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Abstract. The climatic scenarios show a strong signal of
warming in the Alpine area already for the mid-XXI century.
The climate simulations, however, even when obtained with
regional climate models (RCMs), are affected by strong er-
rors when compared with observations, due both to their dif-
ficulties in representing the complex orography of the Alps
and to limitations in their physical parametrization.

Therefore, the aim of this work is to reduce these model bi-
ases by using a specific post processing statistic technique, in
order to obtain a more suitable projection of climate change
scenarios in the Alpine area.

For our purposes we used a selection of regional climate
models (RCMs) runs which were developed in the frame-
work of the ENSEMBLES project. They were carefully cho-
sen with the aim to maximise the variety of leading global
climate models and of the RCMs themselves, calculated on
the SRES scenario A1B. The reference observations for the
greater Alpine area were extracted from the European dataset
E-OBS (produced by the ENSEMBLES project), which have
an available resolution of 25 km. For the study area of Pied-
mont daily temperature and precipitation observations (cov-
ering the period from 1957 to the present) were carefully
gridded on a 14 km grid over Piedmont region through the
use of an optimal interpolation technique.

Hence, we applied the multimodel superensemble tech-
nique to temperature fields, reducing the high biases of
RCMs temperature field compared to observations in the
control period.

We also proposed the application of a brand new prob-
abilistic multimodel superensemble dressing technique, al-
ready applied to weather forecast models successfully, to
RCMS: the aim was to estimate precipitation fields, with

careful description of precipitation probability density func-
tions conditioned to the model outputs. This technique al-
lowed for reducing the strong precipitation overestimation,
arising from the use of RCMs, over the Alpine chain and to
reproduce well the monthly behaviour of precipitation in the
control period.

1 Introduction

The Alps are a region very sensitive to the impacts of climate
change: the temperatures increased here more than the world
average (Ciccarelli et al., 2008) and the projections for the
XXI century show again an increase higher than the average.

Piedmont region is located in north-western Italy, at the
south-western edge of the Alpine chain. The Environmen-
tal Protection Agency of Piedmont region is in charge of
producing reliable scenarios of the variation of climatic
parameters in the changing climate, to allow the evalua-
tion of the impacts on mountain hydrology (project AC-
QWA, www.acqwa.ch), on the wildfire potential (project
ALPFFIRS, www.alpffirs.eu, for more details see Cane et
al., 2013a), on the permafrost (project PERMANETwww.
permanet-alpinespace.eu/), on the Alpine lakes (project
SILMAS, www.silmas.eu), on mountain biodiversity (EU-
INTERREG project “Biodiversit̀a una risorsa da conser-
vare”), on heat waves in the Po Valley towns (Nicolella and
Cane, 2012) and on any other study of impacts affecting the
regional environment.

The temporal target of our work is the mid-XXI century,
to drive conclusions that can be used for tangible adaptation
measures to climate change in a reasonable time.
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Then we chose to focus on a single scenario instead of a
range of different scenarios as, for our time interval of inter-
est, the largest variations occur among the different models,
while the different scenarios do not differ so much (Randall
et al., 2007).

In this work we applied multimodel techniques on several
regional climate model (RCM) outputs, which are combined
together to obtain collective evaluations.

Multimodel combination is a pragmatic approach to es-
timating model uncertainties and to make climate projec-
tions more reliable. Their use in the climatic simulations is
recommended by the Intergovernmental Panel on Climate
Change (Knutti et al., 2010). The simplest multimodel tech-
nique is the “Poor Man Ensemble”, which is an average of
different models, without any bias correction or weighting
(“equal weighting”), while more sophisticated approaches
suggest applying model weights according to some measure
of performance (“optimum weighting”). The results confirm
that equally weighted multimodels on average outperform
the single models (Krishnamurti et al., 1999, 2000; Yun et
al., 2003), and that projection errors can in principle be fur-
ther reduced by optimum weighting. However, this not only
requires accurate knowledge of the single model skill, but
the relative contributions of the joint model error and unpre-
dictable noise also need to be known to avoid biased weights
(Weigel et al., 2010). Many weighting procedures were pro-
posed on seasonal, decadal and climatic models (Giorgi and
Mearns, 2002; Palmer et al., 2004; Coppola et al., 2010; Feng
et al., 2011). Christensen et al. (2010) showed that the use of
model weights is sensitive to the aggregation procedure and
showed different sensitivities to the selected metrics. They
did not find compelling evidence of an improved description
of mean climate states using performance-based weights in
comparison to the use of equal weights. They suggested that
model weighting adds another level of uncertainty to the gen-
eration of ensemble-based climate projections, which should
be suitably explored, although their results indicate that this
uncertainty remains relatively small for the weighting proce-
dures examined.

