
BayClone: Bayesian Nonparametric Inference of
Tumor Subclones Using NGS Data

Subhajit Sengupta1, Jin Wang2, Juhee Lee3, Peter Müller4,

Kamalakar Gulukota5, Arunava Banerjee6, Yuan Ji1,7,∗

1Center for Biomedical Research Informatics, NorthShore University HealthSystem
2Department of Statistics, University of Illinois at Urbana-Champaign

3Department of Applied Mathematics and Statistics, University of California Santa Cruz
4Department of Mathematics, University of Texas Austin

5Center for Molecular Medicine, NorthShore University HealthSystem
6Department of Computer & Information Science & Engineering, University Of Florida

7Department of Health Studies, The University Of Chicago

In this paper, we present a novel feature allocation model to describe tumor heterogeneity (TH)
using next-generation sequencing (NGS) data. Taking a Bayesian approach, we extend the Indian
buffet process (IBP) to define a class of nonparametric models, the categorical IBP (cIBP). A
cIBP takes categorical values to denote homozygous or heterozygous genotypes at each SNV. We
define a subclone as a vector of these categorical values, each corresponding to an SNV. Instead of
partitioning somatic mutations into non-overlapping clusters with similar cellular prevalences, we
took a different approach using feature allocation. Importantly, we do not assume somatic mutations
with similar cellular prevalence must be from the same subclone and allow overlapping mutations
shared across subclones. We argue that this is closer to the underlying theory of phylogenetic clonal
expansion, as somatic mutations occurred in parent subclones should be shared across the parent
and child subclones. Bayesian inference yields posterior probabilities of the number, genotypes, and
proportions of subclones in a tumor sample, thereby providing point estimates as well as variabilities
of the estimates for each subclone. We report results on both simulated and real data. BayClone is
available at http://health.bsd.uchicago.edu/yji/soft.html.
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1. Introduction

1.1. Background

Tumorgenesis is a complex process.1,2 A wide variety of genetic features that promotes tumors
are involved in this process, including the acquisition of somatic mutations that allow tumor
cells to gain advantages over time compared to normal cells. As such, a tumor is oftentimes
heterogeneous consisting of multiple subclones with unique genomes, a phenomenon called tu-
mor heterogeneity (TH). Multiple recent reviews3–8 support the existence of subclones within
tumors. Specifically, cancer cells undergo Darwinian-like clonal somatic evolution and tumor
formation is dependent on acquisition of oncogenic mutations. In fact it has been found that
individual tumors have a unique clonal architecture that is spatially and temporally evolving,
which poses challenges as well as opportunities on individualized cancer treatment. We con-
sider the differences in subclones arising from single nucleotide variations (SNVs), although
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there can be other differences such as copy number variations. An SNV represents modifica-
tion to a single DNA sequence. A scaffold of SNVs along the same haploid genome constitutes
a haplotype. A pair of haplotypes gives rise to a subclonal genome.

Next-generation sequencing (NGS) experiments use massively parallel sequenced short
reads to study long genomes. The short reads are mapped to the reference genome based
on sequence similarities. Mapped reads are used to produce estimates of SNVs, small indels
and copy number (CN) variations along the genome. In this paper we use the whole-genome
sequencing (WGS) or whole-exome sequencing (WES) data to model the variant allele frac-
tion (VAF) at an SNV, defined as the fraction of short reads that bear a variant sequence
(compared to the reference genome). Innovatively, we infer subclones using scaffolds of SNVs,
or haplotypes.

1.2. Main idea

Most multicellular organisms have two sets of chromosomes – they are called diploids. Diploid
organisms have one copy of each gene (and therefore one allele) on each chromosome. At each
locus, two alleles can be homozygous if they share the same genotypes, or heterozygous if they
do not. In a recent paper9 the authors use an Indian buffet process (IBP)10 that assumes
that SNVs are homozygous, where both alleles are either mutated or wild-type. However,
biologically there are three possible allelic genotypes at an SNV: homozygous wild-type (no
mutation on both alleles), heterozygous mutant (mutation on only one allele), or homozygous
mutant (mutation on both alleles). Therefore, the IBP model is not sufficient to fully describe
the subclonal genomes.

