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T he idea of iterative
control of batch pro-
cesses has been dis-
cussed in the litera-
ture for some time.
Many related con-

cepts have been published under the
names iterative control, learning con-
trol, run-to-run control, and others.
This article uses the term iterative
learning control (ILC).

The engineering methods for the
design of a high-performance ILC
update described herein can be
easily implemented in practice.
The methods are based on formal
specifications for the controller and
supported by rigorous robustness,
performance, and control amplitude
analysis methods. Another goal of
the article is to develop a unifying
view of the ILC problem that encom-
passes operator, linear-quadratic
model-predictive, regularization,
and frequency domain design and
analysis approaches.

The approach described in this
article is based on recent progress in
the understanding of control for
sampled spatially invariant distributed systems [19]-[21].
An ILC update for a linear time-invariant (LTI) plant can be
considered a two-dimensional distributed system where lo-
cal time corresponds to a spatial coordinate and batch num-
ber to a time variable. An important characteristic of the ILC
problem for a stable LTI plant or other spatially invariant
system with spatially distributed control is that it be ap-
proximately diagonalized (decomposed into modal subsys-
tems) by a Fourier coordinate transformation. In an ILC
problem, the Fourier coordinate transformation corre-

sponds to frequency domain analysis of the dynamical oper-
ators in the local time within a batch run. Run-to-run evolu-
tion of a batch process with an ILC update is a system with
states comprising plant input and output histories over the
batch time. The run-to-run dynamics of the system are a sim-
ple one-step delay.

This article makes several contributions to the design of
ILC systems:

• It presents a systematic method for the analysis and
design of ILC systems. The method is based on a fre-
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quency domain approach and is related to the opera-
tor, linear quadratic (LQ) model predictive, and modal
viewpoints. Rigorous ILC design is based on detailed
specifications, including robustness, controller
nonfragility requirements, and control amplitude con-
straints. The designed ILC update is implementable
through noncausal FIR window operators.

• The robust control design approach described herein
assumes that the underlying system is LTI. The
nonlinearity effects are attributed to model uncer-
tainty, and a robust controller is designed. An exam-
ple shows that such a robust design can provide very
good performance for a highly nonlinear process.

• The design method is based on a loop-shaping proce-
dure that is noncausal in the local time of the batch be-
cause the data of the previously completed run are
used for control computation. This is inherently sim-
pler than typical control design where the control in-
put is constrained to be causal in the measurements.
The loop-shaping controller design is performed by
manipulating quadratic penalty weights in an LQ
problem. This is closely related to the LQG/LTR (lin-
ear-quadratic Gaussian/loop transfer recovery) de-
sign method for dynamic controllers [22].

• The article proves that to achieve an optimal perfor-
mance/robustness tradeoff, the penalty for the
run-to-run control increment in the LQ performance
index should be set to zero. This is somewhat
counterintuitive and contrary to the conventional
wisdom for ILC control design.

The article is organized as follows. The next section for-
mulates an ILC design problem and modal analysis ap-
proach in the frequency domain that uses the Fourier
transform. Following that, the controller design specifica-
tions are formulated in a frequency domain form. Next, the
LQ/LTR controller design procedure is presented where the
quadratic penalty weights are used to recover the design
specifications. Finally, a simulated example of ILC in a highly
nonlinear batch thermal process illustrates an application
of the developed approach.

Introduction
The main idea of ILC is illustrated in Fig. 1. An ILC controller
provides feedforward control input to a plant through a
batch run, as shown in Fig. 1, in combination with a feedback
controller. The feedforward control history for an entire
batch run is stored in a memory buffer, and the plant output
in the batch is stored in another memory buffer. The ILC up-
date is computed between the batches and uses the output
history buffer data to calculate an update to the feedfor-
ward control history buffer data. Conceptually, pure feed-
back control algorithms consider the tracking error to be
completely unknown and continuously attempt to compen-
sate for this error as the process goes through a batch run.
Feedback control ignores the fact that the error is mostly re-
producible from one batch run to another. An ILC approach
uses this knowledge to update the feedforward control se-
quence. Some relevant ideas of the prior work are briefly
summarized below. A more detailed bibliography on ILC can
be found in [1] and [2] and in the recent special issue on the
topic [3].