Our evaluation is based on regional climate models
(RCMs) calculated by the EU project ENSEMBLES on the
SRES scenario A1B basis: all the model runs refer to the
same grid including Europe.

We established two study areas: the greater Alpine area
(GAR, Fig. 1), including all the Alps (coordinates: 3.00–
20.25◦ E, 41.50–51.25◦ N, and a smaller box covering Pied-
mont region (OI, Fig. 2) with higher resolution data (coordi-
nates: 6.5625–9.4375◦ E, 44.0625–46.4375◦ N).

The reference observations for the GAR are extracted from
the European gridded dataset E-OBS produced by the EU
project ENSEMBLES (Haylock et al., 2008). Daily tempera-
ture and precipitation observations (covering the period from
1961 to the present) which are derived from this dataset are
available at a resolution of 25 km.

 

Acronym Reg. Clim. Model Global Clim. Model Run by 

DMI HIRHAM5 Arpege Danish Meteorological Institute 

ICTP REGCM3 ECHAM5 The Abdus Salam Intl. Centre for Theoretical Physics 

HC HadRM3Q0 HadCM3Q0 Hadley Centre for Climate Prediction and Research 

CNRM RM4.5 Arpege Météo-France CNRM/GMGEC/EAC 

ETHZ CLM HadCM3Q0 Swiss Institute of Technology (ETHZ) 

KNMI RACMO2 ECHAM5 The Royal Netherlands Meteorological Institute 

MPI REMO ECHAM5 Max Plank Institute - Hamburg 

 

Table 1: the models used in the Multimodel SuperEnsemble evaluation 

 

 

 

 

 
Fig. 1 the Greater Alpine Area map 

 

Fig. 1.The greater Alpine area map.

For the study area of Piedmont, daily temperature and pre-
cipitation observations (covering the period from 1957 to the
present), collected by the Environmental Protection Agency
of Piedmont region, were carefully gridded on a 14 km grid
over Piedmont region by using an optimal interpolation (OI)
technique. More details can be found in Sect. 2.

In the multimodel superensemble technique (Krishnamurti
et al., 1999) the models are unbiased and weighted with an
adequate set of weights calculated during the so-called train-
ing period, with comparison to the observations. This tech-
nique is widely applied to weather forecast models (an ex-
ample in Piedmont can be found in Cane and Milelli, 2006)
and to seasonal climate forecasts (Krishnamurti et al., 2000).
The standard multimodel superensemble technique was here
applied to the temperature fields regarding the period 1961–
1980 as training dataset to calculate weights and to obtain
daily fields of reanalyses (1981–2000) and scenarios (1981–
2050).

A new probabilistic multimodel superensemble dressing,
with careful description of precipitation probability density
functions conditioned to the model outputs was applied to
the precipitation fields. This technique allows for a better cor-
rection of precipitation biases depending on the value of the
forecast precipitation. For more details, please see Sect. 2.

The multimodel uncertainty evaluation is usually ad-
dressed by multimodel uncertainty post-processors like the
Bayesian Model Averaging (BMA) introduced by Raftery et
al. (2003, 2005) and the Model Conditional Processor (MCP)
developed by Todini (2008).

In this work, we applied a simple evaluation of multimodel
uncertainty on the multimodel superensemble technique in
the hypothesis of multi-normal distribution. In the case of the
probabilistic multimodel superensemble dressing the model
uncertainty was evaluated directly by using a MonteCarlo
technique (see Sect. 2 for more details).

In Sect. 3 we described our results, first of all through a
validation of the multimodel techniques in the control period
in Piedmont region, and then evaluating the future scenario
both in Piedmont and in the whole Alpine area.

Hydrol. Earth Syst. Sci., 17, 2017–2028, 2013 www.hydrol-earth-syst-sci.net/17/2017/2013/
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Fig. 2 the Optimal Interpolation map 
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Fig. 3: scheme of the standard Multimodel SuperEnsemble technique. 
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Fig. 2.The optimal interpolation map. In the detailed map the grid-
point elevation (m) is showed.

2 Available data and description of the technique

2.1 Regional climate models and large scale
observed data

The RCMs simulations used in this paper are a selection of
7 RCMs runs resulting from the ENSEMBLES project (Ta-
ble 1), carefully chosen in order to maximise the variety
of leading global climate models and of the RCMs them-
selves, and with a data amount compatible with our elabora-
tion and storage facilities. Models descriptions can be found
athttp://ensemblesrt3.dmi.dk/.

For each model, the reanalysis runs from the ECMWF
ERA-40 reanalysis (1961–2000) and the scenario runs
(1961–2100) on SRES scenario A1B are available on a com-
mon grid at a resolution of 25 km.

We interpolated the daily data from the models on the
GAR and OI domains as defined in the Introduction, with
a simple bi-linear interpolation. The use of such an inter-
polating technique can introduce biases, but the multimodel
techniques include a bias removal before applying the model
average.

