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ABSTRACT
In this paper, we study the price of anarchy of traffic rout-
ing, under the assumption that users are partially altruistic
or spiteful. We model such behavior by positing that the
“cost” perceived by a user is a linear combination of the ac-
tual latency of the route chosen (selfish component), and
the increase in latency the user causes for others (altruistic
component). We show that if all users have a coefficient of
at least β > 0 for the altruistic component, then the price of
anarchy is bounded by 1/β, for all network topologies, arbi-
trary commodities, and arbitrary semi-convex latency func-
tions. We extend this result to give more precise bounds on
the price of anarchy for specific classes of latency functions,
even for β < 0 modeling spiteful behavior. In particular,
we show that if all latency functions are linear, the price of
anarchy is bounded by 4/(3 + 2β − β2).
We next study non-uniform altruism distributions, where

different users may have different coefficients β. We prove
that all such games, even with infinitely many types of play-
ers, have a Nash Equilibrium. We show that if the average
of the coefficients for the altruistic components of all users
is β̄, then the price of anarchy is bounded by 1/β̄, for sin-
gle commodity parallel link networks, and arbitrary convex
latency functions. In particular, this result generalizes, al-
beit non-constructively, the Stackelberg routing results of
Roughgarden and of Swamy. More generally, we bound the
price of anarchy based on the class of allowable latency func-
tions, and as a corollary obtain tighter bounds for Stackel-
berg routing than a recent result of Swamy.

Categories and Subject Descriptors: G.2.3 [Mathemat-
ics of Computing]: Discrete Mathematics–Applications

General Terms: Economics, Theory

Keywords: altruism, spite, selfishness, routing, anarchy

∗Supported in part by NSF CAREER award 0545855, and
NSF grant DDDAS-TMRP 0540420

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’08, July 8–12, 2008, Chicago, Illinois, USA.
Copyright 2008 ACM 978-1-60558-169-9/08/07 ...$5.00.

1. INTRODUCTION
One of the most basic and important problems in man-

aging networks is to route traffic so as to make the latency
experienced by the average user small. This problem can be
solved effectively when all the traffic submits to the control
of a central authority. However, neither in road networks
nor in large-scale decentralized computer networks (such as
the Internet) is it feasible to establish such a central author-
ity. Rather, individual users of the network have control
over the paths they choose from their origin to their desti-
nation. The prevailing assumption is that users will exert
this power to choose the route minimizing their individual
latency, regardless of the effects that such a choice may have
on other users.

A natural question is then how much the average latency
increases as a result of such selfish behavior, compared to a
central authority balancing the latencies of different users.
The ratio between the socially optimal outcome and the out-
come of selfish choices has been termed “Price of Anarchy”
(PoA) by Koutsoupias and Papadimitriou [23]. Roughgar-
den and Tardos [36] pioneered the study of the PoA for traf-
fic routing networks. They analyze a model proposed by
Wardrop and Beckmann et al. [42, 2], in which edges pos-
sess traffic-dependent latency functions. When users choose
a certain path, they increase the traffic on all edges of the
path, and thus also the latency experienced by all other users
sharing the path.

This model of selfishness assumes, in accordance with
much of the game theory literature, that users choose their
routes completely without regard to the delay that their
choice may cause for other users in the system. The as-
sumption of selfishness (as well as that of rationality) has
been repeatedly questioned by economists and psychologists.
Time and again, experiments have shown that even for sim-
ple games in controlled environments, participants do not
act selfishly [24, 25]; their behavior can be either altruistic
or malicious. Many explanations have been considered for
this phenomenon, including an innate sense of fairness [12],
reciprocity among agents [17], or spite and altruism [25].

In this work, we investigate the question whether and how
the Price of Anarchy in traffic routing will change if users
are assumed to be “not entirely selfish”. To this end, we
consider a natural model of altruism and spite, extending
one proposed by Ledyard [24, p. 154]. Intuitively, we want
to model that users will trade off the benefit to themselves
against the benefit to others. This can be modeled by as-
suming that the utility of each player is a linear combination
of his own a priori payoff and the payoffs of other players. In



the context of traffic routing, the perceived“cost”of a player
is a linear combination of his own latency and the increase
in latency the player causes others (precise definitions are
given in Section 2). By varying the altruism coefficient β,
we can smoothly tune the altruism from spiteful (β = −1),
through selfish (β = 0), to entirely altruistic (β = 1).
Our first result is that if all users are (at least) β-altruistic,

and β > 0, then the Price of Anarchy is always bounded by
1/β, for all networks, arbitrarily many commodities, and ar-
bitrary semi-convex latency functions on the edges. Thus, if
a constant amount of altruism is introduced into the system,
then the PoA is bounded by a constant. A more general ver-
sion of our result characterizes precisely the worst-case PoA
for any class of latency functions; from this general result,
better bounds can be obtained for more restricted classes
of functions. Among others, our result implies a bound of

4
3+2β−β2 on the PoA if all latency functions are linear. The

general bound also lets us analyze the spite resistance of a
class of latency functions: the most spite under which the
PoA would still be finite.
We next extend our results beyond uniform altruism, and

consider arbitrary distributions of altruism among the play-
ers. In that scenario, even the existence of Nash Equilib-
ria is not obvious; we use a theorem of Mas-Collel [28] to
prove that such games with infinitely many agents indeed
have Nash Equilibria. Even for single-commodity flows in
arbitrary graphs, prohibitive lower bounds on the PoA are
known [3], so we focus here on parallel link networks, studied
for instance by Roughgarden [32].
For parallel link networks, we show that for any non-

negative distribution of altruism over the users in the net-
work with average altruism level β̄, the price of anarchy
with convex edge latency functions is always bounded by
1/β̄. In the specific case where the distribution of altruism
has only completely altruistic or completely selfish users,
this matches a bound obtained (with a polynomial-time al-
gorithm) by Roughgarden [32].1 The bound of 1/β̄ follows
from a more general result characterizing the PoA for ar-
bitrary classes of convex functions. In fact, that more gen-
eral result, when applied to the case of a distribution over
entirely selfish and entirely altruistic users, implies tighter
bounds for Stackelberg routing compared with a recent re-
sult of Swamy [40]. Finally, we show that for the bound
we derive, the worst case is in fact attained by the {0, 1}
altruism distribution, while the best case is when all users
are β̄-altruistic.

1.1 Related Work
The study of the ineffectiveness of Selfish Routing was pi-

oneered within the theory community by the groundbreak-
ing work of Roughgarden and Tardos [36]. It was preceded
by work in the economics and traffic engineering communi-
ties on congestion models, traffic routing, and the impact of
tolls [29, 42, 2]. Since the original paper by Roughgarden
and Tardos, a lot of progress has been made on different
aspects of the problem, including different objectives [31],
Stackelberg strategies in which an altruistic central author-
ity controls a fraction of all traffic [22, 32, 40], the impact
of tolls or taxes on the inefficiency [8, 9, 14, 15, 21], atomic
games wherein users control non-infinitesimal amounts of

1Roughgarden’s bound for Stackelberg routing on parallel
link networks applies to arbitrary functions, whereas ours
requires convexity.

traffic [10, 18, 34], and the effects of network structure on
the inefficiency [27, 30, 35]. For an excellent overview of
many of these results, see the book by Roughgarden [33].

