
Discriminative Partition Sparsity Analysis
Li Liu

Department of Electronic and Electrical Engineering
The University of Sheffield

Sheffield, S1 3JD
United Kingdom

Email: elp11ll@sheffield.ac.uk

Ling Shao
Department of Electronic and Electrical Engineering

The University of Sheffield
Sheffield, S1 3JD
United Kingdom

Email: ling.shao@sheffield.ac.uk

Abstract—Effective dimensionality reduction has been an at-
tractive research area for many large-scale vision and multimedia
tasks. Several recent methods attempt to learn optimized graph-
based embedding for fast and accurate applications. In this
paper, we propose a novel linear unsupervised algorithm, termed
Discriminative Partition Sparsity Analysis (DPSA), explicitly
considering different probabilistic distributions that exist over
the data points, meanwhile preserving the natural locality re-
lationship among the data. Specifically, the Gaussian mixture
model (GMM) is first applied to partition all samples into several
clusters. In each cluster, a number of sparse sub-graphs are
computed via the `1-norm constraint to optimally represent the
intrinsic data structure. Such sub-graphs are demonstrated to
be robust to data noise, automatically sparse and adaptive to
the neighborhood. All the sub-graphs from the clusters are then
combined into a whole discriminative optimization framework
for final reduction. We have systematically evaluated our method
on three image datasets: USPS digital hand-writing, CMU PIE
face and CIFAR-10 tiny image, showing its accurate and robust
performance for image classification.

I. INTRODUCTION

Dimensionality reduction [1], [2] has been a key problem
attracting much attention in many fields of information pro-
cessing, such as data mining [3], information retrieval, and
pattern recognition [4], [5]. When data are represented as
points in a high-dimensional space, one is often confronted
with tasks like nearest neighbor search. Actually, greedily
searching a dataset with N samples is infeasible because linear
complexity O(N) is not scalable in practical applications.
To overcome this shortcoming of linear search, researchers
have developed methods to index the data for fast query
response, such as K-D tree, R tree, R* tree [6], which
efficiently decrease the computational complexity from linear
O(N) to sublinear O(N

1
2). However, when the dimension

of data points is more than 100 bits, the effectiveness and
efficiency of those searching schemes will drop exponentially
as the dimensionality increases, which is commonly referred
to as the ‘curse of dimensionality’. Therefore, to make large-
scale search or classification practical, many methods have
been proposed to effectively reduce the dimension of data and
increase the classification speed and accuracy. Among them,
linear embedding techniques show their promising efficiency
and robustness for scalable data reduction tasks.

One baseline linear reduction algorithm is Principal Com-
ponent Analysis (PCA) [7], which is designed to explain the

variance-covariance structure of a set of variables through
linear combinations. PCA is commonly applied to condense
the information when the data manifold is embedded linearly
or almost linearly in the ambient space. If the class information
is available, Fisher Discriminative Analysis (FDA) [8] can be
used to find an optimal subspace for discrimination where the
projection vectors are commonly obtained by maximizing the
between-class covariance and simultaneously minimizing the
within-class covariance. FDA has been proved to be successful
on classification problems [9], [10].

Furthermore, another popular linear technique, termed Lo-
cality Preserving Projections (LPP) [11], has been proposed
for dimensionality reduction that preserves local relationships
within the data set and uncovers its essential manifold struc-
ture. After that, a Semi-supervised Discriminative Analysis
(SDA) [12] embedding scheme has been developed, as well.
SDA inherits the advantages from both FDA and LPP to find
an appropriate subspace which perceives the intrinsic data
structure from the high dimensional space and also maximizes
the inter-class variation. Besides, a subspace learning algo-
rithm called Neighborhood Preserving Embedding (NPE) [13]
has been used for linear reduction. Different from PCA, which
aims at keeping the global Euclidean structure, NPE also aims
at keeping the natural neighborhood structure on the data
manifold.

