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ABSTRACT 
The difficulty of making changes to the internet architecture 
has spawned widespread interest in virtualized testbeds as a 
place to deploy new services.  Despite the excitement, 
uncertainty surrounds the question of how technologies can 
bridge the gap from testbed to global availability.  It is 
recognized that no amount of validation will spur today’s 
ISPs to make architectural changes, so the testbed itself 
must somehow provide global availability.  We investigate 
whether a virtualized architecture that is widely offered by 
commercial ISPs would support the adoption of new 
services or upgrades to the infrastructure, and whether ISPs 
would ever support such an architecture.  According to our 
economic analysis, the answer depends critically on how 
money flows to network and service providers.  If the 
virtualized network inherits the market structure prevalent 
on the internet today, which we call network-gatekeeper, 
investment levels are likely to be poor.  On the other hand, 
we identify two superior market types, mix-and-match and 
service-gatekeeper, which can improve incentives to invest 
in services, and even in network upgrades.  We discuss how 
these market types may be implemented. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems; J.4 [Social And Behavioral Sciences]: 
Economics 

General Terms 
Design, Economics, Theory, Legal Aspects 

Keywords 
Virtualization, Technology Adoption, Supply Chains, 
Evolution, Innovation, Clean-Slate Design. 

1. INTRODUCTION 
The gulf between the internet we have and the internet we 
want seems wider today than ever before.  For decades, 
researchers have identified ways to improve the network, 
calling for such things as quality of service, multicast 
capability, mobility support, and IPv6.  More recently, 
several large-scale research projects have been tasked with 
redesigning the internet from scratch, further expanding our 
view of potential capabilities [1][6][15].  Unfortunately, 
even as our aspirations have risen, the network in use by the 
vast majority of users has remained stagnant, and even 
ossified [3][12].  Many studies have noted the internet’s 
resistance to evolution [3][5][8][10][11][12][13][16][17].  
Internet service providers are the gatekeepers to any 

architectural change, and we now accept that they lack the 
economic incentives to adopt new technologies [10][13]. 

Faced with the impossibility of changing the internet 
directly, attention has recently shifted to large-scale 
experimental testbeds as an alternate place to deploy new 
technologies.  These flexible platforms can be thought of as 
meta-networks, capable of simulating a wide-variety of 
architectures.  Several testbeds are now in development, 
including the Global Environment for Network Innovations 
(GENI), a collaboration among 29 initial research teams 
that may cost $350 million and connect 100,000 users [6]. 

Despite the excitement, uncertainty surrounds the question 
of how technologies can eventually bridge the gap from a 
testbed to global availability by end-users.  In a canonical 
paper, Peterson et al. point out that no amount of validation 
on a separate testbed will induce today’s ISPs to implement 
significant changes to the internet architecture [12].  The 
obstacles preventing adoption are simply not technological, 
but rather economic.  This means that if new technologies 
are to reach a global population of users, the testbed itself 
must provide global availability. 

What are the chances, then, that today’s ISPs (or a new set 
of ISPs) could be convinced to support GENI, or any 
similar architecture, expanding it to global proportions?  
Moreover, would such a network, spanning a great number 
of providers, be more evolvable than today’s internet?  To 
answer these questions, this study will analyze the 
economic incentives surrounding virtualized testbeds. 

1.1 Three Supply Chains 
Alarmingly, for all the resources invested in developing the 
technical aspects of testbeds, rather little is known about 
their economic properties.  In the worst case, ISPs may 
agree to support a virtualized architecture, but insist on 
retaining their current role as gatekeepers, selecting which 
protocols to allow in their domains.  If nothing else is done 
to alter the nature of payments, the virtualized architecture 
will act as nothing more than a technical lubricant, allowing 
ISPs to install new technologies with greater ease.  By all 
accounts, today’s lack of evolvability has nothing to do with 
technical barriers, so this is unlikely to break the impasse. 

As these observations suggest, the behavior of a testbed 
depends crucially on who selects the technologies that run 
on the network.  We will therefore embed this choice as a 
central feature of our network model. 

A typical design for a virtualized architecture centers 
around a virtualization interface.  This is an abstraction that 
hides the implementation of the infrastructure below, and 
allows multiple technologies to run on top of it.  In keeping 
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with previous work [5][9][17], we will refer to the 
architecture below the virtualization interface as network or 
infrastructure, and the architecture above the interface as 
services.  As shown in Figure 1, we imagine that the 
network is operated by a set of network providers (NPs), 
and the services are operated by a set of service providers 
(SPs, see [17] for a technical discussion of how such an 
architecture may be implemented).  

In order to make use of a service, an end-user will need 
both a network provider and a service provider, and each 
will need money to finance its cost of operation.  
Examining our abstraction, we see that there are three 
canonical ways that money can flow through this system.  
First, as depicted in Figure 2.A, the end-user can pay the 
network provider, who passes on a payment to the service 
provider.  Economic viability also dictates that the network 
provider gets to select the service provider (if the service 
provider were selected by the user, it could charge as much 
as it wanted from the network provider). 

We will call this arrangement a network-gatekeeper market, 
since a new service cannot be deployed without the consent 
of the network provider.  A good example of a network-
gatekeeper market involves cable television.  In this case, 
the network provider is a cable operator, and the service 
providers are cable television networks.  An end-user is not 
allowed to contract directly with television networks to 
purchase channels she is interested in.  Instead, the channel 
lineup is controlled by the cable operator, who purchases 
content on the user’s behalf.1 

In many cases, the network provider and the service 
provider in a network-gatekeeper market are the same firm.  
Able to choose any service provider it wants, it should 
come as no surprise that a network provider will often 
plump for itself, and avoid having to split profits with 
another firm.  For example, Ratnasamy et al. consider the 
possibility of network evolution through competing network 
layer protocols [13].  The IP layer network can certainly be 
considered as a service in our model, and some users might 
prefer, say, IPv6 over IPv4.  The choice is made by network 
providers, however, who generally choose a single protocol 
that they can supply themselves. 