Our main idea is to extend IBP to categorical IBP that allows three values, 0, 0.5, and 1, to
describe the corresponding genotypes at each SNV. Such an extension is mathematically non-
trivial as we show later. More importantly, it allows for a principled and powerful statistical
inference on TH. Different from existing methods based on Dirichlet processes,11,12 IBP and
cIBP allow one SNV to appear in multiple subclones. We argue that this is more realistic and
agrees with the fundamental evolutionary theory of clonal expansion. In particular, somatic
mutations occurred in early tumor development should be shared by child subclones.

To start, note that each SNV can be associated with a non-negative number of subpop-
ulations. Consider a finite number of S SNV loci and assume that an unknown number of C
subclones are present. We introduce an S×C ternary matrix, Z = [zsc] where each zsc denotes
the allelic variation at SNV site s for subclone c, s = 1, 2, · · · , S; c = 1, 2, · · · , C. Specifically,
we let zsc ∈ {0, 0.5, 1} be a ternary random variable to denote three possible genotypes at the
locus, homozygous wild-type (zsc = 0), heterozygous variant (zsc = 0.5), and homozygous vari-
ant (zsc = 1); see Figure 1. Each sample is potentially an admixture of the subclones (columns
of Z), mixed in different proportions. Given Z, we can denote the proportions of the C sub-
clones by wt = (wt0, wt1, · · · , wtC) for sample t, where 0 < wtc < 1 for all c and

∑C
c=0wtc = 1.

Therefore, the contribution of a subclone to the VAF at an SNV is 0×wtc, 0.5×wtc or 1×wtc,
if the subclone is homozygous wild-type, heterozygous or homozygous mutant at the SNV,
respectively. We develop a latent feature model (Section 2.3) for the entire matrix Z to un-
cover the unknown subclones that constitute the tumor cells and given the data, we aim to



infer two quantities, Z and w, by a Bayesian inference scheme.
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Fig. 1. Illustration of cIBP matrix Z for subclones in a tumor sample. Colored cells in green=1, brown=0.5,
and white=0 represent homozygous variants, heterozygous variants, and homozygous wild-type, respectively.

As shown in Figure 1, a subclone is defined by a vector of categorical values in {0, 0.5, 1}
representing the genotypes at specific SNV location. For example, in Figure 1 there are seven
different SNV locations and four subclones. SNV 5 takes values 1 in subclone one, 0 in subclone
two, and 0.5 in subclones three and four. Therefore, the same mutation is shared by two
subclones (three and four).

The remainder of the paper is organized as follows. In section 2, we elaborate on the
proposed probability model. Section 3 describes model selection and posterior inference. In
the following section, we report experimental results, one with simulated data and another by
real-life data from an NGS experiment. In the final section we conclude with discussion and
future work.

2. Probability Model

2.1. Latent feature model with IBP

In latent feature model, each data point is generated by a vector of latent feature values. In
our case, each subclone (one column of Z) is a latent feature vector and a data point is the
observed VAF (Figure 2). The IBP model is used to define a prior on the space of binary
matrices that indicate the presence of a particular feature for an object, with the number of
columns in the matrix (corresponding to features) being potentially unbounded. The detailed
construction of IBP can be found in Ref. [10]. We consider a constructive definition of IBP as
follows. For each component zsc in the binary matrix Z, assume

zsc | πc ∼ Bern(πc),

πc | α ∼ beta(α/C, 1), c = 1, . . . , C, (1)

where Bern(πc) is the Bernoulli distribution and πc ∈ (0, 1) is the probability Pr(zsc = 1) a pri-
ori. Also, the marginal p(Z) =

∏C
c=1 p(Zc) =

∫
p(zsc | πc)p(πc)dπc factors assuming conditional

independence, where Zc is the c-th column vector. When C → ∞, the marginal distribution
of Z (as an equivalence class) exists and is called IBP. We extend the IBP model to a cate-
gorical setting, where each entry of the matrix is not necessarily 0 or 1, but a set of integers



in {0, 1, · · · , Q} where Q is fixed a priori. We call the extended model categorical IBP (cIBP)
and use it as a prior in exploring subclones of tumor samples. In upcoming discussion, SNVs
correspond to objects (rows) and subclones correspond to feature (columns) in the Z matrix.

