics closequite straightforward and the results can be interpreted very
to the forecast period you are interested in (Cane anceasily, but brings some limitations about the use of the out-
Milelli, 2006). puts:
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1.

An evaluation of the models in the control period is available

. the extremes of the distribution can be underestimated | W

. the data are evaluated independently for each gridpoint.

the results should be bias-free on a long time scale and 1
can be used averaged over long periods;

or overestimated, hence the multimodel data cannot be
used for the evaluation of distribution extremes;

e model1
« model2
model3

frequency
o
2

= model4
prob. MM

This means that nearby points can have un-correlated
corrections, but at the same time the contribution of the
data to the models via the multimodel permits to correct
the scenarios in a very punctual position, hence allow-
ing for a better representation of local features such the
topography of the Alpine chain. The bias reduction ac- > - 0 - A ©
counts for the major part of the error reduction, while precipitation (mm)

the better representation of the monthly cycle is mainly _ o )

due to the averaging effect of the different models. In Fig. 4. Scheme of the probabilistic multimodel superensemble

L dressing technique, example for a given day: probability density
22:2 cases, anyway, the correction is spread over a Iorl%nction of observed data conditioned to different models and fore-

cast values, together with the final probability density function eval-
uated with multimodel.

0,001

in Sect. 3.
8. We calculated the weights as the inverse of the CRPSs,
2.4 Probabilistic multimodel superensemble dressing and we normalized them according to Eq. 4, where
on precipitation field are now the weights of the multimodel superensemble
dressing:
A new probabilistic multimodel superensemble dressing, 1
with ad hoc description of precipitation probability density i __ CRPS 4)
functions (PDFs) conditioned to the model outputs was ap- a N 1 ’
plied to the precipitation fields. ; CRPS

We followed this algorithm:

1.

. We repeated for any reasonable forecast value (up to

) 9. We applied the model-specific PDFs and the weights to
We took the ERA40-driven RCMs and compared them  the GCM-driven models to obtain weighted PDFs:

with the observed precipitation on all grid points.

N
. We considered all the days and points where the model PDRum = ZaiPD':l(Fi)‘ ®)
produces a given precipitation. !
) o Figure 4 shows an example of our technique evaluated on
. We built the distribution of the observed values of that

an ensemble of four models. For any given value of pre-
cipitation forecasted by the model, a model-specific PDF
is evaluated (here shown in brown, blue, yellow and pink),
and the final multimodel PDF is obtained with the correct

days/points (with bins of widtht0.5mm around the
central value).

weights (in green). The vertical lines represent the original

1
300mm day™). “deterministic” value, while the green vertical line associ-
_ We fitted the distributions so obtained with a set of func- &ted with the multimodel distribution is the average of the

tions, finding that the Weibull function is the best one to Multimodel PDF. The obtained average value can differ sig-

represent all of the distributions among a large set ofhificantly from the rude average of the input models (the so-
possible candidates. called Poor Man Ensemble), but the availability of a bias-

corrected PDF also allows for widening the ensemble spread,

. We interpolated and extrapolated the observed distribuirying to correct the under-dispersion of the multimodel en-

tions to obtain all possible distributions for all forecast Semble (in this example).

values and we obtain the function PDIF)( whereF is This technique allows for a better correction of precipita-

the precipitation forecast value. tion biases depending on the value of the forecast precipi-
tation. For more details and a verification on weather fore-

. We calculated the individual RCMs continuous ranked cast models, please refer to Cane and Milelli (2010). Multi-

probability scores (CRPS) from ERA40-driven models. model superensemble dressing precipitation data were used
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successfully to drive an hydrological model and performed
better than those obtained with the BMA approach (Cane e
al., 2013b).

The probabilistic multimodel superensemble dressing £

[ — Obs 7— DMIReA --- DMIScn

| — Obs — ICTPReA --- ICTP Scn |

OSIVCIVS rivme

262 283 284 285 286 287 288 289
tmax
262 283 284 285 286 287 288 289

A
technique was applied to the precipitation fields considering O \/:\Y-M—- -
the period 1961-1980 as training dataset to calculate weight ek o
and to obtain daily fields of reanalyses (1981-2000) and sce el e

narios (1981-2050).