Most of the ILC approaches in the literature consider up-
dating the feedforward control as

U U AYk k k( ) ( ) ( )= −− −1 1 , (1)

where the superscript k denotes the batch run number,U k( )

is a vector containing the sampled feedforward control val-
ues through the batch,Y k( ) is a vector containing sampled
tracking error values, and A is a linear update operator. Ini-
tial and best-known approaches to the ILC problem used an
ILC feedback update operator A of a form similar to stan-
dard dynamical controllers, such as P (proportional) or PD
(proportional-derivative) operators acting on the plant out-
put sequence as a local-time function (e.g., see [4]). Feed-
back operators described by high-order rational transfer
functions can also be used (e.g., see [5]). The convergence
analysis for such operators is conveniently and intuitively
performed in the frequency domain, such as in [2], [6] and
other works. The main drawback of the described ap-
proaches is that they follow standard control design meth-
ods and use feedback update operators that are causal in
local time. However, in the ILC problem, the error history for
an entire past run is available at once, and thus the feedback
operator does not need to be causal. Several researchers
([7]-[9] and others) have considered the use of noncausal
operators and causal/anticausal dynamical filters for shap-
ing ILC feedback.

In an ILC problem, an operator defined by the plant acts on
a feedforward sequence over a batch duration and produces
an output sequence. The ILC provides a simple feedback for
such an operator system. An ILC feedback operator can be
designed by minimizing a quadratic performance index, such
as in [10]-[12]. This approach is similar to the model predic-
tive control methods used in process industries. The diffi-
culty is that large sizes of the feedforward and output
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histories (e.g., hundreds or thousands of samples) result in a
necessity to deal with matrices of very large dimensions.

A problem with ILC encountered in practice is that even if
the error is initially reduced, it might start growing again af-
ter many iterations [8]. One reason for this is a small gain of
the plant at high frequencies. This can be seen as poor con-
trollability (ill-conditioning) of the ILC update system. The
controllability can be improved and computational load re-
duced by using modal decompositions of the initial ILC
problem and dropping all but the best controllable modes
from consideration (e.g., see [13] and [14]). An ILC update is
an inherently ill-conditioned system. It can be regularized
[15] by adding a penalty for the control effort to an existing
performance index, such as a quadratic plant output error
in an ILC batch. An ILC solution for a regularized linear-qua-
dratic (LQ) problem has the form (1), with a term of the form
− −BU k( )1 added to the right-hand side (r.h.s.) [16]. A “relax-
ation” term with B rI= was used in [17] and [18], where it
was found necessary to ensure robust convergence of the
ILC update.

Problem Statement
Discrete-time models are adequate for the development of
practical ILC algorithms, as the history data for input and
output variables must be sampled and stored in a digital
computer between the batch runs of the process. For sim-
plicity, a single-input, single-output (SISO) process is con-
sidered; however, the analysis and design approaches to
follow can be extended to multiple-input, multiple-output
(MIMO) processes with little or no modification as long as
the underlying assumptions of linearity and time invariance
of the process hold.

In this article, when designing and analyzing an ILC up-
date, the underlying batch process is assumed to be LTI. The
process nonlinearity effects are incorporated into the
model uncertainty and handled in the controller robustness
design and analysis. The application example given later
shows that this approach allows for an efficient design of
the ILC update for a highly nonlinear process. Let u t( ) and
e t( ) be the feedforward input and the process output error,
respectively, in the batch, and let e t0 ( ) be the initial error
with no ILC feedforward applied. Consider the following
simple model of a SISO batch process with discretized con-
trol inputs and measurement outputs

Y GU Yk k( ) ( )= + 0 , (2)
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(3)

where N is the batch duration in the sampled time. For a
SISO process, the input and output history profile vectors

have the same dimension U N∈ℜ ,Y N∈ℜ . Since the process
is LTI, the input/ouput Jacobian G N N∈ℜ , in (2) is a Toeplitz
matrix. Each column of G is a pulse response of the process
initiated at the respective sample.

In what follows, a linear ILC feedback of the following
form is considered:

U U AY BUk k k k( ) ( ) ( ) ( )= − −− − −1 1 1 , (4)

where A and B are linear operators (N N× matrices). Note
that (4) gives the most general form of the state feedback for
the ILC problem at hand, whereY k( ) is the ILC process state
vector andU k( ) is the controller state vector. In the ILC prob-
lem framework, this means iterative elimination of the initial
error. The time histories Y and U can contain hundreds or
thousands of elements (data samples).