Similarly, end-users have no say in what protocol is used 
for their traditional (non-VoIP) telephone service, selection 

                                                           
1 Advertising revenue can be thought of as a payment from end-

users directly to cable networks, so this example does not fit the 
network-gatekeeper market perfectly. 

of IP level routes, IP level multicast transmissions, or cell 
phone transmissions.  All of these may be understood as 
network-gatekeeper markets, in which the network provider 
itself provides any available protocol.  In principle, an 
entrepreneur would be free to form a service provider to 
provide an alternate protocol, but she would have to 
convince network providers to purchase it (or even accept it 
for free).  Without their cooperation, users can have no 
access to the new technology. 

Of course, our entrepreneur would be interested to see if her 
service could be implemented at the application layer, 
bypassing the need for ISP cooperation.  For example, 
telephone service can be implemented as a network layer 
service, or as an application over IP.  In the latter case, it is 
end-users who choose a VoIP service provider, and there is 
little network providers can do to interfere.  Indeed, this is 
the idea behind our second canonical market type. 

As depicted in Figure 2.B, an end-user can independently 
select a network provider and a service provider, and pay 
each of them directly.  We will call this scenario a mix-and-
match market.  Such markets are common for services that 
can run on top of the internet, including online stores, 
multiplayer games, and photo-sharing sites. 

In many cases, service providers in a mix-and-match market 
do not charge users directly, but rather earn revenue from 
advertising.  Online newspapers, file-sharing networks, and 
social networking applications are likely to operate in this 
way.  While this is an interesting strategy from a business 
perspective, we will set it aside for the current study.  For 
our purposes, advertising and direct payments have similar 
properties, and we will not worry about the distinction.  

One final possibility remains for the flow of money through 
a virtualized architecture, which we will call a service-
gatekeeper market.  As depicted in Figure 2.C, an end-user 
may contract directly with a service provider, who selects 
and pays a network provider for use of the underlying 
infrastructure. 

An example of a service-gatekeeper market may be found 
in unbundling-based ISPs – providers that do not own their 
own cables, but purchase connectivity from an underlying 
network provider.  Of course, such ISPs often have to 
compete against the underlying network’s own IP service, 
so that network may not want to offer the unbundling-based 
ISP a good price.  The situation may be different however, 
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Figure 2: Monetary Flows in a Virtualized Architecture 
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if a regulator forbids vertical integration between network 
and service providers.  That is the situation we will focus on 
in this study. 

It is worth noting how our three monetary paths correspond 
to the economic notion of supply chains.  In this analogy, a 
service provider and a network provider each produce one 
of two inputs that must be combined to make a final 
product.  If we were to reverse the direction of each arrow 
in Figure 2, they could represent the direction in which 
these inputs were sold, much like a supply chain diagram.  
For example, in the network-gatekeeper market, the service 
provider sells a service input to the network provider, who 
assembles both inputs into a complete product that can be 
sold to the end-user.  Although supply chains have been 
thoroughly studied in economics, a virtualized architecture 
is rather unique in the flexibility we have to rearrange the 
order of production. 

We should admit that the market types we have described 
are somewhat idealized; many services we observe in 
today’s industry do not align perfectly with any of the three.  
Nevertheless, we believe that the three markets we have 
identified are natural representatives of the broader space.  
In the spirit of clean-slate design, we will focus on these 
three in order to gain a broad view of how our design 
choices affect economic outcomes. 

The market types that exist in today’s internet are there 
more by accident than by design; they are the result of 
founding-era engineering decisions molded by tussles 
among network players.  As we design our next generation 
network, however, we have an opportunity to choose how 
network services should be financed.  Even casual 
observation suggests that this decision can have an 
immense, if not definitive, effect on how evolvable the 
architecture is.  Many of the services that are financed by a 
mix-and-match market – social networking sites, search 
engines, file-sharing networks – are renowned for the rate at 
which new innovations replace old ones.  Meanwhile, the 
network-layer architecture, financed by a network-
gatekeeper market, is stagnant and ossified [3][12]. 

Motivated by these observations, this study will build an 
economic model to analyze our three market types, paying 
particular attention to the incentives firms have to invest in 
service innovations, and to upgrade the infrastructure.  The 
rest of this paper is organized as follows:  In Section 2, we 
will set up our economic model.  In Section 3, we will 
proceed to analyze each of our three market types.  In 
Section 4, we will discuss implementation issues and 
conclude the paper. 

2. MODEL SETUP 
Our modeling framework is designed to meet three main 
criteria.  First, it must be capable of representing all three 
market types.  Second, it must allow consumers to switch 
gradually among products, not all together as in traditional 
price competition.  This “softness” in the consumer demand 

is what allows network providers to elevate prices above 
marginal cost – a prominent feature of today’s market.  
Third, we want our model to be tractable, yielding closed-
form solutions. 

To the best of our knowledge, no previous framework in 
economics is capable of meeting these criteria.  On a high 
level, our strategy will be to represent the end-user market 
with Cournot, or quantity, competition.  On the other hand, 
we will use price competition to represent exchanges 
between firms.  This distinction captures the notion that 
firms are more discerning buyers than end-users.  Firms are 
more likely than consumers to carefully compare alternate 
products and review their choices regularly, for example. 

While these games are standard throughout economics, one 
major obstacle prevents us from applying them directly.  
Recall that a mix-and-match market allows both network 
providers and service providers to sell directly to end-users.  
We would therefore like to model both exchanges using 
Cournot competition.  Classic Cournot games cannot 
combine in this fashion, however – if both types of 
providers choose quantities, there is no guarantee that the 
total quantities of network and service will match!   

In response, our main analytic achievement is to 
reformulate the classic Cournot theory so that it extends 
naturally to the mix-and-match market.  We present our full 
theory in the appendix, using an axiomatic approach. 