Compared with non-linear methods, the above linear tech-
niques are computationally much cheaper. Moreover, they
yield projections that are not only defined on training data
points, but also efficient for ‘out-of-sample’ extensions on
novel test data. Naturally, for those ‘Big Data’ applications,
we cannot manually annotate the ground truth for all training
samples. Thus, efficient reduction methods without using label
information but can still well describe the data manifold in the
projected space are badly in need.

In this paper, we develop a novel unsupervised linear dimen-
sionality reduction algorithm, called Discriminative Partition
Sparsity Analysis (DPSA). From the data probabilistic distri-
bution point of view, samples in the high-dimensional space
do not always follow the same distribution, but are naturally
clustered into several groups. The data in each groupshare the
same probabilistic distribution. To keep this property, we first
apply the Gaussian Mixture Model (GMM) [14] to partition
the training samples into different clusters. We then build a

sub-graph weight matrix to describe the relationship between
the data points in each cluster. Specifically, each data point
is reconstructed as the linear combination of the remaining
data samples in a cluster by minimizing the `1-norm of
both the reconstruction coefficients and data noise, and the
combination coefficients are designated as the values in the
weight matrix. Different from constructing weight matrices
via a manual neighborhood constraint as in LPP and NPE,
the `1 weight matrix is more robust to data noise and can
automatically realize sparsity. Besides, the neighbors selected
through the `1 are also data-adaptive, which can discover the
natural locality information of the data manifold and be a nice
property for applications with uneven data distributions [15].
We further align these partitioned sub-graphs and obtain the
final projection via a general linear reduction framework.

The remainder of this paper is organized as follows. In
Section 2, we briefly review linear reduction techniques.
The architecture of DPSA and the complexity analysis are
presented in Sections 3. Experiments and results are described
in Section 4. In Section 5, we conclude this paper.

II. LINEAR REDUCTION FRAMEWORK

In this Section, we provide a general framework for the ex-
isting subspace learning algorithms from the graph embedding
point of view.

Given a graph G = {X,W} with N vertices, each of
which represents a data point, let W be a symmetric N ×N
matrix with Wi,j having the weight of the edge joining vertices
i and j. G and W can be defined to characterize certain
statistical or geometric properties of the data set. The purpose
of graph embedding is to represent each vertex of the graph as
a low dimensional vector that preserves similarities between
the vertex pairs, where similarity is measured by the edge
weight.

Let us now consider a set of samples
X=[x1, x2 . . . , xi, . . . , xN] ∈ Rm×N . The problem of
linear dimensionality reduction is to find a projection
matrix U ∈ Rm×d that maps X ∈ Rm×N to
Y =[y1, y2, . . . , yi, . . . , yN] ∈ Rd×N , i.e., Y =UTX , where
d < m. The basic idea of linear reduction is to preserve
the intrinsic data structure in the projected low-dimensional
space. The optimal Y is given by minimizing:

argmin
N∑

i,j=1

||yi − yj ||22Wi,j (1)

under an appropriate constraint. This objective function incurs
a heavy penalty if neighboring vertices i and j are mapped
far apart. Therefore, minimizing it is an attempt to ensure that
if vertices i and j are ’close’, then yi and yj are close as
well. Wi,j is the graph weight over the whole data set and
yi, yj ∈ Y .

Obviously, using different graph embedding techniques will
lead to different dimensionality reduction performance. In
the next section, we will present our Discriminative Partition
Sparsity Analysis (DPSA) via `1 sparse graph construction.

III. DISCRIMINATIVE PARTITION SPARSITY ANALYSIS

Discriminative Partition Sparsity Analysis (DPSA) is pro-
posed to preserve the locality information on different data
distributions for dimensionality reduction. It operates in three
stages. In the first stage, each sample in the dataset will be
assigned to an individual cluster via the Gaussian mixture
model (GMM). Thus, the whole dataset can be automatical-
ly partitioned into several groups. In the second stage, for
samples in each cluster, an objective function is designed to
construct a sparse sub-graph via the `1-norm constraint, which
can successfully preserve the local discriminative information.
Since samples in one cluster can be seen as a part of the
whole dataset, this stage is termed ’part optimization’. We
then align all the part optimizations together to form a global
coordinate. In the last step, termed ’global optimization’, the
projection matrix is obtained through a global alignment by
solving a generalized eigenvalue eigenvector decomposition
problem. Our proposed DPSA is outlined in Fig. 1.