As mentioned earlier, the inner loop where the ILC
feedforward is applied (see Fig. 1) is assumed to be stable.
Thus, the pulse response of this inner loop vanishes expo-
nentially away from the input pulse applied. Toeplitz matri-
ces encountered in this article, such as G, have elements
vanishing outside of a narrow diagonal band. For a large du-
ration of the batch run interval N , such matrices can be ap-
proximately diagonalized in the Fourier basis such that

G F g Fj≈ * { }diag , (5)

F N el m
ilm N

,
/ /= − −1 2 2π , (6)

where F is a unitary complex discrete Fourier transform
(DFT) matrix, F * is the transposed complex conjugate of F ,
and Fl m, are entries of F . In (5), the array of the modal gains g j

can be obtained as

g N Fgj j= 1 2/ ( �) , (7)

where g j is the normalized component j of the product of F
and the system pulse response �g N∈R . The latter is the first
column of the matrix G.

The approximation (5), (7) is valid for the same reason
that frequency domain analysis can be used for LTI dynami-
cal, signal processing, and control systems. From a rigorous
mathematical standpoint, the error of the approximation
(5) is caused by considering the ILC update on a finite inter-
val of local time[ , ]1 N . For large N , a band-diagonal matrixG
is close to a circulant matrix. For circulant matrices, (5), (7)
holds exactly. An excellent introductory tutorial and further
references on circulant matrices and circulant approxima-
tions of Toeplitz matrices can be found in [23]. The analysis
using circulant matrices is employed in related two-dimen-
sional control problems in [20] and [21]. Another possible
mathematical derivation is to assume that the ILC update in-
terval[ , ]1 N is such that the system is in the steady state and
the tracking error is zero on the interval ends. Alternatively,
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the update interval might be embedded into a much larger
(infinite) interval where such conditions hold. Essentially,
the issue of validity of the approximation (5), (7) is the same
as that of frequency domain analysis of LTI systems on a fi-
nite time interval, such as in analyzing performance of an LTI
feedback controller by tracking a step or a finite-duration
ramp. Such approximations are common in control systems
engineering.

It is further assumed that the feedback matrices A and B
in (4) can also be approximately diagonalized by the same
Fourier transformation (6) as matrix G (5) such that

A F a F B F b Fj j≈ ≈* *{ } , { }diag diag . (8)

This assumption holds if Aand Bcorrespond to localized LTI
operators in the local time within a batch run. In other
words, the action of Aand Bon the local time data sequence
can be approximately represented as a convolution of the
sequence with a localized pulse response.

Let �( )g z , �( )a z , and �( )b z be transfer functions (z-trans-
forms) computed for the pulse responses corresponding to
the operators G, A, and B, respectively. The spectra in (5)
and (8) can then be approximately represented as [23]

( ) ( ) ( )a a e b b e g g ej
i

j
i

j
ij j j= = =� , � , �

ω ω ω ,
(9)

where ω πj j N= 2 / is the local time frequency corresponding
to the respective eigenvalues of the operators (5) and (8).
For noncausal operators Aand B, the transfer functions �( )a z
and �( )b z in (9) are noncausal transfer functions obtained as
two-sided z-transforms of the respective localized pulse re-
sponses [24]. The approximations (5) and (8) are valid as-
ymptotically for N → ∞. For a finite batch length N , the
errors of the approximation can be found numerically. The
approximation (5), (7) makes the analysis results intuitive
and shows explicitly how the results depend on fre-
quency-domain properties of the dynamical operators act-
ing on local time signals within a batch run.

By changing variables in (2) to
~
U FU= ,

~
Y FY= , and

~
Y FY0 0= , system (2) takes the form

~ ~ ~ , ( , , )( ) ( )y g u y j Nj
k

j j
k

j= + =0 1 � , (10)

where ~( )y j
k , ~( )u j

k , and ~y j
0 are components of the vectors

~
U ,

~
Y ,

and
~

Y 0 , respectively. In the frequency domain representa-
tion (10) of the ILC system (as well as in (9)), the frequencies
ω j correspond to the local time. Each frequency harmonic

(mode) in (10) evolves and can be controlled independently
from run to run.

The modal control values compensating for the initial er-
ror ~y j

0 in (10) are ~ ~ /,u y gss j j j= − 0 . For poorly controllable
modes (i.e., for modes with vanishingly small modal gains
g j), control that exactly cancels out the initial error can have
extremely large magnitude. One way of dealing with an in-
verse (control) problem for ill-defined systems such as (10)
is offered by the regularization theory [15]. The regulariza-
tion consists of adding a penalty for large values of control
to the problem. This can be done conveniently by designing
the control as a solution to an LQ problem with a quadratic
control penalty in the performance index.