2.1 Measuring investment 
We begin with a duopoly of network providers, 1 2{NP , NP } , 

and a set of m service providers, 1{SP ,...,SP }m .  Let ix  be 

the quantity of network i, and jy  be the quantity of service 

j.  Our assumptions will ensure that i jx y=∑ ∑ .  We 

assume that prices are given by an inverse demand function, 
{ }ijt=t , where 1 2 1( , , ,..., )ij mt x x y y  is the price of the 

combination of network i and service j as a function of 
quantities.  For each market type, we will begin with a base 
case in which demand is equal for all product combinations, 
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1 1
1 1

M

ij k kk k
t x y

= =
= − = −∑ ∑ , for all i, j. (1) 

This linear form is standard in economics.  Our investment 
model draws heavily upon the game-theoretic literature on 
innovation [14].  In accordance with this lineage, we will 
refer to investment opportunities in services as innovations.  
On the other hand, when an investment improves the quality 
of the network, we will yield to common parlance and refer 
to it as an upgrade. 

We represent an investment opportunity by its strength, 
[0,1)α ∈ , and assume that it enhances demand by bα , 

where b is the user base.  For example, if NPi invests in an 
upgrade of strength α, demand for product combinations 
involving network i increases by ixα , 

 new
ij ij it t xα= + , for all j (2) 



 

 4 

This form assumes that innovations and upgrades are 
subject to network effects.  This is the “hard case” for 
deployment, because a technology does not have much 
value if only a portion of providers adopt it.  This implies 
that a small group of adopters cannot gain much 
competitive advantage over their rivals (such competitive 
advantages are used to support adoption in [4][10][13]).  
On the other hand, the technology will achieve its maximum 
value if all providers adopt it, but then no firm has any 
competitive advantage so profits may not rise by much. 

Following a standard technique from economics, let Lπ  be 

the profit a firm makes in the base case, and ( )Hπ α  be its 

profit if it invests in an innovation of strength α.  Define the 
incentive to invest, I, as the difference between these, 

 ( ) ( )H LI α π α π= −  (3) 

We will write this as NPI  for a network provider and SPI  
for a service provider.  The incentive to invest is the most a 
rational firm would be willing to invest to deploy the new 
technology [10][14]. 

3. ANALYSIS OF MARKET TYPES 
To give some sense of scale to the values we are about to 
compute, it helps to have a benchmark for comparison.  A 
good one to use is the profit and incentives faced by a 
monopolist, M, which provides both the network and the 
service.  In the base case, the monopolist faces demand, 

1M Mt x= − , with well-known maximum profit 1/ 4Mπ = .  

With a service innovation or network upgrade, demand 
becomes 1 (1 )M Mt xα= − − .  The maximum profit may be 

computed as
1

4(1 )Mπ
α

=
−

, so the incentive to invest is, 

 
1 1

( )
4(1 ) 4 4(1 )

MI
αα

α α
= − =

− −
 (4) 

By comparing the performance of our three market types to 
this benchmark, we will effectively measure how much 
investment can be attributed to the presence of competition. 

3.1 The Network-Gatekeeper Market 
Our network-gatekeeper game proceeds as follows: 

Stage 1: Service providers selects prices {sj} 
Stage 2: Network providers select service providers 
Stage 3: Network providers choose quantities, 1 2( , )x x  

If NPi selects SPj, its profit is ( )i ij jx t s− .  If SPj is selected 

by NPs choosing total quantity yj, its profit is j js y . 

First, we ask what happens when a service innovation of 
size α is offered to SP1.  To simplify the expression in 
Claim 1, we assume 3 / 4α ≤ .  This only leaves out the 
very largest innovations, those that at least quadruple the 
potential consumer market.  If the provider invests, demand 
for product combinations that include SP1 increases to 

 1 11i jt y yα= − +∑  (5) 

Claim 1: For 3 / 4α ≤ , the incentive to invest in service 
innovations in the network-gatekeeper market is 

 
2

2

15 16
( )

54(1 )
SPI

α αα
α

−=
−

, (6) 

which is never more than 10% greater than ( )MI α  

The full computation involves an extensive case-by-case 
analysis; a proof sketch is provided in the appendix.  The 
service-gatekeeper market does not provide substantially 
more incentive for service innovations than the monopolist 
benchmark.  In fact, the monopolist actually enjoys greater 
incentive for large α. 

Next, we ask what happens when a network upgrade of size 
α is offered to NP1.  If the provider invests, demand for 
product combinations that include NP1 increases to 

 1 11j it x xα= − +∑  (7) 

Claim 2:  The incentive to invest in network upgrades in 
the network-gatekeeper market is, 

 
2

(15 16 )
, 1/ 2

9(3 4 )
( )

5 4
, 1/ 2

36(1 )

NPI

α α α
α

α
α α
α

− < −=  + ≥
 −

 (8) 

The proof is given in the appendix.  This incentive is 
plotted as the bottom line in Figure 3, scaled by the 
monopolist benchmark.  For small innovations, a 
monopolist enjoys higher incentives to invest, since it earns 
the maximum possible profit from the higher technology.  
Meanwhile, the firm in our network gatekeeper does not 
have enough market share to gain much value from the 
upgrade.  As α increases, though, its incentive to upgrade 
rises quickly as it steals market share from its rival.  There 
is a discontinuity at 1/ 2α = , as the rival network provider 
is driven completely from the market.  Above this level, the 
graph appears to drop, but that is an artifact of normalizing 
by the monopolist benchmark.  In fact, the absolute 
inventive continues to increase for stronger upgrades. 

 

strength of network upgrade 

Incentive to invest  network-gatekeeper / mix & match 

service-gatekeeper 

Figure 3: Incentive to upgrade network across three 
market types, relative to monopolist benchmark 
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3.2 The Mix-and-Match Market 
To model the mix-and-match market, we apply our new 
theory of Cournot competition, in which firms select 
quantity restrictions.  Details may be found in the appendix.  

Stage 1:  Each NPi and each SPj selects quantity 
restrictions ̂ ix  and ˆ jy , respectively. 

Claim 3:  In the mix-and-match market, the incentive to 
invest in a service innovation is given by, 

 
2

4
, 1/ 2

(3 )
( )

4
, 1/ 2

25(1 )

SPI

α α
α

α
α

α

 < −= 
 ≥
 −

 (9) 

The proof is given in the appendix.  This incentive is 
plotted as the middle line in Figure 4.  For nearly all values 
of α, the mix-and-match market yields a higher incentive to 
invest than the network-gatekeeper market.  The difference 
is the most dramatic for small innovations, where the mix-
and-match market offers a 60 percent improvement. 