It is worthwhile to highlight several aspects of the proposed
approach here. DSPA shares some similar properties with other
graph embedding algorithms, all of which aim to discover the
local structure of the data manifold. However, our objective
function is totally different from others. Furthermore, DSPA
is regarded as a linear embedding. This makes it fast and
suitable for practical applications. Finally, DSPA is also an
unsupervised scheme, which is better for large-scale tasks
where the label information is often unavailable.

A. Part Optimization

In the data space, each data point can be naturally assigned
to a potential cluster, in which all samples share the same
probabilistic distribution. Meanwhile, samples from different
clusters always have different probability density functions.
However, in either statistics or physics, real-world data dis-
tribution basically follows the same form, i.e., Gaussian dis-
tribution. Therefore, each potential cluster could be Gaussian
distributed but with different probabilistic parameters. Thus,
how to estimate the Gaussian parameters for different data
distributions becomes a core problem.

The Gaussian Mixture Model (GMM) is one of the most
popular data clustering methods that can be viewed as a linear
combination of different Gaussian components. In GMM, each
cluster obeys Gaussian distribution. The task of clustering
is to group observations into different components through
estimating each cluster’s own parameters i.e., φ, µ, Σ, under
their likelihood function:

l(φ, µ,Σ) =

m∑
i=1

log p(x(i);φ, µ,Σ)

=

m∑
i=1

log

K∑
z(i)=1

p(x(i)|z(i);µ,Σ)p(z(i);φ)

(2)

Later, the Expectation Maximization (EM) algorithm [16] is
always involved in such an estimation problem. Details of
GMM can be found in [17].

Fig. 1. The outline of DPSA. Here three clusters are used for illustration.

After finishing GMM clustering, data are partitioned into K
clusters {C1, C2, . . . , Ck, . . . , CK}, and samples belonging to
a certain cluster follow the same Gaussian distribution. To
discover the intrinsic data structure, samples from different
Gaussians are better to be considered separately. Thus, we
first construct our partitioned sub-graphs for each cluster,
respectively, instead of using all the data points.

In this paper, for each cluster, we propose to obtain the sub-
graph via the `1-norm constraint for data sharing the same
distribution. Specifically, the neighboring samples of a data
point and the corresponding similarities (graph weights) can be
simultaneously calculated by solving an `1-norm optimization
problem, which has been successfully utilized for spectral clus-
tering [15], subspace learning [18], semi-supervised learning
[19], etc.

Given a certain data point x with noise, a natural way
to reconstruct this sample with a robust estimation of sparse
representation α is formulated as:

x = Dα+ ζ =
[
D I

] [α
ζ

]
(3)

where D is an over-complete dictionary, α indicates the sparse
reconstruction coefficients, and ζ is the noise term. We further

set B=
[
D I

]
and α

′
=
[
α
ζ

]
. Then, the `1-norm minimiza-

tion problem can be solved for both the reconstruction error
and data noise as follows:

min
α′
||α′||1, s.t. x = Bα′ (4)

In this paper, since the sparse coefficients of the `1 construc-
tion can be used to indicate the similarities among different
samples, we use the `1 sparse representation to construct
our graph through part optimization. Each `1-graph, termed
as partitioned sub-graph here, summarizes all the sample
behavior of the corresponding cluster in sparse representation.
The construction process is formally stated as the following
three main stages:

1) Input: Data matrix includes a set of samples
XCk

=[xCk1
, xCk2

, . . . , xCki
, . . . , xCkn

] ∈ Rm×n, where XCk

denotes all data samples from the cluster Ck after GMM, n
indicates the number of samples in Ck and k ∈ K.

2) Robust sparse representation: For each data point in
a cluster, its robust sparse coding is achieved by solving the

`1-norm optimization problem:

min||αCk
i ||1, s.t. xCki

= BCk
i αCk

i (5)

where matrix BCk
i = [xCk1

, . . . , xCki−1
, xCki+1

, . . . , xCkn
, I].