Analysis Approach
This section presents the control
analysis approach for the ILC sys-
tem (2)-(4), which consists of study-
ing robust stabi l i ty, nominal
performance, and actuator move
magnitude for the control loop. Un-

fortunately, standard control-theoretic methods of robust
analysis are not directly applicable to the problem in ques-
tion. This is because all uncertainty in the run-to-run evolu-
tion of the ILC system is related to the local time dynamics
model (i.e., to the parameter matrices in the run-to-run dy-
namics). Such uncertainty is highly structured and war-
rants derivation of customized robustness conditions,
which is presented in this section.

Robust Stability
By substituting (2) into (4), we obtain the following
closed-loop dynamics equation:

U U AGU BU AYk k k k( ) ( ) ( ) ( )= − − −− − −1 1 1 0 . (11)

It follows from (11) that an ILC update converges expo-
nentially provided that

I AG B− − <1, (12)

where ⋅ = ⋅σ( ) is the maximum singular value of a matrix
and I is the N N× identity matrix.

The errors of the approximation (5), (8) can be taken into
account by presenting the matrices G, A, and B in the form

G G G A A A B B B= + = + = +� , � , �δ δ δ , (13)

where �G, �A, and �B satisfy conditions (5), (8) exactly; δG, δA,
and δB are approximation errors. The uncertainties δG, δA,
and δB are assumed to be completely unstructured. Only
norm bounds on these operators are used in the analysis to
follow. In particular, it is further assumed that

δG g≤ 0 , (14)
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where g0 is a scalar uncertainty parameter.
Substituting (13) into (12) gives the following sufficient

condition for robust convergence:

I AG B A G AG B− − + + + <� � � � δ δ δ 1.
(15)

The following controller approximation error bound
(nonfragility condition) is further assumed:

δ δ σAG B+ < <1 1, (16)

where σ1 can be considered as one of the controller design
parameters. By using (5), (8), (14), and (16), the frequency
domain condition for the inequality (15) to hold is

max max
, , , ,j N j j j j N ja g b g a

= =
− − + < −

1 0 1 11 1
� �

σ .
(17)

The conditions (16) and (17) together ensure robustness
of the ILC update convergence to mismatches between the
controller, the plant, and their models (approximations)
used in the controller design. Ensuring that (16) and (17)
hold makes it possible to design the controller using the di-
agonal approximation (5), (8).

Actuator Move Magnitude
From (11), the steady-state control can be obtained as

U AG B AYss = − + −( ) 1 0 , (18)

where, in accordance with (12), the operator AG B+ is in-
vertible.

In this and the following sections, we consider control
design specifications for the nominal plant. It will be as-
sumed that (8) holds exactly for the nominal plant. Con-
sider the steady-state control vector transformed into the
modal coordinates

~
U FUss ss= . From (8) and (18), the modal

components of the control can be found as(
~

)Uss j =
~

/ ( )Y a a g bj j j j j
0 + . The assumed control amplitude specifica-

tions in the ILC update have the form (
~

) maxU uss j < ,

( , , )j N=1 � . Constraining the modal components (
~

)Uss j in-
stead of the instantaneous values ( )Uss j is computationally
convenient. The control frequency domain magnitude con-
straint used herein has the form

a

a g b
y uj

j j j+








 <0 max ,

(19)

where it is assumed that
~

Y yj
0

0≤ . This follows standard
feedback control design practice in which original control
amplitude constraints are commonly replaced by frequency
domain constraints.

Nominal Performance
The performance of an ILC controller can be quantified by
the residual steady-state error obtained after the iterative
control update converges. This steady-state error can be
computed from (2) and (18) as

[ ]Y I G AG B A Yss = − + −( ) 1 0 . (20)

It is convenient to analyze modal components of the er-
ror (20), the components of the vector

~
Y FYss ss= . By assum-

ing (5) and (8) hold exactly, (20) gives the modal
components of the steady-state error in the form

( )~ ~
Y

b

a g b
Yss

j

j

j j j
j=

+
0 .

(21)

The control design should ensure that the errors(
~

)Yss j are
possibly small without violating the robustness conditions
(16), (17) and control amplitude constraint (19). The formula-
tion of this section allows performing control design and
analysis in the frequency domain considering one modal
component at a time. This is similar to the standard control
theory and practice of frequency domain analysis of control
loops. Yet the frequency domain analysis of this section dif-
fers from standard frequency analysis of dynamical systems
and control loops. This is because in ILC the control does not
need to depend on the measurement in a causal way as far as
the local time dependencies are concerned. Also, the analy-
sis is concerned with the system evolution from run to run, as
opposed to the local time dynamics.