Intuitively, this market is better at aligning actors with 
technologies.  In the network-gatekeeper market, a service 
must be sold to multiple network providers, after which it 
essentially has to compete against itself.  The mix-and-
match market largely avoids this situation, clearing the way 
for services to compete against each other. 

Our model reveals a tension between short-term efficiency 
and long-term development.  The mix-and-match market 
allows a service provider to profitably invest in a wider 
range of innovations than the network-gatekeeper market.  
Of course, there are technologies that are valuable or 
inexpensive enough that they would be deployed in either 
market.  For those cases, it can be shown that the mix-and-
match market results in lower social welfare and lower 
consumer surplus than the network-gatekeeper market. 

Claim 4:  The incentive to invest in a network upgrade in 
the mix-and-match market is the same as in the network-
gatekeeper market, 
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( )
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α

α
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α

− < −=  + ≥
 −

 (10) 

The proof follows a similar procedure to that of Claim 2, 
and we omit it.  The mix-and-match market maintains the 
Cournot competition between network providers, so their 
incentives to upgrade do not change in our model.  There is 
one important difference between the two markets, 
however, that our model cannot detect.  This comes into 
play when there are multiple service classes. 

Intuitively, different types of services may vary in terms of 
how valuable they are and the size of their potential user 
base.  In a network-gatekeeper market, network providers 

can tailor the supply of each service independently to 
maximize profits.  For example, a network operator may try 
to sell more telephone service than IP service.  In a mix-
and-match market, however, a network provider can only 
choose a single quantity of the network input.  The relative 
amounts of each service are determined by the competition 
between service providers. 

Unable to discriminate, network providers are likely to face 
lower profits in the mix-and-match market.  The incentive 
to upgrade the network, though, may increase or decrease, 
depending on how an upgrade affects each service. 

3.3 The Service-Gatekeeper Market 
Our service-gatekeeper market game proceeds as follows: 

Stage 1: Network providers select prices 1 2( , )r r  

Stage 2: Service providers select network providers 
Stage 3: Service providers choose quantities, y . 

If SPj selects NPi, it earns profit ( )j ij iy t r− .  If NPi is 

selected by SPs with total quantity xi, it earns profit i ir x . 

Claim 5:  The incentive to invest in a service innovation in 
the service-gatekeeper market is, 

 

, 1/ 2

( ) 1
1/ 2

4(1 )
SPI

a

α α
α

α

<
=  ≥ −

 (11) 

The proof follows a similar structure to that of Claim 3 and 
we omit it.  This incentive is plotted as the top line in 
Figure 4.  For all α, the service-gatekeeper market provides 
substantially more incentive to innovate than the other two 
– more than twice as much for small values of α. 

Moreover, unlike the mix-and-match market, this extra 
incentive to innovate does not come at the expense of 
welfare or consumer surplus.  Because the network 
providers do not act to elevate prices, it can be shown that 
both measures are higher in the service-gatekeeper market. 

Intuitively, the service-gatekeeper market makes 
competition between the network providers very strict.  As 
a result, they do not elevate prices or restrict the amount of 
network available to consumers.  A service provider with an 

strength of service innovation 

Incentive to invest  

mix-and-match 

network-gatekeeper 

service-gatekeeper 

Figure 4: Incentive for service innovation across three 
market types, relative to monopolist benchmark 
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innovation can therefore sell it to the maximum possible 
consumer population.  Like the mix-and-match market, the 
service-gatekeeper market allows services to compete 
directly against each other.  In addition, though, it awards 
all of the reward for a service innovation to the service 
providers, rather than sharing some of it with the network 
providers.  These factors make the service-gatekeeper 
market the clear winner in terms of service innovation. 

The success of this market depends, in part, on the 
separation between the network and service markets.  If the 
NPs are vertically integrated with service providers, they 
may drive out third-party SPs and turn that market into a 
duopoly.  This suggests that a service-gatekeeper market is 
best paired with regulation to limit vertical integration. 

One might worry, of course, that this extra service 
innovation comes at the expense of network upgrades.  
Indeed, this is a common theme in today’s network policy 
debates.  The next claim shows that this is not the case. 

Claim 6: The incentive to invest in a network upgrade in 
the service-gatekeeper market is 

 ( ) 1 1/ 1NPI α α= − + −  (12) 

A proof sketch is given in the appendix.  This incentive is 
plotted as the top line in Figure 3.  Surprisingly, for all α, 
the service-gatekeeper market offers more incentive for 
network upgrades – almost three times as much for small α. 

The service gatekeeper market offers the most incentive to 
invest in network upgrades, even though network providers 
earn zero profit in the base case.  Because the service-
gatekeeper market makes network competition much 
stricter, consumers will flock to the provider that can offer a 
better deal, offering a strong reward for investment. 

It is a feature of our service-gatekeeper model that only one 
network provider can earn a profit at a time.  This is 
because we have assumed only one class of service.  We 
can imagine that with multiple classes, service providers 
might arrange themselves into different networks, some 
seeking a low price, perhaps, while others seek the highest 
possible performance.  In fact, we may speculate that over 
time, providers may try to distinguish themselves by 
tailoring their networks to particular classes of service.  By 
diversifying in this way, network providers can all earn a 
positive profit, while also enabling a broader range of 
services on the network.  

4. DISCUSSION 
If next-generation architectures are to move from a 
community of researchers to global deployment, their 
behavior will increasingly be governed by economic forces.  
In this study, we have argued that the direction of money 
flow has a decisive effect on innovation and upgrade in a 
virtualized architecture.  If we do not make market structure 
a part of our design, there is a risk that ISPs will transplant 
the network-gatekeeper market from today’s internet onto 
the virtualized architecture.  We have seen that this market 

supports by far the least service innovation, so the end 
result might be a new network that replicates the stagnation 
in today’s network layer. 

By contrast, we have identified two alternate market types 
that make better choices.  A mix-and-match market can 
increase incentives for service innovation by up to 60%.  
That figure rises to over 300% for a service-gatekeeper 
market.  This market also dramatically enhances 
investments to upgrade infrastructure, and improves welfare 
and consumer surplus.  Unfortunately, network providers 
may oppose these alternate markets, as they may expect less 
profit, at least in the base case.  The success of these 
markets may thus depend on involvement from regulators. 