As for observation data, in this study we employed the
E-OBS dataset, produced by the EU project ENSEMBLES.
This dataset is an European land-only daily high-resolution
gridded data set for precipitation and minimum, maximum,
and mean surface temperature which spans from 1950 to the
present. The data set has been designed to provide the best es-
timate of grid box averages rather than point values to enable
direct comparison with RCMs (here the 25 km resolution
dataset is employed). The authors employ a three-step pro-
cess of interpolation, by first interpolating the monthly pre-
cipitation totals and monthly mean temperature using three-
dimensional thin-plate splines, then interpolating the daily
anomalies using indicator and universal kriging for precipi-
tation and kriging with an external drift for temperature, then
combining the monthly and daily estimates. Interpolation un-
certainty is quantified by the provision of daily standard er-
rors for every grid square.

2.2 Optimal interpolation of Piedmont data

Regarding the gridded dataset of daily temperature and pre-
cipitation data over Piedmont, an optimal interpolation (OI)
technique was used to assimilate the row and high density
ground station data, arbitrarily displaced in the region, on a
selected regular three-dimensional grid map based on a back-
ground field (BF) (Kalnay, 2003).

Only for temperature, the background field is obtained by a
linear tri-dimensional downscaling of ERA-40 archive span-
ning from 1957 to 2001 and of the ECMWF objective analy-
sis from 2002 to 2009 on a selected grid (0.125◦ resolution,
with careful description of the complex orography of the re-
gion).

The use of ERA-40 on the regional area is suggested by
checking that the main climatological signals (trends, etc.)
were congruent with the signals resulted from a station subset
working in the period 1950–2000 in Piedmont (Ciccarelli et
al., 2008). Where this preliminary congruence checking was
not clear (i.e. for precipitation) the row station data them-
selves provided the background field at first level of gridding
process.

The method enables to weight the contribute to the temper-
ature/precipitation value on each grid point from the near-
est observation data, through suitable parameters. A care-
ful modulation of these parameters as a function of the data
density and the use of an external background field help to
achieve the time homogeneity and the spatial coherence of
the final dataset.

2.3 Standard multimodel superensemble technique on
temperature fields

The conventional superensemble forecast (Krishnamurti et
al., 2000) constructed with bias-corrected data is given by

S = O +

N∑
i=1

ai

(
Fi − Fi

)
. (1)

WhereFi is the ith model forecast,Fi is the mean of the
ith forecast over the training period,O is the observed mean
over the training period,ai are regression coefficients ob-
tained by a minimisation procedure during the training pe-
riod, andN is the number of forecast models involved.

The calculation of the parametersai is given by the min-
imisation of the mean square deviation in the training pe-
riod T . The sets of parameterai are estimated for each single
pixel and not as an overall weighting of models as in BMA,
hence the number of parameters is very high: the number of
models times the number of pixels.

G =

T∑
k=1

(Sk − Ok)
2 (2)

www.hydrol-earth-syst-sci.net/17/2017/2013/ Hydrol. Earth Syst. Sci., 17, 2017–2028, 2013

http://ensemblesrt3.dmi.dk/


2020 D. Cane et al.: Regional climate models downscaling in the Alpine area

Table 1.The models used in the multimodel superensemble evaluation.

Acronym Reg. Clim. Model Global Clim. Model Run by

DMI HIRHAM5 Arpege Danish Meteorological Institute
ICTP REGCM3 ECHAM5 The Abdus Salam Intl. Centre for Theoretical Physics
HC HadRM3Q0 HadCM3Q0 Hadley Centre for Climate Prediction and Research
CNRM RM4.5 Arpege Ḿet́eo-France CNRM/GMGEC/EAC
ETHZ CLM HadCM3Q0 Swiss Institute of Technology (ETHZ)
KNMI RACMO2 ECHAM5 The Royal Netherlands Meteorological Institute
MPI REMO ECHAM5 Max Plank Institute – Hamburg

By derivation
(

∂G
∂ai

= 0
)
, we obtain a set ofN equations,

whereN is the number of models involved.
We then solve these equations using Gauss–Jordan method

(Press et al., 1992).
A scheme of the technique can be found in Fig. 3.
The standard multimodel superensemble technique was

applied to the temperature fields by using the period 1961–
1980 as training dataset to calculate weights and to obtain
daily fields of reanalyses (1981–2000) and scenarios (1981–
2050).

ERA-40-driven RCMs have specific weights calculated
from the comparison between their daily values in the train-
ing period and observations, GCM-driven RCMs have dif-
ferent weights calculated from their own values. The weights
and biases are calculated independently for each model and
grid-point, but do not depend on time (i.e. we applied the
same bias correction and weights for any day of the year).