LQ/LTR Design of ILC
A straightforward approach to designing an ILC controller
for system (2) is by minimizing a quadratic performance in-
dex. The index, including penalties for the next step error
� ( )Y k (predicted using the system model (2)) and the control
effort, has the form

J Y Y U SU U R Uk T k k T k k T k= + + →� � min( ) ( ) ( ) ( ) ( ) ( )∆ ∆ , (22)

where ∆U U Uk k k( ) ( ) ( )= − − 1 and S, R are symmetric semi-
definite positive penalty weight matrices. In what follows, S
and R are used as tuning parameters and chosen such that
the design specifications of the previous section are satisfied.

LQ Controller
By minimizing (22) subject to the plant model (2), the con-
troller can be obtained in the form (4), where

( )A DG B DS D G G S RT T= = = + +
−

� , , � �
1

.
(23)
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The penalty weight matrices S and Rwill be chosen to re-
cover the loop robustness and other specifications similar
to the transfer loop sensitivity recovery in the LQG/LTR
loop-shaping procedure [22]. Therefore, the name LQ/LTR
ILC is used herein for both the controller design procedure

and the designed controller. The LQ/LTR ILC approach of
this section is closely related to the approaches for control
of distributed-parameter processes, such as paper manu-
facturing processes [20], [21].

As a first step toward selecting the matrices S and R, con-
sider the following fact.

Proposition 1: Consider the plant model (2) where matri-
ces A, B, and G are given by (13). Consider further a
model-based LQ controller (4), (22). Suppose that (16)
holds. Then the left-hand side of the robust convergence
condition (15), where S R+ is a fixed matrix, is minimized
for R = 0. In other words, assuming R = 0 while keeping S R+
fixed provides the best stability margin.

Proof: With matrices (23) substituted in (15), the norm

I AG B DR− − =� � � achieves its minimal (zero) value for

R = 0. The norm � �A G DG Gδ δ= does not depend on R as

long as S R+ is fixed. Finally, the estimate of δ δAG B+ is
given by (16) and depends neither on R nor on S. �

The problem of the form (22) was considered in several
ILC papers, and in most cases, formulations with S = 0 and
R ≠ 0 have been studied. Proposition 1 shows that one
should instead select S ≠ 0 and R = 0. The result of Proposi-
tion 1 is somewhat counterintuitive because it seems that
increasing penalty on the control move U Uk k( ) ( )− − 1 in (22)
should reduce feedback gain and thus improve the robust-
ness. Proposition 1 states that this is not the case. The rea-
son is the absence of uncertainty in the run-to-run dynamics
of the system (2)-(4). These dynamics are a simple one-step
delay. In accordance with (13), all uncertainty is concen-
trated in the spatial (local batch time) operators A, B, andG.

Note that with (23) and for a perfect model �G G= , the
steady-state error (20) becomes

[ ]
( )

Y I G D G G S DG Y

I G G G S G

Y

ss
T T

T T

= − +





= − +

=

−

−

( )

( )

.

1 0

1

0

Clearly,Yss does not depend on R and increases for larger S.
Therefore, and in accordance with Proposition 1, the de-

tailed design of the LQ/LTR ILC described below sets the
control increment penalty to R = 0. The penalty S for the ac-
cumulated control profile value should be selected to
achieve a tradeoff between the robustness and nominal per-
formance (steady-state error) requirements.

LQ/LTR ILC Design
Specifications
Consider controller (23) where R = 0.
The penalty matrix S in (23) will be
taken to be diagonal in the Fourier
basis

S F s F s Rj j= ≥ =* { } , ,diag 0 0. (24)

By substituting (5) and (24) into (23), the nominal controller
can be presented in the form (8), where

a g s g b s s gj j j j j j j j= +





= +





2 2
, .

(25)

With (24) and (25), the robust stability condition (17) leads to

max
, ,j N

j

j j

g

s g g= +
< −

1 2
1

0

1
�

σ
.

(26)

Condition (26) can be presented in the equivalent form to
obtain an explicit lower bound on the modal penalty s j de-
pending on the modal gain g j :

s
g

g g j Nj j j>
−

− =0

1

2

1
1

σ
, ( , , )� .