Though we are proposing substantial changes to the way 
networks and services are financed, we believe that 
implementing a virtualized architecture with a mix-and-
match or service-gatekeeper market is within reach.  
Existing proposals for next-generation architectures can be 
adapted to support these market types.  The Cabernet 
architecture, in particular, features a connectivity layer that 
abstracts multiple network providers underneath, and allows 
multiple services to coexist on top [17].  It thus fulfills the 
role of the virtualization interface in Figure 1.  To support a 
service-gatekeeper market, the connectivity layer would 
further have to transmit price and traffic information 
between network providers and service providers. 

One of the benefits of the service-gatekeeper market is that 
diverse service providers can select the best networks for 
their specific requirements.  We therefore expect services to 
thrive when there are as many choices for the underlying 
network as possible.  This suggests a synergy between a 
service-gatekeeper market and multi-homing, which allows 
network devices to connect to more than one access 
network.  Some mobile phones already do this today, 
switching seamlessly between cellular and wifi networks. 

Multi-homing would enable the benefits of a service-
gatekeeper market to extend throughout the network, all the 
way to the end-user.  Without multi-homing, service 
providers cannot select a user’s first hop, which really 
becomes the user’s choice.  Even so, the service-gatekeeper 
market continues to enhance incentives for service 
innovation – at worst, it just becomes equivalent to a mix-
and-match market.  As the amount of multi-homing on the 
network increases, however, service providers start to select 
among access networks, and the access market becomes 
stricter, yielding greater incentives for both service 
innovation and network upgrade. 
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7. APPENDIX 
A new theory of Cournot competition 

We begin with just a single type of provider to illustrate our 
strategy.  In the classic linear Cournot game, a set of n firms 
select quantities, 1{ }i i nx ≤ ≤ , and prices are determined by a 

demand function, it N x= −∑ .  Here, N represents the 

maximum population of buyers.  We will focus, however, 
not on how much of the market the firms supply, but rather 
on how much of the market they decide to leave unsupplied.  
Define the quantity restriction for firm i, ˆ

ix , to be how 

many fewer customers the firm supplies than it would have 
if all customers were divided equally: ˆ /i ix N n x= − .  This 

form is chosen so that the total quantity restriction is the 
number of unsupplied consumers: 

 ˆ
i ix N x= −∑ ∑ . (13) 

Because there is a one-to-one correspondence between 
quantities and quantity restrictions, our game is fully 
equivalent when firms choose quantity restrictions instead 
of quantities. 

If this change of decision variables strikes the reader as 
somewhat artificial, rest assured that it may be considered 
temporary.  Quantity restrictions will give us a natural way 
to join two Cournot games together to form a two-sided 
market.  In the end, though, we will see that each side faces 
a regular Cournot game in Nash equilibrium, and the game 
may be rephrased in terms of quantities. 

Moving on to our network setting, assume a duopoly of 
network providers, 1 2{NP , NP } , and a set of m service 

providers, 1{SP ,...,SP }m .  Let ix  be the quantity of network 

i, and jy  be the quantity of service j.  Furthermore, 

let 1 2( , )x x=x  and 1( ,..., )my=y y  be the vectors of all such 

quantities.  We now assume a demand function { }ijt=t , 

where ( , )ijt x y  is the price of the combination of network i 

and service j as a function of quantities.  Let N be the 
maximum population of buyers (technically, the maximum 
total quantity for which total profit calculated through t  
may be non-negative). 

We now extend Cournot competition to a two-sided market 
as follows:  Each network provider, NPi, and service 
provider, SPj, simultaneously chooses a quantity restriction, 
labeled ˆix  and ˆ jy , respectively.  We will let 1

ˆ ˆ ˆ( ,..., )nx x=x  

and 1
ˆ ˆ ˆ( ,..., )my y=y  be the vectors of all quantity 

restrictions.  We then compute quantities, 1( ,..., )nx x=x  

and 1( ,..., )my y=y  as, 

 
ˆ ˆ

ˆ ˆ,j i
i i j j

N y N x
x x y y

n m

− −
= − = −∑ ∑  (14) 

This form ensures, as before, that the total quantity 
restriction is the total number of unsupplied consumers, 
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 ˆ ˆ
i j i jx y N x N y+ = − = −∑ ∑ ∑ ∑ . (15) 

We will assume that our demand function is separable into 
a network component and a service component, as, 

 ( ) ( )ij i jt u v= +x y , (16) 

for some functions iu  and jv  (Note that this separation will 

not be unique).  This assumption means that there are no 
complementarities between network technologies and 
service technologies.  We will need it to ensure that prices 
remain continuous in supply. 

Let the price for network provider NPi be ˆ ˆ( , )ir x y , and the 

price for service provider SPj be ˆ ˆ( , )js x y .  In classic 

Cournot competition, there is a unique set of prices such 
that demand is fulfilled and consumers are indifferent 
between purchasing all products.  Unfortunately, the same 
will not hold in our two-sided market, because given any set 
of prices that fulfills demand, any amount of money can be 
subtracted from the network providers’ prices and added to 
the service providers’ prices without affecting the final 
prices seen by consumers.  We will therefore need more 
assumptions to identify the most natural set of prices.  Our 
approach will use the following four: 

1: Demand is fulfilled, ( , ) ( , ) ( , )ij i jt r s= +x y x y x y . 

2: Prices on one side depend only on the total restriction 
on the other side, not individual actions.  That is, 

1
ˆ ˆ ˆ( ,..., , )i i n jr r x x y= ∑ , and 1

ˆ ˆ ˆ( , ,..., )j j j ms s x y y= ∑ . 

3: When the domain is restricted to a fixed supply, 
( *, *)x y , prices are linear in ˆ ˆ,x y . 

4: If either side of the market does not restrict quantity 
at all, the maximum total profit for that side is zero.  
That is, for any ̂y , 

1̂ ˆ ˆ( ,..., ) 0
max 0

n i
i ix x x

x r
=

=
∑ ∑ , and for 

any x̂ , 
1ˆ ˆ ˆ( ,..., ) 0

max 0
m j

j jy y y
y s

=
=

∑ ∑ . 