While in the ERA-40-driven model data we can expect a
certain degree of correlation between model data and obser-
vations, in the scenario-driven models the difference between
the model and the observed values are partly due to the spe-
cific parametrization of each numerical model and partly due
to the necessary uncorrelation between GCM scenarios and
reality. So, the weights we calculated are not employed to
disentangle these contributions, but rather to evaluate which
is the best way to average the two different contributions in
order to obtain the best approximation of observations (al-
ways on average). While applying multimodel superensem-
ble, we are making two strong hypotheses:

1. for any given point, the (annual averaged) biases of the
models in the future scenario will remain the same way
they were in the past scenario (training period);

2. for any given point, the weights of the models, hence
their relative contribution to the final result, will remain
the same. From our experience, if you are using fixed
weights for a multimodel, it is better to have the largest
possible training period; whereas if you are interested
in a better correction, you must use short statistics close
to the forecast period you are interested in (Cane and
Milelli, 2006).
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Fig. 3: scheme of the standard Multimodel SuperEnsemble technique. 
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Fig. 3. Scheme of the standard multimodel superensemble tech-
nique.

We tested the temperature conditional probability density
in the very begin of our work and, as expected, it is very close
to a normal distribution. The combination of many models
to a resulting multi-normal distribution can introduce het-
eroscedasticity in our multimodel: heteroscedasticity does
not cause ordinary least squares coefficient estimates to be
biased, although it can cause ordinary least squares estimates
of the variance of the coefficients to be biased, possibly above
or below the true population variance.

We evaluated the multimodel superensemble dressing un-
certainty with a explicit calculation of the model vari-
ances and covariances in the training period, and combining
them with the multimodel weights to obtain the final mul-
timodel variance (here calculated in the hypothesis of non-
independent models):

σ 2
MM =

N∑
i,j

aiajσ
2(

Fi,Fj

)
. (3)

The use of any kind of metrics on multimodel evaluation
highlights some features of the ensemble and carries with
it some limitations (Knutti et al., 2010). Multimodel su-
perensemble technique on RCMs data imposes a very simple
metrics (a weighted average of un-biased models), which is
quite straightforward and the results can be interpreted very
easily, but brings some limitations about the use of the out-
puts:

Hydrol. Earth Syst. Sci., 17, 2017–2028, 2013 www.hydrol-earth-syst-sci.net/17/2017/2013/
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1. the results should be bias-free on a long time scale and
can be used averaged over long periods;

2. the extremes of the distribution can be underestimated
or overestimated, hence the multimodel data cannot be
used for the evaluation of distribution extremes;

3. the data are evaluated independently for each gridpoint.
This means that nearby points can have un-correlated
corrections, but at the same time the contribution of the
data to the models via the multimodel permits to correct
the scenarios in a very punctual position, hence allow-
ing for a better representation of local features such the
topography of the Alpine chain. The bias reduction ac-
counts for the major part of the error reduction, while
the better representation of the monthly cycle is mainly
due to the averaging effect of the different models. In
both cases, anyway, the correction is spread over a long
time.

An evaluation of the models in the control period is available
in Sect. 3.

2.4 Probabilistic multimodel superensemble dressing
on precipitation field

A new probabilistic multimodel superensemble dressing,
with ad hoc description of precipitation probability density
functions (PDFs) conditioned to the model outputs was ap-
plied to the precipitation fields.

We followed this algorithm:

1. We took the ERA40-driven RCMs and compared them
with the observed precipitation on all grid points.

2. We considered all the days and points where the model
produces a given precipitation.

3. We built the distribution of the observed values of that
days/points (with bins of width±0.5 mm around the
central value).

4. We repeated for any reasonable forecast value (up to
300 mm day−1).

5. We fitted the distributions so obtained with a set of func-
tions, finding that the Weibull function is the best one to
represent all of the distributions among a large set of
possible candidates.

6. We interpolated and extrapolated the observed distribu-
tions to obtain all possible distributions for all forecast
values and we obtain the function PDF (F ), whereF is
the precipitation forecast value.

7. We calculated the individual RCMs continuous ranked
probability scores (CRPS) from ERA40-driven models.
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Fig. 4: scheme of the probabilistic Multimodel SuperEnsemble Dressing technique, example for a 

given day: Probability Density Function of observed data conditioned to different models and 

forecast values, together with the final Probability Density Function evaluated with Multimodel. 

 

 

 

 

Fig. 4. Scheme of the probabilistic multimodel superensemble
dressing technique, example for a given day: probability density
function of observed data conditioned to different models and fore-
cast values, together with the final probability density function eval-
uated with multimodel.