(27)

Consider the nonfragility (loop robustness to controller
modeling error) condition (16). The designed controller ma-
trices �Aand �B(25) can differ from the implemented matrices
A and B as described in (13). In particular, approximation
might be required because it is practically desirable to im-
plement finite window convolution operators instead of the
matrix multiplications. The controller (4), (23) can be imple-
mented as

( )U U D G Y SUk k T k k( ) ( ) ( ) ( )� � �+ = − +1 .
(28)

The matrix �D in (28) corresponds to a finite window con-
volution operator that approximates D in (23) such that

�D D R− −= −1 1 δ , (29)
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where δR is the approximation error. By substituting (29)
into (28) and comparing to (4) and (23), the approximation
errors in (13) can be obtained as

( ) ( )δ δA D D G B D D ST= − = −� � , � .
(30)

By using (29) and (30) and neglecting the second-order ap-
proximation error, (16) can be presented in the form

δ δ δ σAG B D R� �+ ≡ < 1. (31)

Note that in accordance with (29), [ ]� ( )D D R≤ −− −
σ δ1 1

,

where it is assumed that δ σR D< −( )1 . Therefore, a suffi-
cient condition for (31) to hold is ( )δ σ δ σR D R/ ( )− − <1

1,

where σ( )⋅ denotes the minimum singular value of a matrix.
This can be rewritten in the equivalent form

( )s R gj j> + −−δ σ1 1
1 2

. (32)

The nonfragility condition (32) gives an explicit lower
bound on the modal penalty s j . This bound depends on the
modal gain g j and the controller approximation error δR .

By using the frequency domain representations (5) and (25),
the control magnitude constraint can be presented as the
following inequality for the penalty weight s j :

s y g u g j Nj j j> ⋅ − =0

2
1max , ( , , )� . (33)

The lower bound (33) on acceptable penalty weight s j de-
pends on the modal gain g j .

In accordance with (21), the performance is defined by
modal components of the steady-state error. Substituting
the frequency domain gains aj and bj from (25) into (21)
gives these error components in the form

( )~ ~
minY

s

s g
Yss

j

j

j j

j=
+

→2
0 .

(34)

Since the r.h.s. of (34) is a monotonic increasing function
of s j , the performance is optimized if the penalty weights s j

(24) are as small as possible:

s j Nj → =min, ( , , )1 � . (35)

Loop-Shaping Design of an LQ/LTR ILC
The performance optimality condition (35), together with
the design constraints (27), (32), (33), allows a designer to
choose the penalties s j that satisfy all the design specifica-
tions and solve the LQ/LTR ILC design problem. Since the in-
dex j spans the local time frequencies, such design of the
controller is a loop-shaping design. In classical loop-shaping
approaches, conditions on sensitivity function, comple-
mentary sensitivity, and the like are considered. In contrast,
herein the loop-shaping design constraints have been for-
mulated as explicit conditions on the penalty weights s j ;
these conditions depend on the modal frequency via the
modal gain g j only. The design is graphically illustrated in
Fig. 2, where the upper curve shows designed penalties s j

versus the modal gain g j . The performance optimality con-
dition (35) requires selecting each point on this curve as low
as possible in the upper half plane. The inequalities (27),
(32), (33) provide constraints on the value of s j depending
on g j . These constraints are shown as shaded areas in Fig. 2.

The robust stability bound in (27) is an upturned parabola
with one zero and one positive root. Both inequalities (32)
and (33) have the form s gj j> −const

2
, where either con-

stant does not depend on the modal gain g j . For controller de-
sign, only one of these two conditions, the one with the larger
constant, needs to be considered. This condition appears in
the diagram of Fig. 2 as an upturned symmetric parabola.

The shaded patches below the parabolas show the pro-
hibited values for the penalty weights s j . The s j versus g j

curve should pass above the union of these areas. Notably,
the general shapes of the parabolic design constraints in
Fig. 2 do not depend on a particular ILC problem (operator
G). Only the positive roots of the parabolas might change
depending on the problem parameters.

Example: Control of
Rapid Thermal Processing
This section considers an example describing two closely
related thermal batch processes: rapid thermal processing
(RTP) and annealing. RTP is presently one of the main-
stream semiconductor manufacturing technologies. In a
batch RTP process, a silicon wafer is placed into a chamber
and rapidly heated to a high temperature. During the heat-
ing, the wafer temperature must closely follow a target (ref-
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erence) temperature profile. The annealing process
considered here is used in the carbonization of parts in a
high-temperature furnace.

In both thermal processing applications, tight and rapid
control of the temperature profile is critical for reducing
processing time and improving process quality (thermal de-
formations caused by nonuniform heating) and run-to-run
consistency. As a result, several sophisticated advanced
process control (APC) approaches have been developed for
RTP process control (e.g., see [25] and [26]). Performance of
such APC feedback algorithms is subject to fundamental
limitations caused by the process dynamics and delays. In
addition, the APC algorithms require identification of
high-fidelity models and are expensive to set up and main-
tain in the field.