Among other things, our results draw a connection be-
tween Stackelberg strategies and tolls on users, in that the
altruistic component of a user’s utility can be considered as
a (traffic-dependent) toll, and entirely altruistic users act as
though they submitted to the control of a benevolent au-
thority. A more detailed discussions of the connections and
related results is given in Section 2.2, after a formal defini-
tion of our model of altruism and spite.

Questions about the accuracy of the assumption that users
are selfish and rational have been as old as the field of game
theory (see, e.g., [24]). Different models have been proposed
to model user preferences more accurately [24, 25]. A model
somewhat similar to ours was recently studied in the con-
text of contributions to P2P systems by Feldman et al. [13],
who posited an intrinsic generosity parameter of users, their
willingness to contribute to the system. They then study
contribution dynamics and their equilibria, akin to many col-
lective behavior scenarios studied by Schelling [37]. Trade-
offs between individual optimization and social optimum in
the context of traffic routing are also considered by Jahn et
al. [19]. They posit that users will be willing to incur latency
somewhat exceeding a “lowest possible” baseline if advised
by a traffic routing system. They experimentally evaluate
how centralized routing of users under this restriction com-
pares with unrestricted centralized routing (which may place
very heavy burdens on some users). More recently, Babaioff
et al. [1] studied the impact of spiteful behavior on the out-
come of routing games. In their model, there are two types
of players: selfish rational players, and malicious players,
who seek to maximize the average delay experienced by the
rational players (while not caring about their own delay).
They quantify the impact of malicious players on the equi-
librium, and show that the price of anarchy can sometimes
be increased, and in fact decreased at other times.

The notion of spiteful behavior by individuals, and mod-
els similar to the ones we are proposing here, have recently
been studied in the context of auctions. For single-item auc-
tions, Brandt and Weiss [5] study the behavior of “antiso-
cial” agents, whose utility decreases in their competitors’
profit. They analyze optimum bidding strategies in a full-
information setting in this model. Following up on this work,
Brandt et al. [4] study the Bayesian setting, and derive sym-
metric Bayesian-Nash equilibria for spiteful agents in first-
price and second-price sealed bid auctions. They show that
the expected revenue in secondnd-price auctions is higher
than the expected revenue in first-price auctions when all
agents are neither completely selfish nor completely spite-
ful. They also prove that in the presence of spite, complete
information reduces the revenue in second-price auctions,
while it increases the revenue in first-price auctions. Vet-
sikas and Jennings [41] generalize some of these results for
multi-unit auctions, deriving symmetric Bayes-Nash equi-
libria for spiteful agents in both mth and (m+ 1)th price
sealed bid auctions. Similarly, Liang and Qi [26] study the
effects of cooperative or vindictive bidding strategies on the
revenue of sponsored search auctions and the existence of
truthful strategies and equilibria. Finally, mechanism de-
sign for spiteful agents in scheduling is considered by Garg
et al. [16].



2. PRELIMINARIES
Our model is based on the model of Wardrop [42], as de-

scribed by Roughgarden and Tardos [33, 36]. We are given a
(directed) graph G = (V,E), in which each edge is equipped
with a flow-dependent latency function ce(x). The meaning
is that if the total flow on the edge e is x, then each user
experiences a delay ce(x) on that edge. We assume that
each ce is a continuously differentiable and monotone non-
decreasing function. In addition, for some of our results, we
will assume that each ce is convex, and for others that each
ce is semi-convex, i.e., that x · ce(x) is convex.
We assume that users/agents are non-atomic, i.e., infinites-

imally small. Thus, we can think of the total traffic as
a multi-commodity flow with rates ri between source-sink
pairs (si, ti), where the total flow from si to ti is ri. If fe
denotes the total flow on edge e, then the total latency ex-
perienced by a user on a path P is cP (f) :=

∑
e∈P ce(fe).

The total latency experienced by all users is thus C(f) :=∑
e fe · ce(fe). An instance of the routing problem is thus a

triple (G, r, c) (where r and c are the vectors of flow rates
and edge cost functions). The socially optimum solution for
(G, r, c) is the flow f minimizing C(f), and thus the solution
to the convex program

Minimize
∑

e fe · ce(fe)
subject to f is a feasible multi-commodity flow for (G, r, c).

The constraints are the standard linear multi-commodity
flow constraints; the objective function is convex so long as
each ce is semi-convex. Thus, the optimum can be computed
in polynomial time using convex programming.
Selfish users do not care about the cost C(f). Their sole

goal is to select a path P minimizing their own latency
cP (f). As the goals of different selfish users in minimizing
their latency are conflicting with each other, the traffic rout-
ing problem can be considered a game, and the “outcome”
of this game will be a Nash Equilibrium: a multi-commodity
flow f such that, given f , no user has an incentive to choose
a different path. Thus, a flow f is at Nash Equilibrium if
and only if for each commodity i, all si-ti paths P with
fP > 0 have the same latency cP (f), and all other si-ti
paths have at least the same latency. Nash Equilibria, too,
can be computed as solutions to a convex program:

Proposition 2.1 ([33], Proposition 2.6.1). The Nash
flows of an instance (G, r, c) are exactly the solutions to the
following convex program, and can thus be computed in poly-
nomial time.

Minimize
∑

e

∫ fe
0
ce(t)dt

subject to f is a feasible multi-commodity flow for (G, r, c).

If f is a flow at Nash Equilibrium, and f∗ the socially opti-
mum flow, then an interesting question, first investigated in
detail by Roughgarden and Tardos [36], is how much larger
C(f) can be than C(f∗). The ratio ρ(G, r, c) := C(f)/C(f∗)
is called the price of anarchy of the instance (G, r, c). Rough-
garden and Tardos [36] gave a generalization of Pigou’s ex-
ample [29], showing that if the cost functions can be ar-
bitrary, then the price of anarchy is unbounded, even for
networks consisting of two nodes and two parallel links. On
the other hand, they proved that if all functions are linear
ce(x) = aex+ be, then the price of anarchy is at most 4/3.

2.1 Altruism and Spite
The assumption that users are entirely selfish is simplistic,

and not warranted in many scenarios. Indeed, experiments
in economics have found time and again that users behave
neither rationally nor selfishly, even in the absence of per-
sonal interaction or repeated experiments [24, 25]. Differ-
ent models of such behavior have been proposed, including
based on reciprocity [17], an innate notion of fairness [12],
or altruism and spite [25]. We base our treatment on a sim-
ple and elegant suggestion of Ledyard [24]. In a game with
n players, the utility of a player i given an action vector a
is pi(a) + βi

1
n

∑
j pj(a), where the pi are the individuals’

payoff functions. The parameter βi captures how important
the average social welfare is to player i. We modify this
approach slightly, and posit that user i’s utility is the com-
bination (1− βi)pi(a) + βi

1
n

∑
j pj(a), where βi ∈ [−1, 1] is

the user’s altruism level. This has the advantage of making
all utilities comparable on the same scale, and allowing us
to model entirely altruistic behavior by setting βi = 1.2 We
call pi(a) the selfish part of player i’s utility, and 1

n

∑
j pj(a)

the altruistic part. If βi < 0, then player i derives utility
from a decrease in social utility; we call such players spiteful.