3) Graph weight setting: Denote GCk
= {XCk

,WCk} as
the sub-graph with the sample set XCk

from the cluster Ck,
and WCk as the corresponding graph weight matrix, and we
set WCk

i,j =αCk
i,j , if i > j; and WCk

i,j =αCk
i,j−1, if i > j.

In more detail, given a data point xCki
∈ XCk

, the sparse
graph is embedded through the `1-norm constraint among
all the training samples from the same cluster. Specifically,
the data sample xCki

is represented by using all remaining
data samples in Ck (i.e., XCk

\xCki
). In real applications, we

usually cannot estimate the existing noise in training data.
Thus, constructing the `1 graph is constrained by a certain
hyperparameter ε, which indicates the maximum value of the
reconstruction error in the sparse representation. Then Eq. 6
can be rewritten as follows:

min||αCk
i ||1, s.t. ||xCki

− bCk
i αCk

i ||2 < ε (6)

where bCk
i =[xCk1

, . . . , xCki−1
, xCki+1

, . . . , xCkn
] and ε is al-

ways an extremely small value.
This `1 learning technique1 makes the sparse graph more

discriminative and robust to represent the relationship between
two data samples from the same cluster, since it preserves the
same-distribution correlation affinity, meanwhile discarding
the different-distribution correlation after embedding. Further-
more, this kind of partitioned sub-graph can better reflect the
data relations with the locality information for optimization.
Particularly, such `1 embedding can effectively avoid influence
from noisy data distributions and lead to a more precise final
classification.

B. Global Optimization

We repetitively compute `1 sub-graphs for each clus-
ter via the part optimization procedure. In this subsection,
these partitioned graphs will be first unified as a whole:
Gwhole={GC1 , GC2 . . . , GCk

, , . . . , GCK
} and the correspond-

1`1-norm optimization toolbox is available at: http://sparselab.stanford.edu

ing weight matrix Wwhole ∈ RN×N ,

Wwhole =

WC1

. . .
WCk

. . .
WCK

 (7)

GCk
denotes the graph optimized from the cluster Ck. Since

the unified graph Gwhole is directed, Wwhole will always
be asymmetric. To satisfy the linear reduction framework
mentioned in Eq. 1, we symmetrize Wwhole by setting the
matrix as W= 1

2 (Wwhole +WT
whole). Then, after some simple

algebraic formulations, we can transform Eq. 1 to:

argmin

N∑
i,j=1

||yi − yj ||22Wi,j = 2Y LY T (8)

where, L=D − W is the graph Laplacian [2], and D is
a diagonal matrix whose entries are column (or row, since
W is symmetric) sums of W , Di,i =

∑
jWj,i. It is easy

to observe that L is a symmetric and semi-positive definite
matrix. Finally, the minimization problem of Eq. 8 is reduced
to a quadratically-constrained quadratic program:

min
Y LY T

Y Y T
, s.t. Y Y T = I (9)

where, the constraint Y Y T = I requires the projected data in
the low-dimensional space to be uncorrelated.

Eq. 9 is a formulation of Rayleigh quotient. Thus, the
optimal Y can be obtained by solving the minimum eigenvalue
eigenvector problem:

Y L = λY (10)

However, the graph embedding approach described above
only provides the mappings for the graph vertices in the
training set. For classification purposes, a mapping for all
samples, including new test samples, is required. If we can
find a projection U ∈ Rm×d, we have Y = UTX . Eq. 9 can
be rewritten as:

min
UTXLXTU

UTXXTU
, s.t. UTXXTU = I (11)

The optimal projection U can be obtained by solving the
minimum generalized eigenvalue eigenvector decomposition
problem:

UTXLXT = λUTXXT (12)

Let the column vectors U={U0, . . . , Ud−1} be the solutions
of Eq. 12, ordered according to their eigenvalues, λ0 ≤ . . . ≤
λd−1, from the smallest one to the (d − 1)th smallest one.
Therefore, yi ∈ Y is a d-dimensional vector after our DPSA
reduction, and U is an m× d linear projection matrix.