A run-to-run control application is being developed by
Honeywell for annealing and rapid thermal processing as a
practical implementation of the ILC technology. The con-
troller is designed using the robust LQ/LTR ILC algorithms,
which work despite the process nonlinearity, identification
errors, and other deficiencies of the simple linear process
model used in the ILC update design.

Thermal Processing Model
To illustrate an application of the ILC technique, consider an
annealing process model. The model and the simulation re-
sults below are closely related to the models and results for

the RTP published in several recent papers (e.g., see [25]
and [26]). Most RTP models ignore the thermal inertia of the
furnace, since RTP processes are designed to minimize its
impact on the process. The furnace thermal inertia is an im-
portant factor in the annealing process. The furnace ther-
mal inertia increases the dynamical order of the system,
making it more difficult to control, and is taken into account
in the simulations below.

The thermal processing setup is illustrated schemati-
cally in Fig. 3. A controlled heater lamp heats the part in the
furnace and the furnace chamber. The heat transfer mecha-
nisms include the linear effects of convection and diffusion
and nonlinear irradiation between the heater and the fur-
nace, the part and the furnace, as well as the furnace and
the environment.

A simple nonlinear continuous-time model for such ther-
mal processing has two states: furnace temperature TF and
part temperature TP :

( )� ( )T b u c T T c T TF u F P F A= − − − −1
4 4

2 , (36)

( )�T c T TP F P= −3
4 4 , (37)

where u is the control input (heating intersity), the system
output y TP= is the part temperature that is assumed to be
directly measured, and TA is the ambient temperature. The
following values of the parameters were assumed in the sim-
ulation: bu =1000, c1

1011 10= ⋅ −. , c2 0 8= . , and c3
915 10= ⋅ −. . The

control goal is to ramp the part temperature fromTA = 300 to
600 °C in 2 min, maintain it at 600 °C for 3 min, then ramp the
temperature up to 900 °C in 2 min, stay there for 2 min, and fi-
nally, ramp the temperature down to 600 °C in 2 min and stay
there for 2 min.

In simulation, system (36) was subject to sampled-time
control with the sampling time Ts =12. s. The sampled time
feedback controller was set up as a PID controller with gain
scheduling to compensate for more than a sixfold process
gain change within a batch run. Let e t y t r ty ( ) ( ) ( )= − be the
temperature profile tracking error: the difference between
the part temperature y t T tP( ) ( )= and the reference temper-
ature r t( ). The feedback control was computed as

u t g t

K
z

K z K e t

fb

P I D y

( ) ( )

( ) ( )

= −

× +
−

+ −







−

−1
1

1
1

1

(38)

g t T T r t T( ) ( ) / ( ( ) )max min min= − − , (39)

where t is the discrete local time within a
batch run, the discrete Laplace variable z −1

can be interpeted as a unit delay operator,
g t( ) is the gain scheduling factor, and the
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controller parameters were chosen as follows: K P = 0 02. ,
KI = 0 0002. , KD = 0 5. , Tmin =160, and Tmax = 900.

Fig. 4 illustrates the results obtained with feedback con-
trol (39). The part temperature (solid line) generally fol-
lows the target temperature profile r t( ) in the batch
process—a piecewise linear function. To achieve this, the
furnace temperature (dash-dotted line) exibits much
larger swings. The part temperature tracking error can ex-
ceed 15° over significant intervals. This feedback control
accuracy is not good enough for the prob-
lem. To improve this error, an ILC feed-
forward update is implemented.

The feedforward action in the ILC control-
ler was set up as a modification of the refer-
ence trajectory r t( ) for the PID controller
(38), (39):

r t T t u td ff( ) ( ) ( )= + , (40)

where T td( ) is the fixed target temperature
profile in the RTP process and u tff ( ) is the
feedforward sequence modified by the ILC
controller. The manipulated variables u tff ( )
for the batch are collected in a vector U and
the control variables (temperature profile
tracking errors) in a vectorY , as follows:

U u u N

Y y r y N r N
ff ff

T

T

=

= − −

[ ( ) ( )] ,

[ ( ) ( ) ( ) ( )] .

1

1 1

�

� (41)

LQ/LTR ILC Design
The process described by (36)-(40) is highly
nonlinear. At the same time, the LQ/LTR ILC
design approach presented in the previous
section uses an LTI model of the form (2), (5)
to relate vectors (41). This approach allows
designing an ILC update that is robust to the
model uncertainty and thus can be applied
to a nonlinear process.