In order to apply this model to our scenario of traffic rout-
ing, we define the payoff of user i on path P as pi = −cP (f),
where f is the total flow, determined by the actions of all
other players. Then, maximizing utility is equivalent to min-
imizing latency. The traffic routing model assumes that
there are infinitely many users, each of whom is infinites-
imally small. We can still define the utility function analo-
gously, using the (well-defined) average latency of all users
as the altruistic part. However, because users are infinites-
imally small and latency functions continuous, the average
latency of other users will not depend on an individual user’s
action. Thus, as long as β ̸= 1, each partially altruistic user
will act exactly like a selfish user. A natural model consider-
ing the effect the user has on others should instead be based
on the rate at which the user’s action will affect other users.
We thus use the following definition of a β-altruistic user 3:

Definition 2.2. Each β-altruistic user (for β ∈ [−1, 1])
chooses a path P so as to minimize the cost function

c
(β)
P (f) := (1− β)

∑
e∈P ce(fe) + β

∑
e∈P (fece(fe))

′.

The term
∑

e∈P ce(fe) is the selfish part of the cost, while∑
e∈P (fece(fe))

′ is the altruistic part. (fece(fe))
′ denotes

the derivative with respect to fe. Notice that we can rewrite

c
(β)
P (f) =

∑
e∈P ce(fe) + β

∑
e∈P fec

′
e(fe).

Definition 2.2 is similar to the definition of the valuation
of a user with a time/money tradeoff of β in the case of
network routing with tolls [8]. However, notice that unlike
the standard model for tolls, the “edge toll” τe a user incurs
in our model is traffic-dependent, namely τe := fec

′
e(fe).

We say that the users are uniformly β-altruistic if all users
are β-altruistic. More generally, we allow for the case of ar-
bitrary distributions of altruism among the users. In the

2The restriction to values βi ≥ −1 is justified in Section 3.
3While our definition is motivated mathematically, there
is a “psychological” interpretation of the underlying choice:
In order to behave (partially) altruistically, infinitesimally
small users must give infinitesimally small weight to their
own payoff, which is achieved implicitly by making the al-
truistic component the derivative of the social welfare.



general case, for each commodity i, we are given an arbi-
trary altruism density function ψi on the interval [−1, 1].
We only require that all these functions ψi be indeed distri-
butions, i.e., forming a Borel measure of total measure 1. If
the rate for commodity i is ri, then the overall altruism den-
sity function is ψ = 1∑

i ri

∑
i riψi. The average altruism of

a distribution ψ is then
∫ 1

−1
tψ(t)dt. An instance of the par-

tially altruistic traffic routing problem is thus the quadruple
(G, r, c, (ψi)). If there is a single commodity with distribu-
tion ψ, we write (G, r, c, ψ), and if the altruism is uniform,
we simplify further to (G, r, c, β).

Proposition 2.3. Let (G, r, c, β) be an instance with uni-
form altruism β ≥ 0. Then, the Nash flows are the optima
of the convex program

Minimize
∑

e

∫ fe
0
c
(β)
e (t)dt

subject to f is a feasible multi-commodity flow for (G, r)

In particular, the instance (G, r, c, β) always possesses a Nash
Equilibrium for β ≥ 0.

The proof of this proposition is virtually identical to that
of Proposition 2.6.1 from [33]. The proof there only used
the fact that each agent was minimizing a sum of monotone
increasing functions

∑
e ge(fe) to conclude that the Nash

Equilibrium was the flow minimizing the (convex) objective∑
e

∫ fe
0
ge(t)dt. Thus, it applies equally to ge(t) := c

(β)
e (t).

The situation is not quite as straightforward for the case
of non-uniform altruism distributions ψ, or for negative β.
Even for two different values of altruism, there appears to
be no natural convex programming formulation for Nash
Equilibria. However, using a theorem of Mas-Collel [28], we
can still prove the existence of Nash Equilibria.

Theorem 2.4. Each instance (G, r, c, (ψi)) has a Nash
Equilibrium.

Proof. Theorem 1 of Mas-Collel [28] proves that each game
of infinitely many players has a Nash Equilibrium. A game is
characterized by a distribution (Borel measure) over utility
functions which are continuous in the action of the player,
and the distribution of actions by the remaining players. It
is easy to see that each player in the routing game has a

utility function −c(β)P (f) continuous in the choice of path P
(trivially, since the space of all simple si-ti paths is finite)
and in the distribution of other players’ strategies f (by
continuity of each ce). The utility for paths not connect-
ing si to ti is −∞ (or an appropriately negative constant).
The distribution of altruism values β implies a correspond-
ing distribution over utility functions. Thus, the theorem
of Mas-Collel implies the existence of Nash Equilibria for
routing games.

The proof by Mas-Collel is inherently non-constructive;
accordingly, Theorem 2.4 does not imply any algorithm for
finding such equilibria. Since there always exists a Nash
Equilibrium of instances (G, r, c, (ψi)), we can again define
the Price of Anarchy (PoA), as ρ(G, r, c, (ψi)) = C(f)/C(f∗),
where f is a Nash flow for (G, r, c, (ψi)), and f∗ a socially
optimal flow for (G, r, c).

2.2 Taxes and Stackelberg Strategies
Our definition of partial altruism naturally relates to two

strategies that have been proposed in the literature for deal-
ing with the selfishness of users: Pigou taxes and Stackelberg
strategies.

The idea of taxes or tolls on edges is to charge users a
fee for using an edge. The assumption is that money and la-
tency can be measured on the same scale, and users will min-
imize the (weighted) sum of the two. It is well-known [29]
that if the toll charged on each edge e equals the marginal
cost to others (f∗

e c
′
e(f

∗
e )) at the optimum solution, then the

Nash Equilibrium will minimize C(f), i.e., be optimal. Our
model of partial altruism can thus be interpreted as charging
users a traffic-dependent constant fraction of the marginal
tax, i.e., with respect to the current flow. When the altru-
ism is not uniform, different users will be charged different
taxes βifec

′
e(fe) on edges. Our model can thus be considered

as investigating the price of anarchy when different users
have different tradeoffs between taxes and latency, but their
tradeoff stays constant across different edges. Similar mod-
els were considered, e.g., in [11, 39]. Cole et al. [9, 8] also
study optimization problems arising from non-uniform tax-
ation in networks. However, their goal is to minimize the
total tolls, subject to forcing the flow to optimal, whereas
we study the price of anarchy given the taxation scheme of
charging a (user-dependent) fraction of the marginal tax on
each edge.