For any given day a value is extracted randomly from the
PDF to give a unique time series of precipitation. The use
of a random extraction is justified by the large number of ;
the samplings+ 25 000 in the considered period) and by the
uncorrelation between the scenarios and the observations.

We addressed multimodel uncertainty using a MonteCarlc N —
technique: we simulated 100 realizations of the multimodel
precipitation from our empiric PDFs and we evaluated the
statistics (average and quantiles) of monthly precipitation
and yearly wet/dry periods (defined as the average numbe
of periods with precipitation above/below 1 mm lasting more ¢
than 5 days).

In the case of precipitation, the model metrics is evaluatec
on ERA40-driven models and not on GCM-driven models:
this is necessary, because we need to keep the correlation b
tween forecast and observed precipitation but, at the sam
time, we can use these PDFs to quantify how much any sin
gle model has to be corrected in order to obtain more realis ¢
tic precipitation values. On the other hand, CRPSs have bee
used to quantify how much any single model is able to re-
produce the statistical distribution of the data. In this case
we are confident to apply this two metrics evaluated on re-
analyses to scenarios, because the under/overestimation pfy. 5. comparison between trends from observations obtained with
precipitation (described by PDF) will be the same for a given optimal interpolation of Piemonte data (black lines), reanalysis runs
atmospheric pattern, both evaluated by ERA40 and by thésolid lines) and scenario runs (dashed lines) for different models
GCM, while the CRPS is the ability of a given model to re- (acronyms in Table 1) and multimodel superensemble (MMSUP)
produce distributions and we think that we can use it to as{n the period 1981-2000. Multimodel training period: 1961-1980.
sess which model has to be ascribed the highest importancélultimodel uncertainty (square root of the total multi-normal vari-
In other words, once we estimated the bias correction of £1Ce) is represented as confidence bands.
given RCM via the calculation of its PDF on a realistic syn-
optic evaluation as represented by ERA40, we are assgmipg 3. the introduction of a “
that the GCMs are able to reproduce the correct synoptic cli-
matology, on the average, over a period of 20yr: so we ap-
ply the weights calculated by ERA40 on the GCMs. Please
notice that, while the weights of the standard multimodel su-
perensemble techniques require the contemporary evaluation4. this technique does not ensures automatically the com-
of any given model weight, in this case the CRPSs are evalu-  prehensive bias correction, because in this case the cor-
ated independently, and only eventually we calculate the in-  rection is “forecast depending”: the multimodel final
verse and normalise these inverses to obtain the weighting. bias has to be checked on annual and short-time ranges.

Again, here we state the limitations of our technique:

| — Obs —— CNRMReA --- CNRM Scn |

285 286 267 288 289
285 266 267 288 289

a.
e =

A L H N J/a\
" \EAPAWBAUSRES Ly
SRR O

tm:
tmax

282 283 284
282 283 284

Ey
by
g

1996

‘ — Obs ETHZ ReA ETHZ Sen | | — Obs KNMI ReA KNMI Scn |

262 283 284 285 286 287 288 289
< i
tmax

282 283 284 285 286 267 288 289

EX 1986 1991 1906 1981 1986 1991 1906
year year

‘ — Obs MPIReA MPI Sen |

A

1981 1986 1991 1996 1981 1986 1991 1906
year year

| — Obs B MMSUP ReA =2 MMSUP Scn

262 263 284 285 286 287 288 289
tmax
262 283 284 285 286 287 268 289

polling” can interrupt dry and wet
day continuous series, then the consecutive wet days
number and consecutive dry days number have to be
checked;

1. the data must be evaluated on a monthly basis, with ag-
. . 3 Results
gregation on a long period,;
3.1 High resolution data in Piedmont
2. they cannot be used for extreme precipitation events be-
cause of the averaging effect (although reduced by théVe tested the technique on the past data, splitting the con-
use of the PDFs); trol period of the models into two halves: the first one
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The results of the multimodel superensemble seem to be
quite consistent in term of average values, although we can-
not assure that our ensemble is able to catch all the variability
of the underlying climate, because the number of ensemble
members is limited and they are “best effort” simulations,
trying to asses a realistic behaviour of the climate, rather than
a perturbed physics ensemble trying to span the uncertainties
of the modelling system (according to the terminology by
Knutti et al., 2010).

