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ABSTRACT 
 
In this paper we propose a new family of watermark 
detectors for additive watermarks in digital images. These 
detectors are based on a recently proposed two-level, 
hierarchical image model, which was found to be beneficial 
for image recovery problems. The top level of this model is 
defined to exploit the spatially-varying local statistics of the 
image, while the bottom level is used to characterize the 
image variations along two principal directions. Based on 
this model we derive a class of detectors for the additive 
watermark detection problem, including the generalized 
likelihood ratio test (GLRT) and Rao detectors.  
Index Terms— watermarking, statistical methods, source 
modeling 
 

1. INTRODUCTION 
 
Additive watermark detection can be formulated as a 
hypothesis testing problem, where one needs to determine 
the presence or absence of a known watermark in an image. 
Within such a formulation, the watermark is treated as the 
known signal and the image is treated as the corrupting 
noise [1]. To derive a test statistic for this problem, such as 
the likelihood ratio test detector, a statistical model for the 
image has to be defined.  

In this paper we propose the use of a hierarchical, 
locally adaptive image model for watermark detection. The 
top level of this model is defined to exploit the spatially-
varying local statistics of the image. This model can be 
viewed as a generalization of the concept of line process 
used in the context of compound Markov random fields [6]. 
The difference is that a continuous model, rather than binary 
edges, is used for characterizing the local discontinuities in 
the image. Using this image model we will derive detectors 
for additive watermarking, which include the generalized 
likelihood ratio test (GLRT) and Rao detectors. 

We note that the hierarchical image model used in this 
study was recently developed for image restoration in [5]. It 
is interesting to note that the development of image models 

has also been very important for the classical image 
denoising and restoration problems, in which a statistical 
image model is essential for various estimation 
methodologies, e.g., maximum a posteriori estimation.  

The rest of this paper is organized as follows. In 
Section 2 we introduce the hierarchical image model and 
formulate its use for additive watermark detection. In 
Section 3 the GLRT detector is derived and methods to 
estimate the necessary parameters of the model are given.  
Rao test based detector is derived in Section 4. In Section 5 
numerical experiments are given to demonstrate the 
proposed detectors.  
  

2. IMAGE MODELS AND ADDITIVE 
WATERMARKS 

 
The image model we propose to use in this paper is based 
on the first order differences of the image along the two 
principal directions. Specifically, consider an image f , 
whose pixels are denoted by ,f i j . At pixel location  

,i j , we define the image directional differences (IDD) 
along the horizontal and vertical directions, respectively, as 
follows: 

1

2

( , ) ( , ) ( , 1),   
( , ) ( , ) ( 1, )
i j f i j f i j
i j f i j f i j

  (1) 

We assume that these IDDs obey a Gaussian 
probability density function (pdf), given by  

1

( , ) ~ 0, ( , )k ki j N a i j ,   (2) 

where 
1

( , )ka i j  is the variance parameter. Since for each 
spatial location different variances are assumed this model 
is very flexible to model the fluctuations of the IDDs in both 
smooth and edge image areas. 

For notational convenience, in the rest of the paper we 
will denote the IDDs using a single index as 

(1), (2),..., ( ) T
k k k k N , k=1,2, where N is the total 
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number of image pixels. In addition, let 1 2,
TT T , a 

vector consisting of IDDs in both directions.  
Assuming independence of the IDDs, we can write the 

joint pdf  
1/ 2

2
2

1 1

1; ( )exp ( ) ( )
2

N

k k k
k i

p a i a i ia             (3) 

 where 1 2

TT Ta a ,a , (1), (2),..., ( ) T
k k k ka a a Na , which 

denotes the corresponding variance parameters.  
The pdf in (3) allows the local variance to vary from 

pixel to pixel. This is desirable for modeling the spatially 
non-stationary properties of the image (e.g., edges). 
Unfortunately, it includes as many variance parameters 

( )ka i as the number of image pixels. To avoid the problem 
of over-fitting, it is necessary to impose additional 
constraint on the model to limit its degrees of freedom. For 
this purpose we model ( )ka i  as random variables, and 
define a hyper-prior on them.  

In this work we use a Gamma pdf for the hyper-prior, 
which is of the form  

2
2( ( ); , ) ( ) exp ( 2) ( ) ,  1,2

l

k k kp a i m l a i m l a i k ,    (4) 
where m and l are the parameters of the Gamma.  Such a 
choice is motivated by the fact that the Gaussian and the 
Gamma families are conjugate [7] with respect to the 
inverse of the variance of the Gaussian, of which the benefit 
will become clear later in the estimate of the model 
parameters. This combination has also been used 
successfully in sparse Bayesian models for machine 
learning tasks.  

For the Gamma pdf in (4), we have  
1 1222 2 , 2 2k kE a i l m l Var a i l m l  

Assuming that ( )ka i are independent and identically 
distributed, then we have  

22
2

1 1

( ; , ) ( ) exp ( 2) ( )
lN

k k
k i

p m l C a i m l a ia       (5) 

where C is a normalization constant. 
In the additive watermark detection problem one has to 

decide between the following two hypotheses 
0

1

:
:

H
H

y f
y f w

    (6) 

where y  and f  are the observed and the original images, 
respectively, and w  is the watermark signal and  is its 
strength.  