8. We calculated the weights as the inverse of the CRPSs,
and we normalized them according to Eq. 4, whereai

are now the weights of the multimodel superensemble
dressing:

1

ai

=

1
CRPSi

N∑
i

1
CRPSi

. (4)

9. We applied the model-specific PDFs and the weights to
the GCM-driven models to obtain weighted PDFs:

PDFMM =

N∑
i

aiPDFi(Fi). (5)

Figure 4 shows an example of our technique evaluated on
an ensemble of four models. For any given value of pre-
cipitation forecasted by the model, a model-specific PDF
is evaluated (here shown in brown, blue, yellow and pink),
and the final multimodel PDF is obtained with the correct
weights (in green). The vertical lines represent the original
“deterministic” value, while the green vertical line associ-
ated with the multimodel distribution is the average of the
multimodel PDF. The obtained average value can differ sig-
nificantly from the rude average of the input models (the so-
called Poor Man Ensemble), but the availability of a bias-
corrected PDF also allows for widening the ensemble spread,
trying to correct the under-dispersion of the multimodel en-
semble (in this example).

This technique allows for a better correction of precipita-
tion biases depending on the value of the forecast precipi-
tation. For more details and a verification on weather fore-
cast models, please refer to Cane and Milelli (2010). Multi-
model superensemble dressing precipitation data were used

www.hydrol-earth-syst-sci.net/17/2017/2013/ Hydrol. Earth Syst. Sci., 17, 2017–2028, 2013
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successfully to drive an hydrological model and performed
better than those obtained with the BMA approach (Cane et
al., 2013b).

The probabilistic multimodel superensemble dressing
technique was applied to the precipitation fields considering
the period 1961–1980 as training dataset to calculate weights
and to obtain daily fields of reanalyses (1981–2000) and sce-
narios (1981–2050).

For any given day a value is extracted randomly from the
PDF to give a unique time series of precipitation. The use
of a random extraction is justified by the large number of
the samplings (∼ 25 000 in the considered period) and by the
uncorrelation between the scenarios and the observations.

We addressed multimodel uncertainty using a MonteCarlo
technique: we simulated 100 realizations of the multimodel
precipitation from our empiric PDFs and we evaluated the
statistics (average and quantiles) of monthly precipitation
and yearly wet/dry periods (defined as the average number
of periods with precipitation above/below 1 mm lasting more
than 5 days).

In the case of precipitation, the model metrics is evaluated
on ERA40-driven models and not on GCM-driven models:
this is necessary, because we need to keep the correlation be-
tween forecast and observed precipitation but, at the same
time, we can use these PDFs to quantify how much any sin-
gle model has to be corrected in order to obtain more realis-
tic precipitation values. On the other hand, CRPSs have been
used to quantify how much any single model is able to re-
produce the statistical distribution of the data. In this case
we are confident to apply this two metrics evaluated on re-
analyses to scenarios, because the under/overestimation of
precipitation (described by PDF) will be the same for a given
atmospheric pattern, both evaluated by ERA40 and by the
GCM, while the CRPS is the ability of a given model to re-
produce distributions and we think that we can use it to as-
sess which model has to be ascribed the highest importance.
In other words, once we estimated the bias correction of a
given RCM via the calculation of its PDF on a realistic syn-
optic evaluation as represented by ERA40, we are assuming
that the GCMs are able to reproduce the correct synoptic cli-
matology, on the average, over a period of 20 yr: so we ap-
ply the weights calculated by ERA40 on the GCMs. Please
notice that, while the weights of the standard multimodel su-
perensemble techniques require the contemporary evaluation
of any given model weight, in this case the CRPSs are evalu-
ated independently, and only eventually we calculate the in-
verse and normalise these inverses to obtain the weighting.

Again, here we state the limitations of our technique:

1. the data must be evaluated on a monthly basis, with ag-
gregation on a long period;

2. they cannot be used for extreme precipitation events be-
cause of the averaging effect (although reduced by the
use of the PDFs);

 
Fig. 5: comparison between trends from observations obtained with Optimal Interpolation of 

Piemonte data (black lines), reanalysis runs (solid lines) and scenario runs (dashed lines) for 

different models (acronyms in Table 1) and Multimodel SuperEnsemble (MMSUP) in the period 

1981-2000. Multimodel training period: 1961-1980. Multimodel uncertainty (square root of the 

total multi-Normal variance) is represented as confidence bands. 

Fig. 5.Comparison between trends from observations obtained with
optimal interpolation of Piemonte data (black lines), reanalysis runs
(solid lines) and scenario runs (dashed lines) for different models
(acronyms in Table 1) and multimodel superensemble (MMSUP)
in the period 1981–2000. Multimodel training period: 1961–1980.
Multimodel uncertainty (square root of the total multi-normal vari-
ance) is represented as confidence bands.