The Walter and Lieth (1960-1967) diagrams referred to
precipitation produced by climate models show very strong
biases (up to 200 % during winter months) in the Alpine re-
gion when compared with observations. In Fig. 7 we compare
the Walter and Lieth diagrams after removing each model
yearly averaged bias, to obtain a fair comparison with multi-
model which is almost unbiased. Multimodel does not show
very large biases in any month and reproduces the precipita-
tion annual distribution quite well, both in time and amount.
Only two input models out of seven have quite comparable
skill, not taking into account their large average biases.

Nevertheless, the multimodel post-processing of precipita-
tion allows correcting the statistical properties of the models
to reduce the strong models biases, to reproduce the correct
precipitation monthly statistics and the average number of
consecutive dry periods (more than 5 days without precipita-
tion, namely< 1 mm), Fig. 8.

On the other hand, itis less effective in reproducing the ob-
served average number of consecutive wet periods defined as
more than 5 days with precipitation larger than 1 mm. Being
that in the Southern Alps the probability of having a dry day

Fig. 6. Comparison between seasonal component from observation§and therefore to extract a dry day and interrupt a wet days
obtained with optimal interpolation of Piemonte data (black lines), Series) is much higher than the probability of having a wet
reanalysis runs (solid lines) and scenario runs (dashed lines) for difday (and then to interrupt a dry day series), the probabilistic
ferent models (acronyms in Table 1) and multimodel superensemblgampling from the multimodel PDF can introduce a gap in a
(MMSUP) in the period 1981-2000. Multimodel training period: continuous series of wet days. We are evaluating a technique

1961-1980. Multimodel uncertainty (square root of the total multi- {5 ayoid this problem by substituting the “white noise” ran-
normal variance) is represented as confidence bands.

dom number generation used to extract the values from the
distribution with a function describing the correct correlation

(1961-1980) was used as training period, the second onbetween the consecutive days of rain, but this work is still
(1981-2000) as forecast period.
We decomposed the models and multimodel time series Figures 9-11 show the difference between the multimodel
in the trends and seasonal components with the Seasonaliperensemble scenario data averaged over the period 2031—

Decomposition of Time Series by LOESS (Cleveland et al.,2050 with respect to the period 1981-2000, as a function of
1990) and compared them with the observation series.
The multimodel superensemble temperature fields show @onsistency, but the scenario is very close to observations).

ongoing.

the season (comparison was made on the scenario for better

very good reduction of model biases (Fig. 5) and a very closeThe scenario projection shows a significant increase of the
reproduction of the temperature monthly statistics (Fig. 6).temperatures over the region. This increase is shown also by
In this paper we show only the validation results of the max-the original RCMs, but the post-processed data allow a better
imum temperature, but those of minimum temperature havecharacterization of the Alpine region, with an increasing and
identical skill. Please notice that, in the control period, the more realistic variance of temperature variations as a func-
reanalyses and scenario runs from the models show not onl§ion of the altitude, thanks to the calibration with observa-
strong biases towards the observed temperature but, mor#&ons.

worrying, the trends sometime differ in a very significant  In particular, maximum temperatures averaged in the study
way, and the reanalysis and scenario runs from the samarea show a significant increase in winte10(8°C), spring
model very often show a different behaviour. (+1.4°C), summer £1.6°C) and autumn-£1.2°C limited
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Fig. 7. Walter and Lieth diagrams of the models and multimodel (MMSUP) for the values averaged over Piedmont Ol grid points, period
1981-2000. The yearly averaged bias was subtracted from each monthly value. Multimodel uncertainty is represented as boxplots of the
precipitation in the MonteCarlo experiment (5th, 25th, 50th, 75th, 95th percentiles are shown).

to the mountains). Maximum temperatures during spring and3.2 The greater Alpine area perspective
summer increase more on the plains than in the mountains.