C. Complexity Analysis

The computation of DPSA involves three steps: 1) Data
grouping into K clusters obtained by GMM; 2) Partitioned
sparse graph construction for each cluster via `1 optimization;
3) Combining all partitioned sparse graphs and obtaining the
final projection by solving the eigenvalue eigenvector problem.

Actually, the main computational cost lies in the first two
phases. In the GMM phase (driven by the EM algorithm),
it requires O(KNT), where T is the number of iterations
until convergence through EM. For the second phase, assuming
each cluster after GMM has n samples, the complexity of
graph construction for all the clusters is O(Kn2). Besides, the
general complexity for the eigenvalue eigenvector problem is
O(N3) in the last step. Thus, the total computational cost of
DPSA is approximately O(KNT) +O(Kn2) +O(N3).

IV. EXPERIMENTS AND RESULTS

In this section, we systematically evaluate the proposed
DPSA on different datasets, in comparison to other popular
dimension reduction algorithms.

A. Datasets

Three datasets are used to evaluate our DPSA algorithm,
including handwritten digit images, face images and object
images. The details of the three datasets are as follows:

The USPS handwritten digit database is described in [20].
A popular subset 3 contains 9298 16 × 16 handwritten digit
images belonging to 10 classes in total, which is then split
into 7291 training images and 2007 test images.

The CMU PIE face dataset contains 41, 368 images from
68 subjects (people). Following [21], we select 11554 front
face images, which are manually aligned and cropped into
32× 32 pixels. Further, 7, 500 images are used as the training
set and the remaining 4, 054 images are used for testing.

The CIFAR-10 dataset is a labeled subset of the 80-million
tiny images collection [22]. It consists of a total of 60000 32×
32 color images in 10 classes. The entire dataset is partitioned
into two parts: a training set with 50000 samples and a test set
with 10000 samples and then we use a 384-d Gist descriptor
to represent each image.

B. Results

We show the results of our DPSA algorithm on the three
datasets compared with other state-of-the-art dimensionality
reduction methods including PCA, Fisherface, LDA, LPP,
NPE and SDA. Here, the Fisherface indicates the Fisher
discriminative analysis, while LDA denotes the method of
PCA+Fisherface.

Since our DPSA is a linear unsupervised reduction method,
the methods we compare with are all linear unsupervised (or
semi-supervised) except for Fisherface and LDA. For SDA,
only a quite small number of labeled samples, with the rest
of data unlabeled, are used to train the final projection. We
compute the best recognition results for each method via the
same linear SVM classifier. Table I lists the top recognition
accuracies of the seven methods and their corresponding