Applying the directional difference operators kQ , 
1, 2k , to the observed image in (6), we obtain  

'
0

'
1

:

:
k k

k k k k k

H

H

y
y w w

   (7) 

where '
k ky Q y , k kQ f , k kw Q w , 1, 2k . 

 Based on Eqs. (3) and (5), the conditional pdfs of 
the observations for the two hypotheses in Eq. (7) can be 
written as 

0

2 2 21/ 2

1 11 1

1

2 2 21/ 2

1 11 1

( ; , )

1( ) exp
2

( ; , )

1( ) exp
2

N N

k k k
k ik i

N N

k k k k
k ik i

p H

C a i a i y i

p H

C a i a i y i w i

y a

y a
 (8) 

where  1 2,
TT Ty y y . In what follows these pdfs will be 

used to derive the GLRT and Rao test detectors.  
 

3. GENERALIZED LIKELIHOOD RATIO 
DETECTOR 

 
The GLRT is given by  

1

1

0 0

H

/ 1

/ 0 H

ˆ( ; , ) >( ) log  0ˆ <( ; , )
H

H

p H
GLRT

p H

y a
y

y a
, (9) 

where 
0/

ˆ
Ha , 

1/
ˆ

Ha  are the estimates of a  in Eq. (9) under 
the two hypotheses.  

With the conditional pdfs in Eq. (8), the test statistic for 
the detector in Eq. (9) can be written as   

0 1

1 1

2
2

/ /
1 1

2
2

/ /
1 1

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) 2 ( ) ( ) ( )

N

k k H k H
k i

N

k H k k k k H
k i

T y i a i a i

a i w i y i w i a i

y
 (10) 

For weak watermarks, it is reasonable to expect that the 
estimates 

0 1/ /ˆ ˆ( ) , ( )k H k Ha i a i  are approximately equal. Thus, 
the test statistic in Eq. (10) can be simplified as (upon 
ignoring the middle term as it does not depend directly on 
the data)  

1

1

0

2

/
1 1

ˆ( ) ( ) ( )
H

N

GLRT k k k H
k i

H

T y i w i a i Ty ,  (11) 

where T is a threshold that determines the false alarm vs. 
probability of detection tradeoff of the detector [8].  

The simplified test statistic in (11) offers a rather 
informative insight on the GLRT detector.  It assumes 
essentially the form of a matched filter, where the 
observation at each pixel is normalized by its local variance.  

The test statistic in (10) and (11) requires the estimates 
of the parameters ˆ ( )ka i .  Obviously, the ML estimate here 
will be problematic because only one data point is available. 
Instead, we use a Bayesian estimate instead, where the 
hyper-prior ( ; , )p m la  is used to ameliorate this difficulty. 
By invoking the Bayes’ law, this estimate is obtained as 
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0
0/

( )

0
( )

ˆ arg max log | , , ,

arg max log | , log ; , ,
k
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and similarly for 
1/

ˆk H
a i . After some algebra, it can be 

shown that 

0

1

/ 2

/ 2

1 ( 2)ˆ ,  
( ( )) 2 ( 2)

1 ( 2)ˆand   
( ( ) ( )) 2 ( 2)

k H
k

k H
k k

i

i

l
a

y i m l
l

a
y i w i m l

.  (12) 

It is interesting to examine the effect of the parameter l  
in this estimate. As l  the estimate becomes 

1ˆ 2ka i m for both 0H  and 1H .  That is, the prior 
dominates the estimate. On the other hand, as 2l , the 
prior parameters disappear in (12), and the estimate simply 
degenerates to the ML estimate.  For 2,l , the prior 

“regularizes” the estimate ˆka i  where the ML estimate is 
unstable because of lack of data. In our experiments we 
tested both the GLRT detector in Eq. (10) and its 
approximate in (11), and found that their performance was 
almost identical. For this purpose in the rest of this paper we 
will report results with the simplified one in Eq. (11). 
 

4. RAO DETECTOR 
 
Thus far in deriving the watermark detectors we have 
considered the situations that the watermark strength is 
exactly known (i.e., parameter  in Eq. (6)). There are also 
situations it might not be known, e.g., in public 
watermarking. In such a case one could treat  the same 
way as other model parameters and use its estimate in the 
GLRT detector. However, this becomes problematic in 
applications where the watermark signal is much weaker 
than the cover image. Our experiments indicate that this can 
greatly compromise the accuracy of the ML estimate of . 
In order to address this difficulty, we use the Rao test, 
which is a locally optimal detector (LOD) with performance 
close to that of a clairvoyant GLRT (when  is small) [9]. 
This detector was first introduced to the image 
watermarking problem in [4].  