3. the introduction of a “polling” can interrupt dry and wet
day continuous series, then the consecutive wet days
number and consecutive dry days number have to be
checked;

4. this technique does not ensures automatically the com-
prehensive bias correction, because in this case the cor-
rection is “forecast depending”: the multimodel final
bias has to be checked on annual and short-time ranges.

3 Results

3.1 High resolution data in Piedmont

We tested the technique on the past data, splitting the con-
trol period of the models into two halves: the first one
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Fig. 6: comparison between seasonal component from observations obtained with Optimal 

Interpolation of Piemonte data (black lines), reanalysis runs (solid lines) and scenario runs (dashed 

lines) for different models (acronyms in Table 1) and Multimodel SuperEnsemble (MMSUP) in the 

period 1981-2000. Multimodel training period: 1961-1980. Multimodel uncertainty (square root of 

the total multi-Normal variance) is represented as confidence bands. 

Fig. 6.Comparison between seasonal component from observations
obtained with optimal interpolation of Piemonte data (black lines),
reanalysis runs (solid lines) and scenario runs (dashed lines) for dif-
ferent models (acronyms in Table 1) and multimodel superensemble
(MMSUP) in the period 1981–2000. Multimodel training period:
1961–1980. Multimodel uncertainty (square root of the total multi-
normal variance) is represented as confidence bands.

(1961–1980) was used as training period, the second one
(1981–2000) as forecast period.

We decomposed the models and multimodel time series
in the trends and seasonal components with the Seasonal
Decomposition of Time Series by LOESS (Cleveland et al.,
1990) and compared them with the observation series.

The multimodel superensemble temperature fields show a
very good reduction of model biases (Fig. 5) and a very close
reproduction of the temperature monthly statistics (Fig. 6).
In this paper we show only the validation results of the max-
imum temperature, but those of minimum temperature have
identical skill. Please notice that, in the control period, the
reanalyses and scenario runs from the models show not only
strong biases towards the observed temperature but, more
worrying, the trends sometime differ in a very significant
way, and the reanalysis and scenario runs from the same
model very often show a different behaviour.

The results of the multimodel superensemble seem to be
quite consistent in term of average values, although we can-
not assure that our ensemble is able to catch all the variability
of the underlying climate, because the number of ensemble
members is limited and they are “best effort” simulations,
trying to asses a realistic behaviour of the climate, rather than
a perturbed physics ensemble trying to span the uncertainties
of the modelling system (according to the terminology by
Knutti et al., 2010).

The Walter and Lieth (1960–1967) diagrams referred to
precipitation produced by climate models show very strong
biases (up to 200 % during winter months) in the Alpine re-
gion when compared with observations. In Fig. 7 we compare
the Walter and Lieth diagrams after removing each model
yearly averaged bias, to obtain a fair comparison with multi-
model which is almost unbiased. Multimodel does not show
very large biases in any month and reproduces the precipita-
tion annual distribution quite well, both in time and amount.
Only two input models out of seven have quite comparable
skill, not taking into account their large average biases.

Nevertheless, the multimodel post-processing of precipita-
tion allows correcting the statistical properties of the models
to reduce the strong models biases, to reproduce the correct
precipitation monthly statistics and the average number of
consecutive dry periods (more than 5 days without precipita-
tion, namely< 1 mm), Fig. 8.

On the other hand, it is less effective in reproducing the ob-
served average number of consecutive wet periods defined as
more than 5 days with precipitation larger than 1 mm. Being
that in the Southern Alps the probability of having a dry day
(and therefore to extract a dry day and interrupt a wet days
series) is much higher than the probability of having a wet
day (and then to interrupt a dry day series), the probabilistic
sampling from the multimodel PDF can introduce a gap in a
continuous series of wet days. We are evaluating a technique
to avoid this problem by substituting the “white noise” ran-
dom number generation used to extract the values from the
distribution with a function describing the correct correlation
between the consecutive days of rain, but this work is still
ongoing.

Figures 9–11 show the difference between the multimodel
superensemble scenario data averaged over the period 2031–
2050 with respect to the period 1981–2000, as a function of
the season (comparison was made on the scenario for better
consistency, but the scenario is very close to observations).
The scenario projection shows a significant increase of the
temperatures over the region. This increase is shown also by
the original RCMs, but the post-processed data allow a better
characterization of the Alpine region, with an increasing and
more realistic variance of temperature variations as a func-
tion of the altitude, thanks to the calibration with observa-
tions.

In particular, maximum temperatures averaged in the study
area show a significant increase in winter (+0.8◦C), spring
(+1.4◦C), summer (+1.6◦C) and autumn (+1.2◦C limited
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Fig. 7: Walter and Lieth diagrams of the models and Multimodel (MMSUP) for the values averaged 
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Fig. 7. Walter and Lieth diagrams of the models and multimodel (MMSUP) for the values averaged over Piedmont OI grid points, period
1981–2000. The yearly averaged bias was subtracted from each monthly value. Multimodel uncertainty is represented as boxplots of the
precipitation in the MonteCarlo experiment (5th, 25th, 50th, 75th, 95th percentiles are shown).

to the mountains). Maximum temperatures during spring and
summer increase more on the plains than in the mountains.