TABLE I
THE TOP RECOGNITION PERFORMANCE (%) ON THE USPS DATASET, CMU PIE DATASET AND CIFAR-10 DATASET, RESPECTIVELY.

`````````Dataset
Methods Original feature PCA Fisherface LDA LPP NPE SDA DPSA

USPS 93.04 (256) 93.16 (51) 89.74 (9) 95.28 (98,9) 94.79 (47) 94.67 (56) 95.24 (5,10) 96.43 (30,39)
CMU PIE 96.30 (1024) 96.42 (98) 96.65 (67) 97.88 (96,67) 97.04 (82) 97.47 (79) 97.82 (5,68) 98.26 (28,54)
CIFAR-10 82.26 (384) 83.21 (95) 82.22 (9) 84.98 (98,9) 83.71 (73) 83.88 (68) 84.74 (5,10) 86.19 (120,60)

Note that the numbers in parentheses are the corresponding feature dimensions with the best results after dimensionality reduction. For LDA, the first number is the percentage of
energy retained in the PCA step, and the second number is the length of the final vector via Fisherface. For SDA, the first number is the K, which means the percentage (we fix
it to a very small number, i.e., 5%) of the labeled data used in the training phase, and the second number is the final feature length. For DPSA, the first number is the number of
clusters by GMM and the second number is the reduced feature length.

Fig. 2. The recognition error rate vs. number of dimensions on three datasets.

Fig. 3. The first 6 basis vectors of Eigenfaces, Fisherfaces, and DPSAfaces
calculated from the face images in the CMU PIE dataset.

numbers of dimensions on the USPS, CMU and CIFAR-
10 datasets, respectively. In addition, Fig. 2 also plots the
corresponding curves of the recognition error rates of the
seven comparable methods vs. the numbers of the projected
dimensions.

In terms of the classification accuracy, our unsupervised
DPSA approach consistently outperforms all the unsuper-
vised methods, i.e., PCA, LPP, NPE, and supervised (semi-
supervised) methods, i.e., Fisherface, LDA and SDA, on all
three datasets. From Table I, for both USPS and CMU PIE
datasets, DPSA achieves 1.15% and 0.38% higher than the
LDA, which gives the second best performance, and 1.64%
and 0.79% higher than the best unsupervised methods on these
two datasets, respectively. For the larger and more complex
CIFAR-10 dataset, DPSA also reaches 1.21% higher than

the best supervised method and 2.31% higher than the best
unsupervised one. Regarding reduction effects, DPSA achieves
lower dimensional representations on all three datasets, com-
pared with other unsupervised techniques in Table I.

This is because that PCA produces a set of linearly uncor-
related principal component as the low-dimension projections,
which only maximizes the variance of data features, but
misses their intrinsic data structures in the original feature
space. For LPP, the graph Laplacian indeed helps to keep
the data locality structure in high dimension, and tries to
preserve the same structure in the low-dimensional space as
well. The locality information in LPP is always manually
constructed via a neighborhood constraint, such that, if the
two data points’ pairwise distance exceeds a certain threshold,
the value of graph Laplacian will be set as zero. However,
this kind of construction is sensitive to data noise and one
noisy feature may dramatically change the data’s relationship.
Furthermore, when data’s distribution is not even, the weight
matrix based on the pairwise-distance may also involve the far-
distance inhomogeneous data together, if the threshold is large.
The same drawbacks also exist in Neighborhood Perceiving
Embedding (NPE) and Semi-supervised Discriminative Em-
bedding (SDA).

For those supervised methods (i.e., Fisherface and LDA),
in our experiments, they involve the label information in their
training phase and build an objective function to maximize the
inter-class variation and minimize the intra-class variation. The
advantage of Fisherface and LDA is that they can project the
data into a very low-dimensional space with C − 1, where
C is the number of classes in the training data. However,



TABLE II
COMPUTATIONAL COSTS FOR DPSA WITH THE HIGHEST CLASSIFICATION ACCURACIES.

hhhhhhhhhhhhDatasets
Computational time

Learning time Coding time Classification time

USPS (96.33%) 207 seconds (7291 training samples) 0.0032 seconds/sample 0.35 seconds/sample
CMU PIE (98.06%) 245 seconds (7500 training samples) 0.0048 seconds/sample 0.48 seconds/sample
CIFAR-10 (86.19%) 1521 seconds (50000 training samples) 0.0035 seconds/sample 0.83 seconds/sample

the variation of the values of data from the same class is
impaired and ignored in the reduced space. For instance, two
far-away data points from the same class may be very close
after projection, which would easily lead to over-fitting on
testing data.

In contrast to all mentioned above, our DPSA treats the data
samples on different distributions separately and focuses more
on the natural relationship among samples, instead of manually
setting a threshold to break the intrinsic data properties. There-
fore, our DPSA is first clustered via GMM to partition all data