Minimum temperatures show a significant increase in win-To enlarge our perspective, we applied the same techniques
ter (+1.1°C), spring ¢-1.3°C), summer {£1.8°C) and au-  to the whole Alpine areas included in the GAR region. As
tumn (+1.3°C limited to the mountains). Minimum temper- mentioned above, the reference observations were extracted
atures during autumn and winter increase more on the plainfrom the E-OBS dataset, and a preliminary comparison was
than in the mountains. made with the higher resolution gridded dataset covering

Precipitations on the annual scale show a slight decreasPiedmont region to check their compatibility over the com-
(not statistically significant with 95% confidence level), mon geographical area. Very few meteorological stations
while on a seasonal basis they show a significant decrease ilsed to produce the two dataset are in common, so they can
spring <9 mm month® only in the western Alps), summer be considered independent each other.

(—22mmmonth?), with few differences among mountains  The two datasets agree very well in the trends of maxi-
and plains and in autumn-@6 mmmonth* limited to the  mum and minimum temperatures and also maximum tem-
mountains). perature absolute value, while the Ol minimum temperatures
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Fig. 8. (top) Number of dry periods (5 consecutive days with precip- Fig. 10. Difference between the multimodel superensemble sce-
itation < 1 mm)/year for reanalysis (left) and scenario (right); (bot- nario minimum temperatures averaged over the period 2031-2050
tom) number of wet periods (5 consecutive days with precipitationith respect to the period 1981-2000, as a function of the season
> 1 mm)/year for reanalysis (left) and scenario (right); input mod- (7 test conf. level 95 %) in Piemonte region. In the upper left boxes

els (colours), multimodel (blue) and observations (black), periodoverall averages over significant points and altitude bands averages
1981-2000. Precipitation is calculated as the average over the PieGre shown.

mont grid points. Multimodel uncertainty is represented as boxplots
of the dry/wet mean number of days in the MonteCarlo experiment _
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Fig. 11. Difference between the multimodel superensemble sce-
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Fig. 9. Difference between the multimodel superensemble scenaridevel 95 %) in Piemonte region. In the upper left boxes overall aver-

maximum temperatures averaged over the period 2031-2050 witlages over significant points and altitude bands averages are shown.

respect to the period 1981-2000, as a function of the sed8on (

test conf. level 95 %) in Piemonte region. In the upper left boxes

overall averages over significant points and altitude bands averages Precipitations agree quite reasonably if we take into ac-
are shown. count the average over the whole common area, but when we
look at specific points in the higher mountains, the climate
. regime described by the two dataset is quite different, then
are warmer than the E-OBS ones by almo%t1The differ- thg comparison is myore difficult. q
ences can be explained only partially with a different average First of all, we repeated the validation of the multimodel
terlli\r/?rtll\?:s(t)if g:ﬁ);wo datasets, and will be the object of a fur- results in the control period, with the same agreement already
9 ' . . . . shown for the high resolution dataset.
Anyway, we are mainly interested in variations rather Figures 12-14 show the difference between the multi-
than absolute values, then the strong agreement between tpﬁ\

dataset trends in t ¢ I ‘ del superensemble scenario data averaged over the period
ataset trends in temperature allows for a comparison. 2031-2050 with respect to the period 1981-2000, as a func-

tion of the season.
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£
ion

Fig. 12. Difference between the multimodel superensemble sce-Fig. 14. Difference between the multimodel superensemble sce-
nario maximum temperatures averaged over the period 2031-2050ario precipitation averaged over the period 2031-2050 with respect
with respect to the period 1981-2000, as a function of the seasoto the period 1981-2000, as a function of the seagotest conf.

(T test conf. level 95 %) in the GAR area. level 95 %) in the GAR area.

The decrease shown by the GAR data is quite light compared
to the one described by the high resolution dataset. We can-
not then drive a definitive conclusion about the precipitation
behaviour from these two different evaluations.