Theorem 1: There exists a unique set of price functions, 
{ }ir and { }js , such that assumptions 1-4 are fulfilled. 

Proof:  First, assume that the price functions, { }ir and 

{ }js , fulfill assumption 1.  Then for any two network 

providers, 'i i≠ , and an arbitrary service provider, j, we 
may write 

' ' ' 'i i ij j i j j i j i j i ir r t s t s u v u v u u− = − − + = + − − = − , so 

r i must take the form, i ir u c= + , where ˆ ˆ( , )c x y  is a 

real-valued function of the decision variables.  Then 

j ij j i j i js t r u v u c v c= − = + − − = − .  Conversely, given 

any function c, the price functions, i ir u c= + , 

j js v c= −  will fulfill assumption 1, since i j ijr s t+ = .  

We therefore need only show that there exists a unique 
c, such that the resulting price functions fulfill 
assumptions 2,3,and 4. 

Next, assume that a function ̂ ˆ( , )c x y  and the resulting 

price functions fulfill assumption 2.  We know changes 
to ŷ  that preserve ˆ

jy∑  do not affect ( )i ir u c= +x .  

Therefore, such changes must also leave c unchanged.  
Similarly, changes to ̂x  that do not affect ˆ

ix∑  cannot 

affect c, so we may write ˆ ˆ( , )i jc c x y= ∑ ∑ .  

Conversely, it is easy to see that for any c of this form, 
the resulting functions  ˆ ˆ( , )i i i jr u c x y= + ∑ ∑ , and 

ˆ ˆ( , )j j i js v c x y= − ∑ ∑  fulfill assumption 2.  We 

therefore need only show that there exists a unique 
ˆ ˆ( , )i jc x y∑ ∑  such that the resulting price functions 

fulfill assumptions 3 and 4. 

Next, assume that a function ˆ ˆ( , )i jc x y∑ ∑ , and the 

resulting price functions fulfill assumption 3.  Fix a 
supply vector, 1 1( *,..., *, *,..., *)n nx x y y , and note that 

this also fixes ˆ ˆ
i je x y= +∑ ∑ .   Since within this 

domain, i ir u c= + , and j js v c= −  are linear, and iu  

and jv  are fixed, c must be linear, and we may write the 

relation,  

 
ˆ ˆ( ,0) (0, )

ˆ ˆ( , ) i j
i j

c e x c e y
c x y

e

+
= ∑ ∑

∑ ∑ . (17) 

Thus, c is completely determined by its intercepts.  
Conversely, given any intercepts, ˆ( ,0)ic x∑ and 

ˆ(0, )jc y∑ , it is easy to see that the function formed by 

linearly extending it in the manner of (17) results in 
price functions that fulfill assumption 3.  We therefore 
need only show that there exist unique intercept values 
for c, such that the resulting price functions fulfill 
assumption 4. 

Finally, for any ˆ
jy∑ , with ˆ 0ix =∑ , the total profit to 

the network providers is, 

( )ˆ ˆ(0, ) (0, )i i i i j j j jx r x u c y x u nc y= + = +∑ ∑ ∑ ∑ ∑
 (18) 

with a maximum of ˆmax (0, )j j jx u nc y+∑ ∑ .  Note 

that this maximum is zero for a unique value of 
ˆ(0, )jc y∑ .  Similarly, for any ˆ

ix∑ , with ˆ 0jy =∑ , 

there is unique value of ˆ( ,0)ic x∑  such that the 

maximum profit to the service providers is zero.  These 
are the unique intercept values such that the resulting 
price functions fulfill assumption 4, which completes the 
proof.  □ 

We have constructed our two-sided Cournot game to utilize 
the most general demand function possible.  Our only 
assumption was that the range of supply for which demand 
is positive is bounded.  To further demonstrate why our 
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extension is a natural one, we may now restrict to the 
simpler case we will actually use.  Let demand ijt  be linear, 

and suppose that there is a particular product combination 
that is always “best”: For any fixed total supply, selling this 
product by itself attains the maximum possible demand.  
We will call this the single best product assumption.  
Without loss of generality, we assume that this demand-
maximizing product comes from NP1 and SP1. 

We may (uniquely) choose a separation of our demand 
function, ( , ) ( ) ( )NP NP

ij i jt u v= +x y x y  so the second term is 

zero whenever the demand-maximizing product is the only 
one being sold: 1 1( ,0,..0) 0NPv y =  for all 1y . NP

iu  can be 

interpreted as the maximum consumer demand for a given 
set of network quantities, x , achieved by matching all 
networks with service 1, 1 1( ,..., , ,0,...,0)NP

i i n ku t x x x= ∑ .  

We let the slope of demand for the demand-maximizing 
product be β− , so 1 1 1( ,0,...,0) ( )NPu x N xβ= − . 

Lemma 7: Under linear demand and the single best product 
assumption, network provider prices are 

1
ˆ( ,..., )NP

i i n jr u x x yβ= − ∑ . 

Proof:  From the proof of the previous theorem, we 
know that i ir u c= + , where c is linearly determined by 

its intercepts according to (17).  Furthermore, we know 
that ˆ(0, )jc y∑  is the unique value such that the 

maximum profit to the network providers over ˆ 0
i

x =∑  

is zero.  By assumption, this maximum profit is attained 
by selling network 1 by itself,  

 
1ˆ 0

ˆ ˆmax ( ,0,..,0) (0, )

ˆ ˆ(0, )

i

NP
i i j jx

j j

x r u N y c y

y c yβ
=

= − +
∑

= +

∑ ∑

∑ ∑
 (19) 

Setting this to zero yields ˆ ˆ(0, )j jc y yβ= −∑ ∑ .   

Similarly, ˆ( ,0)ic x∑  is the unique value such that the 

maximum profit to the service providers over ˆ 0
j

y =∑  

is zero.  Again, this maximum profit is attained by 
selling service 1 by itself,  

 
1ˆ 0

ˆ ˆmax ( ,0,..,0) ( ,0)

ˆ0 ( ,0)

j

NP
j j i iy

i

y s v N x c x

c x

= = − +
∑

= +

∑ ∑

∑
 (20) 

Setting this to zero, we have ˆ( ,0) 0ic x =∑ . 