A different strategy for lowering the price of anarchy is
available when a benevolent central authority controls a λ
fraction of the total traffic. The central authority’s goal is to
route this fraction so as to minimize the total cost C(f), sub-
ject to the fact that the remaining users will subsequently
route their traffic selfishly. Algorithms for routing flows with
this objective are called Stackelberg strategies, and the cor-
responding asymmetric games Stackelberg games (see, e.g.,
[32]).

When the altruism distribution has support {0, 1}, and
the cumulative distribution function of ψ is the step func-
tion whose value at 0 is 1−λ, and whose value at 1 is 1, the
altruistic users can be interpreted as a central authority, and
their flow as a Stackelberg strategy with the corresponding
price of anarchy. When the central authority controls a λ
fraction of the traffic, then the average altruism is exactly
λ, and thus, any bound on the price of anarchy for average
altruism λ gives rise to the same bound for Stackelberg rout-
ing. Notice that the converse is not necessarily true: at the
moment, it is not known if every optimal Stackelberg strat-
egy gives rise to a Nash Equilibrium of the routing game
with altruism support {0, 1}.

Such Stackelberg routing strategies have been studied ex-
tensively. In general, the price of anarchy can still be un-
bounded, even for single-commodity flows where a central
authority controls a large constant fraction of the traffic [3].
For linear latency functions, Karakostas and Kolliopoulos
[22] recently showed an upper bound of (4 − X)/3 on the

Price of Anarchy (where X = (1−
√

1−λ)(3
√
1−λ+1)

2
√

1−λ+1
) for ar-

bitrary networks and commodities in which a central au-
thority controls a λ fraction of traffic. For arbitrary latency
functions in series-parallel networks, Swamy [40] bounds the
price of anarchy by 1+ 1/λ. For parallel link networks with
latency functions from a class C with an upper bound ρ(C)
on the price of anarchy in Pigou examples, he shows an up-



per bound of λ+ (1− λ)ρ(C). In the context of Stackelberg
routing, a converse direction has been studied by Sharma
and Williamson [38] and Kaporis and Spirakis [20]. They
ask how much traffic needs to be controlled by a central
authority to guarantee any improvement in average latency
[38] (called Stackelberg threshold) or to guarantee optimal-
ity of the resulting Nash Equilibrium [20] (called Price of
Optimum).

3. UNIFORM ALTRUISM
In this section, we focus on the model of uniformly altru-

istic users: each user is β-altruistic for −1 ≤ β ≤ 1. Thus,

the perceived cost of an edge e to the user is c
(β)
e (x) =

(1− β)ce(x) + β d
dx

(xce(x)) = ce(x) + βxc′e(x). (Notice that
for β = 0, this coincides with selfishness; β = 1 corresponds

to complete altruism, and c
(1)
e (x) is exactly the marginal

cost of e. For β = −1, the users are completely spiteful.)
Our first result follows directly from the definitions of flows
at Nash equilibrium and optimum, and gives a (tight) up-
per bound on the Price of Anarchy for arbitrary networks,
commodities, and arbitrary semi-convex cost functions.4

Proposition 3.1. If all cost functions ce are nondecreas-
ing and semi-convex, then for all networks G and flow rates
r, and any altruism level β ∈ (0, 1],

ρ(G, r, c, β) ≤ 1/β.

Proof. Let f̂ be a Nash Equilibrium flow, minimizing the

potential function Φ(f) =
∑

e

∫ fe
0
c
(β)
e (t)dt, the objective

function of the convex program in Proposition 2.3. Also,
let f∗ the optimum flow, minimizing the total cost C(f) =∑

e

∫ fe
0

(tce(t))
′dt. Simply from the definition of c

(β)
e (t), it

follows that for any flow f , we have Φ(f) ≤ C(f) ≤ 1
β
Φ(f).

Applying the first inequality to f∗ and the second to f̂ , and
using the optimality of f̂ for Φ, we obtain C(f̂) ≤ 1

β
Φ(f̂) ≤

1
β
Φ(f∗) ≤ 1

β
C(f∗).

More generally, we derive a result bounding the price of
anarchy when all cost functions ce are drawn from a given
class of cost functions. Our characterization will be in terms
of the anarchy value α(β)(C) of a set C of functions for β-
altruistic users, which is defined as a generalization of the
anarchy value of functions in [33].

Definition 3.2. 1. For any cost function c, the anar-
chy value α(β)(c) of c for β-altruistic users is defined
as

α(β)(c) = supr,x≥0
r·c(r)

x·c(x)+(r−x)·c(β)(r)
,

where 0/0 is defined to 1.

2. For any class C of cost functions, the anarchy value for
β-altruistic users α(β)(C) is supc∈C,c ̸=0 α

(β)(c).

The motivation for this definition of α(β)(c) is that it cap-
tures the price of anarchy for uniformly β-altruistic users in a
two-node two-link network, where one link has latency func-
tion c and the other has a worst-case constant. Indeed, we
will prove this to be the case in Lemma 3.7 below. Notice
that Lemma 3.7 immediately implies that α(C) is a lower

4We thank an anonymous reviewer for the simplified proof.

bound on the price of anarchy in the worst case when all
edge latency functions are chosen from C. Our main theo-
rem in this section shows that it is also an upper bound for
all networks and arbitrary commodities.

We are mostly interested in α(β)(C) when it is finite. In
particular, this suggests defining the spite resistance of C as
the least altruistic behavior that C could support. Formally,
bc = inf{β | α(β)(c) <∞}, and bC = infc∈C bc. It is not diffi-

cult to show that bc = − infr
c(r)

rc′(r) , and that α(β)(c) = ∞ for

β ≤ bc. Using L’Hôpital’s rule, one sees that the monotonic-

ity and convexity of c imply that bc ≥ − limr→∞
c(r)

rc′(r) ≥ −1

for all c, which also motivates our earlier restriction to al-
truism values β ≥ −1.

Theorem 3.3. Let C be a set of cost functions, and (G, r, c)
an instance with cost functions ce ∈ C. Then,

ρ(G, r, c, β) ≤ α(β)(C).

Proof. Fix an instance (G, r, c) with cost functions ce ∈ C.
Let f∗ be an optimal flow and f a Nash flow for β-altruistic
users. By rearranging Definition 3.2, we obtain the bound

x·ce(x) ≥ r·ce(r)
α(β)(C)+(x−r)·c(β)e (r) for any x, r ≥ 0. Applying

this bound to each edge e, with x = f∗
e and r = fe, we bound

C(f∗) =
∑

e∈E f
∗
e ce(f

∗
e )

≥ 1

α(β)(C) ·
∑

e∈E fece(fe) +
∑

e∈E(f
∗
e − fe) · c(β)e (fe)

= C(f)

α(β)(C) +
∑

e∈E(f
∗
e − fe) · c(β)e (fe).

It remains to show that
∑

e f
∗
e · c(β)e (fe) ≥

∑
e fe · c

(β)
e (fe).

To this end, recall that f is a Nash flow for β-altruistic users

if and only if it minimizes c
(β)
P (f)f̃P over all feasible flows f̃ .