Minimum temperatures show a significant increase in win-
ter (+1.1◦C), spring (+1.3◦C), summer (+1.8◦C) and au-
tumn (+1.3◦C limited to the mountains). Minimum temper-
atures during autumn and winter increase more on the plains
than in the mountains.

Precipitations on the annual scale show a slight decrease
(not statistically significant with 95 % confidence level),
while on a seasonal basis they show a significant decrease in
spring (−9 mm month−1 only in the western Alps), summer
(−22 mm month−1), with few differences among mountains
and plains and in autumn (−26 mm month−1 limited to the
mountains).

3.2 The greater Alpine area perspective

To enlarge our perspective, we applied the same techniques
to the whole Alpine areas included in the GAR region. As
mentioned above, the reference observations were extracted
from the E-OBS dataset, and a preliminary comparison was
made with the higher resolution gridded dataset covering
Piedmont region to check their compatibility over the com-
mon geographical area. Very few meteorological stations
used to produce the two dataset are in common, so they can
be considered independent each other.

The two datasets agree very well in the trends of maxi-
mum and minimum temperatures and also maximum tem-
perature absolute value, while the OI minimum temperatures
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Fig. 8: (top) number of dry periods (5 consecutive days with precipitation < 1 mm) /year for 

reanalysis (left) and scenario (right); (bottom) number of wet periods (5 consecutive days with 

precipitation > 1 mm) /year for reanalysis (left) and scenario (right); input models (colours), 

Multimodel (blue) and observations (black), period 1981-2000. Precipitation is calculated as the 

average over the Piedmont gridpoints. Multimodel uncertainty is represented as boxplots of the 

dry/wet mean number of days in the MonteCarlo experiment (5
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shown). 

 

 

 

Fig. 8.(top) Number of dry periods (5 consecutive days with precip-
itation< 1 mm)/year for reanalysis (left) and scenario (right); (bot-
tom) number of wet periods (5 consecutive days with precipitation
> 1 mm)/year for reanalysis (left) and scenario (right); input mod-
els (colours), multimodel (blue) and observations (black), period
1981–2000. Precipitation is calculated as the average over the Pied-
mont grid points. Multimodel uncertainty is represented as boxplots
of the dry/wet mean number of days in the MonteCarlo experiment
(5th, 25th, 50th, 75th, 95th percentiles are shown).

 
Figure 9: difference between the Multimodel SuperEnsemble  scenario maximum temperatures 

averaged over the period 2031-2050 with respect to the period 1981-2000, as a function of the 

season (T-test conf. level 95%) in Piemonte region. In the upper left boxes overall averages over 

significant points and altitude bands averages are shown. 

 

Fig. 9. Difference between the multimodel superensemble scenario
maximum temperatures averaged over the period 2031–2050 with
respect to the period 1981–2000, as a function of the season (T

test conf. level 95 %) in Piemonte region. In the upper left boxes
overall averages over significant points and altitude bands averages
are shown.

are warmer than the E-OBS ones by almost 1◦C. The differ-
ences can be explained only partially with a different average
elevation of the two datasets, and will be the object of a fur-
ther investigation.

Anyway, we are mainly interested in variations rather
than absolute values, then the strong agreement between the
dataset trends in temperature allows for a comparison.

 
Figure 10: difference between the Multimodel SuperEnsemble  scenario minimum temperatures 

averaged over the period 2031-2050 with respect to the period 1981-2000, as a function of the 

season (T-test conf. level 95%) in Piemonte region. In the upper left boxes overall averages over 

significant points and altitude bands averages are shown. 

 

 

Fig. 10. Difference between the multimodel superensemble sce-
nario minimum temperatures averaged over the period 2031–2050
with respect to the period 1981–2000, as a function of the season
(T test conf. level 95 %) in Piemonte region. In the upper left boxes
overall averages over significant points and altitude bands averages
are shown.

 
Figure 11: difference between the Multimodel SuperEnsemble  scenario precipitation averaged over 

the period 2031-2050 with respect to the period 1981-2000, as a function of the season (T-test conf. 

level 95%) in Piemonte region. In the upper left boxes overall averages over significant points and 

altitude bands averages are shown. 

 

 

 

Fig. 11. Difference between the multimodel superensemble sce-
nario precipitation averaged over the period 2031–2050 with respect
to the period 1981–2000, as a function of the season (T test conf.
level 95 %) in Piemonte region. In the upper left boxes overall aver-
ages over significant points and altitude bands averages are shown.