Extending c according to (17) yields, 
ˆ ˆ ˆ( , )i j jc x y yβ= −∑ ∑ ∑ , so, 

ˆNP NP
i i ir u c u yβ= + = − ∑ , as required.  □ 

Alternately, let ( )SP NP
i i iu u N xβ= − −∑  and 

( )SP NP
j j jv v N yβ= + −∑ to obtain a new separation of 

demand, ( , ) ( ) ( )SP SP
ij i jt u v= +x y x y , such that 

1( ,0,...,0) 0SP
iu x = , and 1,( ) ( ,0,...,0, )SP

j j jv t y= ∑y y  is the 

maximum consumer demand for service provider quantities 
y .  This yields an analogous expression for service 

provider prices: 

Lemma 8: Under linear demand and the single best product 
assumption, service provider prices are 

1
ˆ( ,..., )SP

j j m is v y y xβ= − ∑ . 

The proof is symmetric to that of the previous lemma.  
Taken together, these lemmas suggest that the two sides of 
the market interact by imposing a straightforward price on 
each other.  Since the two sides are in a vertical 
arrangement, this is exactly the type of relationship we 
naturally expect.  A further example will clarify this point. 

Example 1:  If there is exactly one network provider and 
one service provider with linear demand, the two-sided 
Cournot game is isomorphic to a price competition game, in 

which NP1 and SP1 simultaneously select prices 1r  and 1s , 

respectively, and demand is given by the inverse demand 

function, 1
1,1 1 1( )t r s− + . 

Proof:  Define bijection :φ →ℝ ℝ , ˆ ˆ( )x xφ β=  which 

takes quantity restrictions to prices.  Then for strategy 
point ˆ ˆ( , )x y , the two-sided Cournot game yields prices 

1
ˆ ˆ ˆ ˆ ˆ( ) ( )NP

i i jr u x y x y y xβ β β β= − = + − =∑ , 

1 1 1
ˆ ˆ ˆ ˆ ˆ( ) ( )SP

is v y x x y x yβ β β β= − = + − =∑ .  And since 

demand is fulfilled, we know 

1,1 1 1
ˆ ˆ ˆ ˆ( ) ( )t M x y r s x yβ− − = + = + .  Meanwhile, our 

bijection yields the same set of prices: ̂ ˆ( )x xφ β= , 

ˆ ˆ( )y yφ β= , and demand in the price competition game 

is computed as 1
1,1

ˆ ˆ ˆ ˆt x y N x yβ β− + = − −   .  Since both 

prices and quantity are the same as in the two-sided 
Cournot game, payoffs are also unchanged.  Therefore, 
φ  is an isomorphism.  □ 

This example shows that with monopolies on both sides of 
the market, firms may simply select the prices for their 
inputs, which are then added together.  In particular, the 
combined product will be double-marginalized in Nash 
equilibrium.  This behavior is exactly what we would 
expect for monopolists in a vertical arrangement, and 
further validates our method for joining Cournot games into 
a two-sided market. 

Proof sketch of Claim 1:  Suppose that SP1 selects price 
s1, and consider the ensuing subgame.  Write H for an NP’s 
action of selecting SP1, and L for the action of selecting 
another service provider.  Let , , { , }ab a b H Lπ ∈  be an NP’s 

profit in the subgame if it selects action a, and the other NP 
selects action b.  In general, it can be shown that an NP’s 
profit always decreases when the other NP upgrades to the 
new technology, so HH HLπ π< . 
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Suppose that LL is a Nash equilibrium in this subgame.  
Then LL HLπ π≥ , which implies LL HHπ π> .  Recall that our 

solution concept requires the NPs to choose the equilibrium 
with the highest total profit.  Thus, even if HH is another 
Nash equilibrium, LL will be chosen.  Hence, if SP1 is to 
sell any service at all, LL cannot be an equilibrium. 

In subgame LL, the network providers receive prices, 

1 2 1 21j jt t x x= = − − .  This is a classic Cournot competition, 

with the well-known equilibrium, 

 1 2 1/ 3x x= = , (21) 

yielding profits 1/ 9LLπ = . 

If NP1 plays H and NP2 plays L, NP profits are, 

 
( )

( )
1

2

1 11 1 1 1 2 1

2 2 2 1 2

( ) 1 (1 )

1

NP

NP j

x t s x x x s

x t x x x

π α

π

= − = − − − −

= = − −
, (22) 

with first-order conditions, 

 1 2 1

2 1

0 2(1 ) 1

0 2 1

x x s

x x

α= − − + − −
= − + −

, (23) 

which can be solved to give, 

 1 1
1 2

1 2 1 2
,

3 4 3 4

s s
x x

α
α α

− − += =
− −

, (24) 

yielding profits, 

 
2 2

1 11 2 1 2
(1 ) ,

3 4 3 4HL LH

s sαπ α π
α α

− − +   = − =   − −   
 (25) 

This holds as long as 2 0x > , which can be confirmed for 

the range of α  we are investigating.  For SP1 to sell 
anything, we must have HL LLπ π≥ , or 

 1

1 3 4

2 6 1
s

α
α

−≤ −
−

 (26) 

In subgame HH, NP profits are, 

 
( )
( )

1

2

1 11 1 1 1 2 1

2 21 1 2 1 2 1

( ) 1 (1 )( )

( ) 1 (1 )( )

NP

NP

x t s x x x s

x t s x x x s

π α

π α

= − = − − + −

= − = − − + −
, (27) 

With equilibrium, 

 1
1 2

1

3(1 )

s
x x

α
−

= =
−

 (28) 

Yielding profits, 

 
2

1(1 )

9(1 )HH

sπ
α

−
=

−
 (29) 

We may check that (26) implies HH LHπ π> , so as long as 

SP1 sets its price low enough to attract one NP, the other 
will follow.  We may also check that setting 1s  below this 

maximum value only lowers SP1’s profit, so it is, in fact, the 
equilibrium value.  SP1’s profit is then 