In particular, applying this variational inequality to f and
f∗ proves the desired inequality.

As a corollary of Theorem 3.3, we can obtain a tight bound
in the case where the cost functions are polynomials of de-
gree at most p with non-negative coefficients. We denote
this class by Cp.

Theorem 3.4. If (G, r, c) has cost functions in Cp, then
for any altruism value β ∈ (−1/p, 1],

ρ(G, r, c, β) ≤
(
( 1+βp

1+p
)1/p( 1+βp

1+p
− 1− βp) + 1 + βp

)−1

.

Proof. First, notice that bCp = −1/p. It can be easily veri-
fied that all subsequent calculations stay valid for β > −1/p,
while for β ≤ −1/p, the price of anarchy is unbounded.

As observed in [33], it suffices to focus only on polynomi-
als c(x) = axi with x ≤ p. For any instance (G, r, c) with
arbitrary polynomials can be equivalently transformed into
one with only such monomials, by replacing each edge with
cost function ce(x) =

∑p
i=0 aix

i by a directed path of p+ 1

edges, the ith edge of which has cost function c̃e,i(x) = aix
i.

In order to compute the anarchy value α(c) of a nonzero
polynomial function c(x) = axi, we use the equivalent char-
acterization that

α(β)(c) = supr≥0

(
λc(λr)
c(r)

+ (1− λ)(1 + βrc′(r)
c(r)

)
)−1

,

where λ ∈ [0, 1] solves c(1)(λr) = c(β)(r), and 0/0 is defined
to 1. To prove this equivalent characterization, we first ob-
serve that

d
dλ

(c(λr)λr + c(β)(r)(r − λr)) = c(1)(λr)r − c(r)r = 0,



so there is indeed a value of λ ∈ [0, 1] solving c(1)(λr) =

c(β)(r). By Lemma 3.7 below, α(β)(c) is the price of anar-
chy in a two-node two-link network, one of whose links has
the cost function c(x), the other link having constant cost

c(β)(r). Routing λr units of flow on the link with cost c(x),

and the rest on the link with cost c(β)(r), provides an opti-
mal flow, while the Nash Equilibrium has all of its flow on
the link with cost c(x). Thus, the ratio of the cost of a Nash
flow to that of an optimal flow is

r·c(r)
c(λr)λr+(c(r)+βrc′(r))(r−λr)

=
(

λc(λr)
c(r)

+ (1− λ)(1 + βrc′(r)
c(r)

)
)−1

.

Solving for λ in the special case c(x) = axi, we obtain

λ = ( 1+βi
1+i

)1/i, and thus c(λr)
c(r)

= 1+βi
1+i

and c′(r)
c(r)

= i
r
. Then,

α(β)(c) =
(
( 1+βi

1+i
)1/i( 1+βi

1+i
− 1− βi) + 1 + βi

)−1

,

which is independent of a and increasing in i (by a derivative
test). Hence, the largest α(c) is attained for c = xp, giving

α(β)(Cp) =
(
( 1+βp

1+p
)1/p( 1+βp

1+p
− 1− βp) + 1 + βp

)−1

,

as claimed.

It is not difficult to verify that the previous bound con-
verges to 1

β
as p→ ∞; the worst case behavior is in fact at-

tained with polynomials of high degree. However, for p = 1,
Theorem 3.4 also allows us to obtain a tighter bound in the
special case that all latency functions are linear.

Corollary 3.5. If (G, r, c) has linear cost functions, then
for any β ∈ (−1, 1],

ρ(G, r, c, β) ≤ 4
3+2β−β2 .

Notice that for any β > 0, this bound improves on the
bound by Roughgarden and Tardos [36] of 4/3 when all users
are completely selfish. As the bound can also be shown to
be tight, it thus characterizes exactly the gain by partial
positive altruism with linear cost functions, and the spite
resistance of linear cost functions. In particular, it shows
that linear costs have the highest spite resistance among all
classes of cost functions.

Remark 3.6. Our results in this section extend straight-
forwardly to general non-atomic congestion games (not nec-
essarily network congestion games), so long as all cost func-
tions are nondecreasing. (See, for instance, [7].) In a gen-
eral congestion game, each player’s strategy consists of a
set of resources, and the cost of the strategy depends sim-
ply on the number of players using each resource. Thus,
the perceived cost of a player’s strategy S with altruism β is

c(β)(S) =
∑

e∈S c
(β)
e (xe) =

∑
e∈S ce(xe) + βxec

′
e(xe), where

xe is the total measure of players using resource e, and ce
is a nondecreasing function. With the same definitions of
α(β)(C), the proofs of the above proposition and theorems
naturally carry over to this more general setting.

Finally, we show that the bounds derived in Theorem 3.3
are indeed tight, even for two-node two-link networks:

Lemma 3.7. Consider a two-node two-link network with
flow rate r = 1, and cost functions c1(x) = c(x) on the first

link, and constant cost function c2(x) = c(β)(r) = c(r) +
βrc′(r) for the second link . Then, the price of anarchy of

this instance is α(β)(c).

Proof. It is easy to observe from the definition of c2 that
all β-altruistic users will end up using link 1, so that the
total cost of the Nash Equilibrium is c(1) = rc(r), while the
socially optimum solution has total cost infx≤1(x · c(x) +
(r− x) · c(r) + β(r− x)c′(r)). Hence, the price of anarchy is
exactly α(c).

By applying this characterization together with Theorem
3.4 and letting the degree of the polynomial go to ∞, we
obtain instances (G, r, c) whose price of anarchy approaches
1/β arbitrarily closely. Similarly, by choosing p = 1, we
obtain that the bound in Corollary 3.5 is tight.

4. NON-UNIFORM ALTRUISM
In this section, we extend our results to the more general

and realistic case where different users can have different
altruism levels. In the most general case, we are given a
distribution ψ of altruism. The existence of Nash Equilibria
in this model was shown non-constructively as Theorem 2.4.
Even for a single commodity and an altruism distribution
with support {0, 1}, and arbitrarily large constant β̄, a re-
cent result on Stackelberg routing due to Bonifaci et al. [3]
shows that the price of anarchy can become unbounded.

Thus, we focus here on the case of single-commodity traf-
fic in parallel link networks. Parallel link networks have been
studied by Roughgarden [32]; among others, they naturally
model the assignment of infinitesimally small jobs to ma-
chines with load-dependent latencies. Formally, a paral-
lel link network has two nodes s, t, and m parallel edges
e1, . . . , em from s to t. Our main theorem in this section
gives a (tight) upper bound on the Price of Anarchy in the
presence of partial altruism for single commodity parallel
link networks and arbitrary (convex) cost functions.

Theorem 4.1. If all cost functions ce are convex and non-
decreasing, then for parallel link networks G and flow rates
r, and any overall altruism density function ψ with nonneg-
ative support and average altruism β̄,

ρ(G, r, c, ψ) ≤ 1/β̄.

We will prove Theorem 4.1 as a corollary of the following
more general result, bounding the price of anarchy in terms
of the set of functions permissible as edge latencies.