3.3 Conclusions and future developments

Multimodel techniques can be used fruitfully to better evalu-
ate the climatic parameters in complex orography regions.
Multimodel superensemble provides a good estimation of
temperature and data in Piedmont, with a very good reduc-
tion of the biases and a good reproduction of the monthly
variations. We introduced here the first application of a new

Fig. 13. Difference between the multimodel superensemble sce-probabilistic multimodel superensemble dressing to precipi-

nario minimum temperatures averaged over the period 2031-205@ation, providing a reasonably good estimation of the precip-

with respect to the period 1981-2000, as a function of the seasoitation regime in Piedmont.

(T test conf. level 95 %) in the GAR area. We evaluated and validated the multimodel results on two
independent datasets, the E-OBS dataset and an high resolu-
tion optimal interpolation of the Piedmont station data.

The minimum and maximum temperatures show an in- Regarding the common geographical area of the two cal-
creasing trend everywhere, not always significant, in partic-ibration datasets (Piedmont), the temperatures show similar
ular in spring and autumn. During summer and winter thebehaviour in the mid-XXI century scenario, with a general
major increases occur in the southern part of the dominiumjncrease compared with the control period, significant in all
with temperature increases up t6@50yr in the Po valley.  the seasons except for autumn. The Ol data show stronger

If we compare the results in Piedmont with the result from increases in the higher elevation, while the E-OBS data have
the OlI, we can see that the GAR signal is similar but weakerthe same signal with no elevation dependence.
and flatter, with less emphasis on the Alpine chain. On the other hand, precipitation variations in the scenario

As in the Ol case, the annual precipitation average overdepend more on the observations used for the calculation of
the GAR area does not vary in a significant way, and a sig-the multimodel. In both calibrations, precipitation is not pro-
nificant decrease can be seen only in spring. The timing ofected to change significantly at an annual scale, while at
the precipitation decrease differs from that observed on the seasonal scale we found a decrease in summer precipita-
Ol grid, and this mismatch can arise from the different pre-tion as regards the Ol dataset and in spring about the E-OBS
cCipitation regimes as seen by the two observation datasetslataset.
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2027

As concerns the Greater Alpine Region, the projection toCleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I.:

the mid-XXI century shows a quite uniform temperature in-

STL: A seasonal-trend decomposition procedure based on loess,

crease between plain and mountain regions in all the seasons, Journal of Official Statistics, 6, 3-73,1990.
except than in spring, when the increase is significant only inCoppola, E., Giorgi, F., Rauscher, S.-A., and Piani, C.. Model
the mountains. Precipitation does not show any significant weighting based on mesoscale structures in precipitation and

annual variation, and on a seasonal basis it shows a signifi-

cant decrease in spring only.

relation of the daily precipitation and to allow a more cor-
rect random extraction of a given day from the multimodel-
corrected PDF.

We will also test the application of the new multimodel su-

temperature in an ensemble of regional climate models, Clim.
Res., 44, 121-134, 2010.

, . . Feng, J., Lee, D.-K,, Fu, C., Tang, J., Sato, Y., Kato, H., Mcgregor,
We are evaluating a technique to better describe the cor- g g greg

J. L., and Mabuchi, K.: Comparison of four ensemble methods
combining regional climate simulations over Asia, Meteorol. At-
mos. Phys., 111, 41-53, 2011.

Giorgi, F. and Mearns L. O.: Calculation of average, uncertainty

range, and reliability of regional climate changes from AOGCM

perensemble dressing technique to temperature data, in order simulations via the “reliability ensemble averaging” (REA)

to allow a comparison with the standard techniques.

method, J. Climate, 15, 1141-1158, 2002.

Several impact studies are ongoing with the use of thes&laylock, M. R., Hofstra, N., Klein Tank, A. M. G,, Klok, E. J.,

data, about mountain hydrology, wildfire potential, per-
mafrost, Alpine lakes biology, mountain biodiversity, heat
waves.

Jones, P. D., and New, M.: A European daily high-resolution
gridded dataset of surface temperature and precipitation, J. Geo-
phys. Res. Atmos., 113, D20119, di):1029/2008JD010201
2008.

Kalnay, E.: Atmospheric modeling, data assimilation and pre-
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