To illustrate robustness requirements in
the thermal processing application, con-
sider linearized pulse responses of the pro-
cess (36)-(40) to small perturbations of
control applied at different times in a batch
run. These pulse responses correspond to
different columns of matrixG in (2) and are il-
lustrated in Fig. 5 (upper plot). The gain and
time constant of these closed-loop re-
sponses with the PID controller differ by a
factor of four or more. The controller is de-
signed for an “average” pulse response of the
closed-loop process, and its robustness is
chosen such that it is capable of handling the
significant model variation caused by the

nonlinearity. The lower plot in Fig. 5 illustrates the
frequency domain uncertainty associated with these re-
sponses. The solid line corresponds to the average fre-
quency response, and the dashed lines show deviation of
individual responses from the average.

The LQ/LTR ILC design was performed as described in
the previous section. The initial error amplitude estimate in
(19) was chosen to be uniform across the modes
~

.Y yj
0

0 0 25≤ = . This roughly corresponds to N Y−1 2/
max , where
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N = 800 is the number of samples in the run andYmax = 7 is
the average amplitude of the tracking error in Fig. 4. In ac-
cordance with Fig. 5, a 30% uncertainty in (14), (26), g0 0 3= . ,
was assumed. The approximation error (31) of implement-
ing the controller was assumed to be σ1 015= . . This error is
related to the FIR convolution window implementation of
the designed circulant controller matrices and was evalu-
ated numerically.

The designed ILC update (4) is very simple and practical
to implement. It computes an update of a feedforward se-
quence between batch runs by applying noncausal finite
window convolution operators Aand B to the tracking error
and feedforward sequences used in the previous iteration.
The designed operators are illustrated in Fig. 6: A in the up-
per plot and B in the lower plot.

The designed LQ/LTR ILC update can be analyzed by ob-
serving its steady-state performance charac-
teristics as defined by the disturbance
attenuation multiplier h b a g bj j j j j= +/ in
(21). The lower plot in Fig. 7 illustrates the
disturbance attenuation gain hj computed
for the designed ILC controller. The gain hj in
Fig. 7 is plotted versus the local-time fre-
quencyν πj j N= 2 / . The disturbance attenua-
tion gain achieved by the LQ/LTR ILC
controller is uniformly small for lower lo-
cal-time frequencies ν j and increases, ap-
proaching one for higher frequencies
outside of the plant bandwidth, where the
gain g j is small. The upper plot in Fig. 7 shows
the uncertainty margin, the left-hand side in
(27), achieved with the designed controller.
Its lowest value is about 0.7, which ensures
robust converegence in accordance with the
design specifications.

The closed-loop simulations with the
designed LQ/LTR ILC controller are illus-
trated in Fig. 8. The control update con-
verges rapidly after four or five runs, and
the maximal error of less than one degree is
achieved (Fig. 8(a)). The feedforward sig-
nal, the temperature set-point sequence
for the PID controller, is shown in Fig. 8(b).
Only small and fairly smooth modification
of the set point is required to achieve this
outstanding accuracy.

In [27], the described approach is com-
pared against a more traditional design of
the ILC update. In particular, a PD ILC con-
troller was designed and tested for the
same process. To ensure robust conver-
gence of the ILC iterations, this PD control-
ler has a “relaxation” term as suggested in
[4], [18], [28]. A comparative analysis of
performance and robustness for the robust
PD update with the “relaxation” term (R-PD
ILC) against the LQ/LTR ILC controller is
performed in [27]. The comparison shows
that R-PD ILC has a much larger tracking er-
ror compared to the LQ/LTR ILC if their
robustess is made comparable. The conver-
gence speed for R-PD is also much slower,
by a factor of 20.
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Conclusions
This article has presented consistent methods for the analy-
sis and design of ILC update for batch processes. The
anaylsis results were formulated in the frequency domain.
The engineering approach to robust LQ loop-shaping design
of the ILC controller demonstrated herein is based on for-
mal design specifications formulated in the frequency do-
main and including controller performance, robust stability
margin, and actuator move maginitude constraints. The
controller design uses a process FIR pulse response model
and pulse response uncertainty estimate. The designed ILC
update is implementable through convolution window op-
erators that are noncausal in the local time of a batch. In the
design process, penalty weights in the LQ problem are ad-
justed to recover robustness margins and other specifica-
tions for the closed loop, which is similar to the LQG/LTR
approach for the design of dynamical controllers. The pre-
sented LQ/LTR ILC design methods can be illustrated using
intuitive graphical diagrams and are based on industrial FIR
models of the controlled plant.

The controller was demonstrated in an application to
batch thermal processing. Outstanding accuracy, robust-
ness to nonlinearity, and convergence speed were demon-
strated in simulation for this difficult, highly nonlinear
process application.
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