into several groups, each of which shares the same Gaussian
distribution. Then an `1 sub-graph is constructed to preserve
the data locality structure in each cluster and finally all the sub-
graphs are merged to compute the projection. DPSA shows its
discriminative advantages for subspace learning as follows:
(1) great robustness to data noise, (2) automatic sparsity
instead of manual setting, and (3) adaptive neighborhood for
each individual data point. Fig. 3 also visualizes the DPSA
projection vectors as feature images on the CMU PIE face
dataset, together with Eigenfaces and Fisherfaces.

Furthermore, a brief comparison of computational complex-
ity is shown in Table II. The results show that DPSA always
needs a few hundred seconds for learning the projection. The
learning speed highly depends on the size of the training set.
Once the projection is obtained, it is very fast for the DPSA to
code a new sample and classify it (always with the total time
less than 0.9 seconds/sample in the Matlab environment).

V. CONCLUSION

In this paper, we have presented a new unsupervised linear
subspace learning approach, named Discriminative Partition
Sparsity Analysis (DPSA). DPSA explicitly considers different
distributions that exist in data points and also keeps the
natural locality relationship among the data on each sub-
distribution. Specifically, we introduced the Gaussian mixture
model(GMM) clustering and sparsity optimization for dimen-
sionality reduction tasks, in which each data point can be
embedded via the `1-constraint to construct the graph and
then the final projection is computed by solving the eigenvalue
eigenvector problem .

We have systematically evaluated our method on the USPS,
CMU PIE and CIFAR-10 datasets and produced the image
classification accuracies of 96.43%, 98.26% and 86.19%,
respectively. In all three datasets, our DPSA achieves better
results compared with other popular supervised and unsuper-
vised methods.

REFERENCES

[1] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[2] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering.” in Advances in Neural Information
Processing Systems, vol. 14, 2001, pp. 585–591.

[3] L. Shao, L. Liu, and X. Li, “Feature learning for image classification
via multiobjective genetic programming,” IEEE Transactions on Neural
Networks and Learning Systems, 2014.

[4] F. Zhu and L. Shao, “Weakly-supervised cross-domain dictionary learn-
ing for visual recognition,” International Journal of Computer Vision,
pp. 1–18, 2014.

[5] L. Liu, L. Shao, X. Zhen, and X. Li, “Learning discriminative key poses
for action recognition.” IEEE Transactions on Cybernetics, 2013.

[6] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Computing Surveys (CSUR), vol. 30, no. 2, pp. 170–231, 1998.

[7] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and Intelligent Laboratory Systems, vol. 2, no. 1, pp.
37–52, 1987.

[8] A. M. Martı́nez and A. C. Kak, “Pca versus lda,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 228–233,
2001.

[9] S. Chakrabarti, S. Roy, and M. V. Soundalgekar, “Fast and accurate text
classification via multiple linear discriminant projections,” The VLDB
Journal, vol. 12, no. 2, pp. 170–185, 2003.

[10] K. Fukunaga, Introduction to statistical pattern recognition, 1990.
[11] X. He and P. Niyogi, “Locality preserving projections,” in Neural

Information Processing Systems, vol. 16, 2003, p. 153.
[12] D. Cai, X. He, and J. Han, “Semi-supervised discriminant analysis,” in

IEEE International Conference on Computer Vision, 2007, pp. 1–7.
[13] X. He, D. Cai, S. Yan, and H.-J. Zhang, “Neighborhood preserving

embedding,” in IEEE International Conference on Computer Vision,
vol. 2, 2005, pp. 1208–1213.

[14] G. McLachlan and D. Peel, Finite mixture models, 2004.
[15] B. Cheng, J. Yang, S. Yan, Y. Fu, and T. Huang, “Learning with `1-

graph for image analysis,” IEEE Transactions on Image Processing, pp.
858–866, 2010.

[16] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 1–38, 1977.

[17] J. A. Bilmes et al., “A gentle tutorial of the em algorithm and its
application to parameter estimation for gaussian mixture and hidden
markov models,” International Computer Science Institute, vol. 4, no.
510, p. 126.

[18] L. Zhang, P. Zhu, Q. Hu, and D. Zhang, “A linear subspace learning
approach via sparse coding,” in IEEE International Conference on
Computer Vision, 2011, pp. 755–761.

[19] S. Yan and H. Wang, “Semi-supervised learning by sparse represen-
tation,” in SIAM International Conference on Data Mining, 2009, pp.
792–801.

[20] J. J. Hull, “A database for handwritten text recognition research,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 16,
no. 5, pp. 550–554, 1994.

[21] D. Cai, X. He, and J. Han, “Speed up kernel discriminant analysis,”
VLDB, vol. 20, no. 1, pp. 21–33, 2011.

[22] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 11, pp. 1958–1970, 2008.