 
1

2

2

15 16

54(1 )SP

α απ
α

−=
−

. (30) 

Since service providers earns zero profit in the base case, 
this is also SP1’s incentive to invest.  □  

Proof of Claim 2:  In the base case, the service providers 
are identical and in price competition, so they will compete 
prices down to zero.  The network providers then receive 
prices, 1 2 1 21j jt t x x= = − − .  This is a classic Cournot 

competition, with the well-known equilibrium, 

 1 2 1/ 3x x= = , (31) 

and equilibrium profits for the SPs and NPs are, 

 
1 2

0, 1/ 9
jSP NP NPπ π π= = = . (32) 

After a network upgrade, the service providers remain 
identical, and will compete prices down to zero, 0js =  for 

all j.  Network provider profits are then, 

 
( )
( )

1

2

1 1 2

2 1 2

1 (1 )

1

NP

NP

x x x

x x x

π α

π

= − − −

= − −
, (33) 

With first-order conditions, 

 2 1
1 2

1 1
, max ,0

2(1 ) 2

x x
x x

α
− − = =  −  

. (34) 

These can be solved for the equilibrium, 

1/ 2α <  
1

1

3 4
x

α
=

−
, 2

1 2

3 4
x

α
α

−=
−

 

1 2

1

(3 4 )NP

απ
α

−=
−

,
2

2

2

(1 2 )

(3 4 )NP

απ
α

−=
−

 

1/ 2α ≥  
1

1

2(1 )
x

α
=

−
, 2 0x = , 

1

1

4(1 )NPπ
α

=
−

,
1

0NPπ =  

Subtracting NP1’s profit in the base case (1/ 9) from 
1NPπ  

yields the required incentive to upgrade the network.  □ 

Proof of Claim 3: For a service innovation of strength α, 
we may compute, 

 1 1

1 (1 )

1

1 , 1

NP
i k

SP
k

SP
j k

u x

v y y

v y j

α

α

= − −

= + −

= − ≠

∑
∑

∑

 (35) 

Service providers with the base technology receive prices, 

 ˆ ˆ( ) (1 ) 1 (1 )SP
j j i j is v x y xα α= − − = − − −∑ ∑ ∑y  (36) 

If 1
ˆ1 (1 ) iy xα< − − ∑ , the supply of the base service 

technology will rise during free entry until its price is zero: 

 1
1

ˆ1 (1 )j i
j

y y xα
≠

= − − −∑ ∑  (37) 

The price of service 1 will then be, 
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 1 1 1
ˆ1 (1 )j is y y x yα α α= + − − − =∑ ∑ , (38) 

which is strictly increasing in 1y .  Therefore, 1y  can never 

fall in this range in equilibrium. 

If 1
ˆ1 (1 ) iy xα≥ − − ∑ , then the base service technology 

will receive a negative price for any positive supply, and all 
base technology service providers will exit the market.  SP1 
will then receive price and profit, 

 ( )
1

1 1 1

1 1 1 1

ˆ ˆ(1 ) 1 (1 )( )

ˆ1 (1 )( )

SP
i i

SP i

s v x y x

y s y y x

α α

π α

= − − = − − +

= = − − +
∑ ∑

∑
. (39) 

This attains its maximum at 1
ˆ1 (1 )

2(1 )
ix

y
α

α
− −

=
−
∑ . 

For, 1/ 2α ≥  this falls within the permissible range of 

quantities, 1
ˆ1 (1 ) iy xα≥ − − ∑ , and is the equilibrium value 

of 1y .  For 1/ 2α < , 
1SPπ  decreases throughout the 

permissible range, and so SP1 will set quantity just high 
enough to drive all other service providers from the market, 

 1

ˆ1 (1 ) , 1/ 2

ˆ1 (1 )
, 1/ 2

2(1 )

i

i

x

y x

α α
α

α
α

 − − <
= − −

≥ −

∑
∑  (40) 

Next, network provider profits are, 

 
( )

( )
ˆ( ) (1 )

ˆ1 (1 ) (1 )

i

NP
NP i i i i j

i k j

x r x u y

x x y

π α

α α

= = − −

= − − − −

∑

∑ ∑

x
, (41) 

which gives two first-order conditions, 

 ( )ˆ1 (1 ) (1 ) 0, {1,2}i kx x y iα α− − − − + = ∈∑ ∑  (42) 

These can be solved to give, 

 1 2

ˆ1 (1 )

3(1 )

y
x x

α
α

− −
= =

−
∑  (43) 

Combining (40) and (43), we may derive SP1’s profit, 

 
1

2

4
, 1/ 2

(3 )

4
, 1/ 2

25(1 )

SP

α α
α

π
α

α

 < −= 
 ≥
 −

 (44) 

Since SP1 earns zero profit in the base case, its profit in this 
equilibrium is also its incentive to invest.  □ 

Proof sketch of Claim 6:  We need to introduce a technical 
assumption to prove this claim.  When 1 21 r r> > , the 

service providers will have two possible equilibria, one in 
which they all select network 1, and one in which they all 
select network 2.  Because free entry drives service 
provider profits to zero in either configuration, the SPs are 
unable to distinguish between these equilibria.  We will 
assume that firms choose the equilibrium that a finite 
number of SPs, m, would prefer. 

For NP prices 1 2,r r , SPs receive prices, 

 1 1 2 1 2 1 2 21 (1 ) , 1j jt x x r t x x rα= − − − − = − − −  (45) 

It can be checked that both networks cannot be supplied in 
equilibrium, or an SP will want to switch from network 2 to 
network 1.  Total SP profit if all select network 1 may be 

computed as 
2

1
2

(1 )

(1 )( 1)jSP

r

m
π

α
−

=
− +∑ , and if all select 

network 2, 2 2
2(1 ) / ( 1)

jSP r mπ = − +∑ .  Price competition 

yields the equilibrium, 1 21 1 , 0r rα= − − = .  Free entry 

drives the final  price down to 1 1jt r= , so NP1 makes profit, 

1 1(1 (1 ) ) 1 1/ 1r rα α− − = − + − , as required.  □

 