Theorem 4.2. If all cost functions ce are convex and non-
decreasing, then for parallel link networks G and flow rates
r, and any overall altruism density function ψ with non-
negative support,

ρ(G, r, c, ψ) ≤
(∫ 1

0
ψ(t) 1

α(t)(C)dt
)−1

.

Proof. Let f denote the flow at Nash Equilibrium. We
first show that without loss of generality, we can assume
that each link e contains only one type of users (i.e., if users
have different altruism values β, β′, then they do not share a
link) and that the support of ψ is finite. To see this, assume
that f has users of altruism values β < β′ sharing an edge
e. Now replace all users on e with altruism β by users with
altruism β’. f must still be a flow at Nash Equilibrium for



the new instance (because β′-altruistic users are on link e in
Nash Equilibrium). By repeating this process, we eventually
obtain an instance with altruism density ψ′ which stochas-
tically dominates ψ and has finite support. For this new
ψ′, the bound on the price of anarchy for f provided by the
right-hand side of Theorem 4.2 can only be smaller, giving
us an even better bound than required. Thus, we can from
now on focus on the case described above.
Let 0 ≤ β1 < β2 < . . . < βk ≤ 1 be the (finite) support of

ψ, where the rate of βi-altruistic users is ri (so
∑k

i=1 ri = r).
We need to show that for all flows g of rate r (in particular
the optimum flow), we have

C(g) ≥ (

k∑
i=1

ri
r

1

α(βi)(C)
) · C(f), (1)

which we will do by induction on k. The base case k = 0 is
of course trivial.
For the inductive step, let f be a Nash Equilibrium flow,

and g any flow of rate r. For each i, let Ei be the set of edges
with positive flow of βi-altruistic users under f . Notice that
by our assumption, the sets Ei are disjoint. For any set E′

of edges, let f(E′) =
∑

e∈E′ fe (similarly, g(E′)) denote the
total flow on E′. Let E′ := E \E1 denote the set of all edges
not used by β1-altruistic users.
Intuitively, because the more altruistic users prefer the

edge set E′ over E1, we would expect a “good” flow g to do
the same. Indeed, we first show that the latency under f on
all edges in E1 is no larger than in E′, while the derivative
is no larger in E′ than in E1. Let e ∈ E1, e

′ ∈ Ej , j > 1
be arbitrary links with positive flow f . Thus, all users on e
have altruism β1, while all users on e

′ have altruism βj > β1.
Because f is at Nash Equilibrium,

ce(fe) + β1fec
′
e(fe) ≤ ce′(fe′) + β1fe′c

′
e′(fe′), (2)

ce(fe) + βjfec
′
e(fe) ≥ ce′(fe′) + βjfe′c

′
e′(fe′). (3)

Combining appropriately scaled versions of Inequality (2)
and Inequality (3) gives us that

ce(fe) ≤ ce′(fe′), (4)

(1− ξ)ce(fe) + (βj − ξβ1)fec
′
e(fe)

≥ (1− ξ)ce′(fe′) + (βj − ξβ1)fe′c
′
e′(fe′), (5)

where ξ for 0 ≤ ξ ≤ 1 is a scalar, which we can set later.
Our high-level strategy will be to bound the Nash Equi-

librium flow on E′ against a restriction g′ of g of rate r− r1
on E′ by induction, and use a comparison argument for the
flow on E1. We will construct a flow h of rate r1 whose
cost is cheaper than a component of g of the same rate, and
which is optimal for modified “residual” edge costs. We can
thus compare it against the flow f on E1 using Theorem 3.3.
Define f ′ to be the restriction of f to the edge set E′, i.e.,

f ′
e = fe for e ∈ E′, and f ′

e = 0 for e ∈ E1. Thus, f ′ is a
flow of rate r′ := r − r1. Define the modified cost function
c̃e(x) := ce(f

′
e + x) + β1f

′
ec

′
e(f

′
e) for all edges e. Thus, c̃e(x)

is the cost incurred by flow on e if f ′
e is unalterable, but not

considered part of the actual flow, plus a suitable constant
term to “mimic” the altruistic component. This definition of
c̃e(x) implies that the perceived cost of edge e to β1-altruistic

users is c̃
(β1)
e (x) = ce(f

′
e + x) + β1xc

′
e(f

′
e + x) + β1f

′
ec

′
e(f

′
e).

Thus, for e ∈ E′, we have that c̃
(β1)
e (x) ≥ c(β1)(f ′

e) for all x ≥
0, while for e ∈ E1, because f

′
e = 0, c̃

(β1)
e (x) = c(β1)(x+ f ′

e).

In particular, this implies that the β1-altruistic users are at
Nash Equilibrium with respect to the modified cost functions
c̃e(x). Hence, by Theorem 3.3, and because c̃e(x) = ce(x)

for all e ∈ E1, we get C(f−f ′) = C̃(f−f ′) ≤ α(β1)(C)·C̃(f̃)

where f̃ is an optimum flow of rate r1 with respect to the
modified edge cost functions c̃e.

In order to compare f ′ against the part of g on the edge
set E′, it will be useful to assume that g(E′) ≥ f(E′). We
will show next that we can make this assumption w.l.o.g.
For assume that it did not hold. Then, let e ∈ E1, e

′ ∈ E′

be edges with ge > fe > 0 and ge′ < fe′ . (The existence
of e, e′ follows from the assumption g(E′) < f(E′)). By
the bound on the derivatives in Inequality (5), and using
the convexity of the edge latency functions, we show that
(gece(ge))

′ ≥ (fece(fe))
′ ≥ (fe′ce′(fe′))

′ ≥ (ge′ce′(ge′))
′ in

the following. The first and last inequalities hold simply by
the semi-convexity of ce and ce′ , and the second equality

is obtained by setting ξ =
1−βj

1−β1
to get 1 − ξ = βj − ξβ1

so (fece(fe))
′ = ce(fe) + fec

′
e(fe) ≥ ce′(fe′) + fe′c

′
e′(fe′) =

(fe′ce′(fe′))
′. Thus, g can be made cheaper by moving some

of its flow from e to e′. By repeating this process, we can
thus assume that g(E′) ≥ f(E′).

Let γ be such that C(f−f ′) = γC(f). Because f ′ and f−
f ′ use disjoint edge sets, we get C(f ′) = (1−γ)C(f). (Notice
that the assumption of disjoint edge sets is indeed crucial
here. Due to the non-constant cost of edges, in general, it
does not hold that C(f) + C(f ′) = C(f + f ′).)

By Lemma 4.3 below, we can decompose g = h+g′, where
g′ is a flow of rate r′ entirely on E′, and h is a flow of rate r1
satisfying the property (7), namely C̃(f̃) ≤

∑
e hece(ge) +∑

e g
′
e(ce(ge)− ce(g

′
e)). We can thus apply induction on the

flows f ′ and g′ of rate r′ on the modified graph with edge set
E′. Notice that while f ′ may not be an Equilibrium flow on
E, it is indeed an Equilibrium flow on E′. Thus, we obtain
that

C(g) = C(g′) +
∑
e

h(e)ce(ge) +
∑
e

g′e(ce(ge)− ce(g
′
e))

≥ (

k∑
i=2

ri
r′

1

α(βi)(C)
) · C(f ′) +

1

α(β1)(C)
C(f − f ′) (6)

=

(
(

k∑
i=2

ri
r′

1

α(βi)(C)
) · (1− γ) +

1

α(β1)(C)
· γ

)
· C(f).