Precipitations agree quite reasonably if we take into ac-
count the average over the whole common area, but when we
look at specific points in the higher mountains, the climate
regime described by the two dataset is quite different, then
the comparison is more difficult.

First of all, we repeated the validation of the multimodel
results in the control period, with the same agreement already
shown for the high resolution dataset.

Figures 12–14 show the difference between the multi-
model superensemble scenario data averaged over the period
2031–2050 with respect to the period 1981–2000, as a func-
tion of the season.
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Figure 12: difference between the Multimodel SuperEnsemble  scenario maximum temperatures 

averaged over the period 2031-2050 with respect to the period 1981-2000, as a function of the 

season (T-test conf. level 95%) in the GAR area. 

 

Fig. 12. Difference between the multimodel superensemble sce-
nario maximum temperatures averaged over the period 2031–2050
with respect to the period 1981–2000, as a function of the season
(T test conf. level 95 %) in the GAR area.

 
Figure 13: difference between the Multimodel SuperEnsemble  scenario minimum temperatures 

averaged over the period 2031-2050 with respect to the period 1981-2000, as a function of the 

season (T-test conf. level 95%) in the GAR area. 

 

Fig. 13. Difference between the multimodel superensemble sce-
nario minimum temperatures averaged over the period 2031–2050
with respect to the period 1981–2000, as a function of the season
(T test conf. level 95 %) in the GAR area.

The minimum and maximum temperatures show an in-
creasing trend everywhere, not always significant, in partic-
ular in spring and autumn. During summer and winter the
major increases occur in the southern part of the dominium,
with temperature increases up to 2◦C/50 yr in the Po valley.

If we compare the results in Piedmont with the result from
the OI, we can see that the GAR signal is similar but weaker
and flatter, with less emphasis on the Alpine chain.

As in the OI case, the annual precipitation average over
the GAR area does not vary in a significant way, and a sig-
nificant decrease can be seen only in spring. The timing of
the precipitation decrease differs from that observed on the
OI grid, and this mismatch can arise from the different pre-
cipitation regimes as seen by the two observation datasets.

 
Figure 14: difference between the Multimodel SuperEnsemble  scenario precipitation averaged over 

the period 2031-2050 with respect to the period 1981-2000, as a function of the season (T-test conf. 

level 95%) in the GAR area. 

 

Fig. 14. Difference between the multimodel superensemble sce-
nario precipitation averaged over the period 2031–2050 with respect
to the period 1981–2000, as a function of the season (T test conf.
level 95 %) in the GAR area.

The decrease shown by the GAR data is quite light compared
to the one described by the high resolution dataset. We can-
not then drive a definitive conclusion about the precipitation
behaviour from these two different evaluations.

3.3 Conclusions and future developments

Multimodel techniques can be used fruitfully to better evalu-
ate the climatic parameters in complex orography regions.
Multimodel superensemble provides a good estimation of
temperature and data in Piedmont, with a very good reduc-
tion of the biases and a good reproduction of the monthly
variations. We introduced here the first application of a new
probabilistic multimodel superensemble dressing to precipi-
tation, providing a reasonably good estimation of the precip-
itation regime in Piedmont.

We evaluated and validated the multimodel results on two
independent datasets, the E-OBS dataset and an high resolu-
tion optimal interpolation of the Piedmont station data.

Regarding the common geographical area of the two cal-
ibration datasets (Piedmont), the temperatures show similar
behaviour in the mid-XXI century scenario, with a general
increase compared with the control period, significant in all
the seasons except for autumn. The OI data show stronger
increases in the higher elevation, while the E-OBS data have
the same signal with no elevation dependence.

On the other hand, precipitation variations in the scenario
depend more on the observations used for the calculation of
the multimodel. In both calibrations, precipitation is not pro-
jected to change significantly at an annual scale, while at
a seasonal scale we found a decrease in summer precipita-
tion as regards the OI dataset and in spring about the E-OBS
dataset.
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As concerns the Greater Alpine Region, the projection to
the mid-XXI century shows a quite uniform temperature in-
crease between plain and mountain regions in all the seasons,
except than in spring, when the increase is significant only in
the mountains. Precipitation does not show any significant
annual variation, and on a seasonal basis it shows a signifi-
cant decrease in spring only.

We are evaluating a technique to better describe the cor-
relation of the daily precipitation and to allow a more cor-
rect random extraction of a given day from the multimodel-
corrected PDF.

We will also test the application of the new multimodel su-
perensemble dressing technique to temperature data, in order
to allow a comparison with the standard techniques.

Several impact studies are ongoing with the use of these
data, about mountain hydrology, wildfire potential, per-
mafrost, Alpine lakes biology, mountain biodiversity, heat
waves.
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