Supposing 0; ,k kp y i a i H  is the derivative of the 
pdf with respect to the observations [9], the Rao test for the 
observations in Eq. (7) is given by  

2
2

0 1

1 1 0

222 2
0

0
1 1 1 1 0

;

; ,
2

; ,
  

; ,
; ,

R

N
k k

k
k i k k
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k i k i k k

T

p y i a i H HN w i
p y i a i H

T
p y i a i H

w i H
p y i a i H

y a

    (13) 

It is noted that in Eq. (14) it is only the watermark 
shape '

kw  (not the parameter ) that is necessary for the 
Rao detector. Substituting the pdfs model into previous 
equation, we obtain  

0

0

0

/

22
1

/
1 1

2 2 22

/
01 1 1 1

ˆ;

ˆ
  

1 ˆ
2

R H

N

k k H k
k i

N N

k k H k
k i k i

T

H
w i a i y i

T
w i a i y i HN

y a

     (14) 

Interestingly, the Rao detector assumes the form of a 
normalized correlation detector, where the watermark shape 
is correlated with the normalized observations. One may 
recall that earlier the GLRT detector in its simplified form 
in Eq. (11) also assumes the form of a correlator. The Rao 
detector in Eq. (14) is invariant with respect to the strength 
of the watermark. The parameter estimates 

0/ˆk Ha i  are also 
obtained by the MAP methodology as for the GLRT 
detector in Eq. (12). 
 

5. NUMERICAL EXPERIMENTS 
 
Numerical experiments are used to test the performance of 
the detectors based on the proposed image model. In order 
to establish statistical significance of our results we used 
200 representative images (10 from each one of the 20 
categories) of the Microsoft Image Recognition data base 
[10]. To quantify the power of the watermark in our 
experiments, the so-called watermark to document ratio 
(WDR) is used, which is defined as 

1020logWDR dB
w
f

.   (15) 

To quantify the detection performance, the receiver 
operating characteristics (ROC) curves are used. In 
particular, the area under the ROC (AUROC) curve for false 
alarm probability range [0-0.1] is used to quantify the 
performance of the detector at low false alarm rates; the 
total area under the ROC curve is also computed to quantify 
the overall performance of the detector. These two metrics 
are referred to as AUROC1 and AUROC2, respectively, in 
the rest of the paper.  

ROCs curves were obtained using the same watermark 
which was added to all the 200 images of our data base. 
Then, the test statistic was evaluated for the 200 images 
with the watermark and the 200 images without the 
watermark.  

For comparison purposes we considered detectors that 
are based on wavelet transform and GGD modeling. To the 
best of our knowledge, a non-adaptive wavelet model is 
typically used in the existing work in the literature, e.g., [2] 
and [4], where a single GGD model is assumed for all 
wavelet bands. In our experiments, we considered an 
“adaptive” wavelet GGD model, in which we used a 
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different GGD model for each wavelet band. For fairness to 
the wavelet GGD detectors, watermarking was performed in 
the wavelet domain of the images. The watermark was 
imbedded in the 2nd level of the discrete wavelet transform 
(DWT). The Daubechies-8 2-D separable filters were used. 
In all experiments the watermarked images were first 
quantized using 8 bits per pixel accuracy in the spatial 
domain before watermark detection.  

In the experiments we tested the proposed detectors for 
a number of WDRs averaging over the set of 200 images as 
explained above. More, specifically, in Table 1 we 
summarize AUROC1 and AUROC2 results for different 
WDRs for the GLRT detectors using both GGD wavelet, 
and in Table 2 the Rao test using both GGD wavelet, and 
the proposed prior. In Figures 1 and 2 we show typical 
examples of ROCs obtained in these experiments. From the 
AUROC in Tables 1 and 2 and the ROCs in Figures 1 and 2 
below the superiority of the detectors based on the proposed 
prior for this experiment is clear. It is worth noting here, for 
the sake of simplicity, the same value of the Gamma hyper 
prior parameter -l- was used for all test images. Thus, in this 
experiment the detectors based on the proposed prior have a 
handicap as compared to detectors where they are adapted 
to each image. In spite of this the proposed detectors proved 
superior to previous state-of-the-art detectors.  
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Table 1. AUROCs for GLRT detectors 

(AUROC1, AUROC2) (AUROC1, AUROC2) WDR 
dB GGD Wavelet GLRT (proposed 

prior) 
-61 (0.0540, 0.9925) (0.0862, 0.9680) 
-62 (0.0166, 0.7048) (0.0785, 0.9540) 
-63 (0.0041, 0.6039 (0.0831, 0.9512) 
-64 (0.0052, 0.5307) (0.0763, 0.9238) 
-65 (0.0014, 0.5051) (0.0746, 0.9149) 

 
Table2. AUROCs for RAO detectors 

(AUROC1,AUROC2) (AUROC1, AUROC2) WDR RAO GGD Wavelet RAO (proposed prior) 
-60 (0.0894, 0.9844) (0.0993, 0.9992) 
-61 (0.0675, 0.9679) (0.0883, 0.9983) 
-62 (0.0672, 0.9165) (0.0775, 0.9848) 
-63 (0.0348, 0.8001) (0.0694, 0.9432) 
-64 (0.0300, 0.5419) (0.0389, 0.8106) 

 

 
Figure 1. ROCs for GLRT detectors (proposed prior and 
GGD model), WDR=-64 dB 

 
Figure 2. ROCs for RAO detectors (proposed prior and 
GGD model), WDR=-63 dB 
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