We next show that γ ≤ r1
r
. By Inequality (4), every

user on E1 incurs lower delay than every user on Ej , and
consequently on E′. Thus, the average delay 1

r1
C(f − f ′) of

users on E1 is at most the average delay 1
r
C(f) of all users,

so C(f − f ′) ≤ r1
r
C(f).

The lower bound (6) is a convex combination of the non-

negative terms
∑k

i=2
ri
r′

1

α(βi)(C)
and 1

α(β1)(C)
, with coeffi-

cients (1− γ) and γ. The anarchy value α(β)(C) is a mono-
tone non-increasing function of β, so the weighted average
reciprocal anarchy value for altruism levels β2, . . . , βk is at
least the reciprocal for β1. Thus, the convex combination is
minimized when the coefficient γ of the smaller term 1

α(β1)(C)
is as large as possible, i.e., when γ = r1/r. Substituting this
bound,

C(g) ≥ ((
∑k

i=2
ri
r′

1

α(βi)(C)
) · r′

r
+ 1

α(β1)(C)
· r1

r
) · C(f)

= (
∑k

i=1
ri
r′

1

α(βi)(C)
) · C(f),



completing the inductive step, and thus the proof.

Lemma 4.3. Let f ′ be a flow of rate r′ using only edges
from E′, and define c̃e(x) := ce(f

′
e + x) + β1f

′
ec

′
e(f

′
e). Let g

be any flow of rate r = r′ + r1, with g(E
′) ≥ r′. Let f̃ be the

optimum flow of rate r1 with respect to edge costs c̃e. Then,
g can be decomposed as g = h+ g′, where g′ is a flow of rate
r′ on E′, satisfying

C̃(f̃) ≤
∑
e

hece(ge) +
∑
e

g′e(ce(ge)− ce(g
′
e)). (7)

Proof. Let ∆ := g(E′)− r′ ≥ 0 be the amount of “excess
flow” that g sends on E′, compared to f . We begin by
setting he = ge for all edges e ∈ E1, giving us a flow of
rate r1 − ∆. So we need to add ∆ more units of flow to
h. Let E′′ := {e ∈ E′ | ge ≥ f ′

e} be the set of edges in E′

on which g sends more flow than f ′. Thus, we have that
g(E′′)−f ′(E′′) ≥ g(E′)−f ′(E′) = ∆. In particular, we can
define a flow h of total rate ∆ on E′′, such that he ≤ ge−f ′

e

for all e ∈ E′′. For all other edges e, we set he = 0, and thus
obtain a flow h of rate r1, such that he ≤ ge for all edges e.
We then have that∑

e hece(ge) =
∑

e∈E1
hece(he) +

∑
e∈E′′ hece(ge)

≥
∑

e∈E1
hece(he) +

∑
e∈E′′ hece(f

′
e + he),

where the inequality follows from the monotonicity of the
latencies ce. Next, because g′e ≥ f ′

e for all e ∈ E′, and the

latency functions are convex,
ce(ge)−ce(g

′
e)

he
≥ c′e(f

′
e) for all

e ∈ E′′ with he > 0. Combining this bound with the fact
that β1 ≤ 1, we obtain that

∑
e g

′
e(ce(ge)− ce(g

′
e)) ≥

∑
e∈E′′ g

′
e(ce(ge)− ce(g

′
e))

≥
∑

e∈E′′ f
′
eβ1hec

′
e(f

′
e).

Summing the previous two inequalities now gives us∑
e hece(ge) +

∑
e g

′
e(ce(ge)− ce(g

′
e))

≥
∑

e∈E1
hece(he) +

∑
e∈E′′ hece(f

′
e + he)

+
∑

e∈E′′ heβ1f
′
ec

′
e(f

′
e)

=
∑

e hec̃e(he)

≥ C̃(f̃)

where the final inequality follows from the optimality of f̃
with respect to the cost functions c̃e.

Proof of Theorem 4.1. If C is specifically the set of all
increasing semi-convex functions, Proposition 3.1 implies
that 1

α(t)(C) ≥ t. Substituting this bound into the integral

gives us that

ρ(G, r, c, ψ) ≤
(∫ 1

0
ψ(t)tdt

)−1

= 1/β̄.

It would of course be desirable to extend Theorems 4.1
and 4.2 to distributions including negative support. How-
ever, such an extension is in general not possible. One can
construct scenarios in which almost all of the latency is in-
curred by a small fraction of spiteful users who together
congest a link with very steep increase. At the same time,
all altruistic users use links with very small constant latency.
Then, the PoA is much larger than 1, while the bounds of
both theorems would require it to be close to 1.
An immediate corollary of Theorem 4.1 can be obtained

by choosing the distribution with a rate of λ users being com-
pletely altruistic, and 1 − λ users being completely selfish.

Since β̄ = λ for this distribution, Theorem 4.1 immediately
implies

Corollary 4.4. In parallel link networks, the price of
anarchy under Stackelberg routing with a λ-fraction of traffic
being controlled by a central authority is at most 1/λ.

This result was of course already proved constructively
(and giving efficient algorithms) by Roughgarden [32]; nev-
ertheless, it is interesting that it follows directly from our
general result. More generally, by using the same distri-
bution with support {0, 1} in Theorem 4.2, we obtain the
following corollary:

Corollary 4.5. In parallel link networks, the price of
anarchy under Stackelberg routing with a λ-fraction of traffic
controlled by a central authority is at most ( 1−λ

α(C) + λ)−1.

Notice that Corollary 4.5 improves (albeit in a non-constructive
way) a recent result of Swamy [40] for Stackelberg rout-
ing: We bound the PoA under Stackelberg routing by the
weighted harmonic mean of the PoA for selfish and altruistic
users, whereas Swamy’s bounds give the arithmetic mean. It
is known that the harmonic mean is always bounded above
by the arithmetic mean. We can also show that the case of
Stackelberg routing is in fact the worst case for the bound of
Theorem 4.2, in the sense that the right-hand side is maxi-
mized. While the bound of Theorem 4.2 will in general not
be tight, this nevertheless gives rise to the philosophical in-
terpretation that, conditioned on a given average altruism
level β̄, the scenario in which completely altruistic users or
a central authority compensate for completely selfish users
is the worst case, while uniform altruism through the popu-
lation is the best case.

Proposition 4.6. Conditioned on the mean of ψ being

any given β̄, the quantity
(∫ 1

0
ψ(t) 1

α(t)(C)dt
)−1

is maximized

when ψ has point mass of β̄ on 1 and 1 − β̄ on 0. It is
minimized when ψ has a point mass of 1 on β̄.

Proof. We will show that 1

α(β)(C) is concave as a function

of β. Both results then follow readily from Jensen’s Inequal-
ity. To prove concavity, let p1, p2 ≥ 0 satisfy p1 + p2 = 1.
For any cost function c ∈ C, Definition 3.2 thus gives us

1

α(p1β1+p2β2)(c)

= infλ
λc(λr)+(1−λ)c(r)+(1−λ)(p1β1+p2β2)c

′(r)
c(r)

= infλ
p1(λc(λr)+(1−λ)c(r)+(1−λ)β1c

′(r))
c(r)

+
p2(λc(λr)+(1−λ)c(r)+(1−λ)β2c

′(r))
c(r)

≥ infλ
p1(λc(λr)+(1−λ)c(r)+(1−λ)β1c

′(r))
c(r)

+

infλ
p1(λc(λr)+(1−λ)c(r)+(1−λ)β2c

′(r))
c(r)

= p1
1

α(β1)(c)
+ p2

1

α(β2)(c)
.

Finally, we take an infimum over all c ∈ C on both sides to
complete the proof of concavity.

5. CONCLUSIONS
In this paper, we proposed a simple model of altruism

and spite in traffic routing, where users’ utilities or perceived
costs are linear combinations of their own latency and the in-
crease they cause in other users’ latencies. We proved a 1/β



bound on the price of anarchy even for worst-case networks,
latency functions, and commodities, under the assumption
that all users are (at least) β-altruistic, and β > 0. We ex-
tended this result to non-uniform altruism distributions for
single-commodity flows in parallel link networks. Among
others, this result recovers and improves recent bounds on
Stackelberg routing by Roughgarden and by Swamy.
Our work suggests many interesting directions for further

research. First, the results should be generalized to (more
general) network topologies instead of parallel links. Notice
that any such result would immediately imply correspond-
ing bounds on Stackelberg routing, so the lower bound of
Bonifaci et al. [3] precludes an extension to arbitrary single-
commodity flows. However, an extension to series-parallel
graphs seems plausible at this point.
While we proved the existence of Nash Equilibria for all

routing games with non-atomic users, regardless of the dis-
tributions of altruism, the proof is non-constructive. The
work of Roughgarden [32] implies that finding the best Stack-
elberg strategy is NP-complete. However, it would be in-
teresting whether Stackelberg strategies meeting our bound
can always be found efficiently. Alternatively, in light of re-
cent results proving that finding Nash Equilibria is PPAD-
complete [6], it may be possible that finding Nash Equilibria
for traffic routing games with two (or more) altruism values
is also PPAD-complete.
Finally, the study of partially altruistic and spiteful behav-

ior can and should be extended beyond the realm of traffic
routing. Several natural games studied in the CS community
are known to have unbounded or large PoA under the as-
sumption of selfish agents. It would be interesting to observe
if the introduction of finite amounts of altruism (uniformly
or not) into such games will also lead to a constant or other-
wise reduced PoA. This holds in particular because partial
altruism appears to be a more natural model of actual user
behavior.
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[19] O. Jahn, R. Möhring, A. Schulz, and N. Stier-Moses.
System-optimal routing of traffic flows with user
constraints in networks with congestion. Operations
Research, 53:600–616, 2006.

[20] A. Kaporis and P. Spirakis. The price of optimum in
stackelberg games on arbitrary single commodity
networks and latency functions. In Proc. 19th ACM
Symp. on Parallel Algorithms and Architectures, pages
19–28, 2006.

[21] G. Karakostas and S. Kolliopoulos. Edge pricing of
multicommodity networks for heterogeneous users. In
Proc. 45th IEEE Symp. on Foundations of Computer
Science, pages 268–276, 2004.

[22] G. Karakostas and S. Kolliopoulos. Stackelberg
strategies for selfish routing in general
multicommodity networks. Technical Report 2006/08,
McMaster University, 2006.

[23] E. Koutsoupias and C. Papadimitriou. Worst-case



equilibria. In Proc. 17th Annual Symp. on Theoretical
Aspects of Computer Science. Springer, 1999.

[24] J. Ledyard. Public goods: A survey of experimental
resesarch. In J. Kagel and A. Roth, editors, Handbook
of Experimental Economics, pages 111–194. Princeton
University Press, 1997.

[25] D. Levine. Modeling altruism and spitefulness in
experiments. Review of Economic Dynamics,
1:593–622, 1998.

[26] L. Liang and Q. Qi. Cooperative or vindictive:
Bidding strategies in sponsored search auctions. In
Proc. 3rd Workshop on Internet and Network
Economics (WINE), pages 167–178, 2007.

[27] H. Lin, T. Roughgarden, E. Tardos, and A. Walkover.
Braess’s paradox, fibonacci numbers, and exponential
inapproximability. In Proc. 32nd Intl. Colloq. on
Automata, Languages and Programming, pages
497–512, 2005.

[28] A. Mas-Colell. On a theorem of Schmeidler. J. of
Mathematical Economics, 13:201–206, 1984.

[29] A. Pigou. The Economics of Welfare. Macmillan, 1920.

[30] T. Roughgarden. The price of anarchy is independent
of the network topology. Journal of Computer and
System Sciences, 67:341–364, 2003.

[31] T. Roughgarden. The maximum latency of selfish
routing. In Proc. 15th ACM Symp. on Discrete
Algorithms, pages 973–974, 2004.

[32] T. Roughgarden. Stackelberg scheduling strategies.
SIAM J. on Computing, 33:332–350, 2004.

[33] T. Roughgarden. Selfish Routing and the Price of
Anarchy. MIT Press, 2005.

[34] T. Roughgarden. Selfish routing with atomic players.
In Proc. 16th ACM Symp. on Discrete Algorithms,
pages 1184–1185, 2005.

[35] T. Roughgarden. On the severity of braess’s paradox:
Designing networks for selfish users is hard. Journal of
Computer and System Sciences, 72:922–953, 2006.

[36] T. Roughgarden and E. Tardos. How bad is selfish
routing? In Proc. 41st IEEE Symp. on Foundations of
Computer Science, 2000.

[37] T. Schelling. Micromotives and Macrobehavior.
Norton, 1978.

[38] Y. Sharma and D. Williamson. Stackelberg thresholds
in network routing games or the value of altruism. In
Proc. 9th ACM Conf. on Electronic Commerce, 2007.

[39] M. Smith. The marginal cost taxation of a
transportation network. Transportation Resesarch,
Part B, 13:237–242, 1979.

[40] C. Swamy. The effectiveness of stackelberg strategies
and tolls for network congestion games. In Proc. 18th
ACM Symp. on Discrete Algorithms, 2007.

[41] I. Vetsikas and N. Jennings. Outperforming the
competition in multi-unit sealed bid auctions. In Proc.
6th Intl. Joint Conf. on Autonomous Agents and
Multiagent Systems, pages 702–709, 2007.

[42] J. Wardrop. Some theoretical aspects of road traffic
research. In Proc. of the Institute of Civil Engineers,
Pt. II, volume 1, pages 325–378, 1952.