2.2. Development of cIBP

We discuss the development of the cIBP for a general case with an arbitrary Q. A straight-
forward extension of IBP in (1) would be to replace the underlying beta distribution of πc
with a Dirichlet distribution, and replace the Bernoulli distribution of zsc with a multinomial
distribution. However, as C →∞, Ref. [13] showed that the limiting distribution is degenerate.
Instead, utilizing a Beta-Dirichlet distribution defined in Ref. [14] we propose a construction
given C and Q: let {1, . . . , Q} be the possible values zsc takes. Then we assume

πc ∼ Beta-Dirichlet (α/C, 1, β, · · · , β︸ ︷︷ ︸
Q of them

); zsc | πc ∼Multi(1,πc). (2)

Integrating out πc in (2), the probability of a (Q+ 1)-nary matrix, Z is

p(Z) =

(
1∏S

s=1(s+ α/C)

)C C+∏
c=1

(
α

C
· 1

Q

)
(S −mc·)!

S!
×
mc·−1∏
j=1

[
(j + α/C)

(j +Qβ)

]
1

β

Q∏
q=1

Γ(β +mcq)

Γ(β)
,

where mcq denotes the number of rows possessing value q ∈ {1, . . . , Q} in column c, i.e., mcq =∑S
s=1 I(zsc = q) and mc· =

∑Q
q=1mcq. This gives birth to a random matrix with C columns,

each entry taking a discrete value in a set of (Q+ 1) values. It can be shown that the limiting
distribution of Z (as an equivalent class) exists and is called the cIBP.13

2.3. Sampling model

Suppose there are T tumor samples in the data in which S SNVs are measured for each
sample. Let Nst be the total number of reads mapped to SNV s in sample t, s = 1, 2, · · · , S
and t = 1, 2, · · · , T . Among Nst reads, assume nst possess a variant sequence at the locus.

See Figure 2 for an illustration of the data. For sample t, at SNV position s = 1, there
are a total Nst = 5 short reads among which nst = 2 are variants. The observed VAF equals
nst/Nst at each SNV. We assume a binomial sampling model

nst
indep.∼ Binomial (Nst, pst) , (3)

where pst is the expected proportion of variant reads.
We assume that the matrix Z follows a finite version of cIBP in (2), Z ∼ cIBPC(Q =

2, α, [β1, β2]). Recall that wt = (wt0, wt1, · · · , wtC) denotes the vector of subclonal weights. We
assume wt follows a Dirichlet prior given by,

wt
indep.∼ Dirichlet(a0, a1, · · · , aC).

As we have mentioned earlier that, each sample t potentially consists of several subclones
with different proportions. Thus the variant reads must come from those subclones possessing
variant alleles. In other words, parameters pst can be modeled as a linear combination of
variant alleles zsc ∈ {0, 0.5, 1} weighted by the proportions of subclones bearing the alleles.
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Fig. 2. Illustration of read-mapping data and observed VAFs.

Remember that, zsc = 0, 0.5 and 1 means that there is no mutation, heterozygous mutation
and homozygous mutation at SNV position s for subclone c, respectively. Apparently, when a
subclone bears no variant alleles, i.e., zsc = 0, the contribution from that subclone to pst should
be zero. We assume the expected pst is a result of mixing subclones with different proportions.
Mathematically, given Z and w we assume

pst =

C∑
c=1

wtc zsc + εt0. (4)

Equation (4) is a key model assumption. It allows us to back out the unknown subclones
from a decomposition of the expected VAF pst as a weighted sum of latent genotype calls zsc
with weights wtc being the proportions of subclones. Importantly, we assume these weights to
be the same across all SNV’s, s = 1, . . . , S. In other words, the expected VAF is contributed
by those subclones with variant genotypes, weighted by the subclone prevalences. Subclones
without variant genotype on SNV s do not contribute to the VAF for s since all the short
reads generated from those subclones are normal reads.

In (4) εt0 is an error term defined as εt0 = p0wt0, where p0 ∼ Beta(α0, β0). Importantly εt0
is devised to capture experimental and data processing noise. Specifically, p0 is the relative
frequency of variant reads produced as error from upstream data processing and takes a small
value close to zero; wt0 absorbs the noise left unaccounted for by {wt1, . . . , wtC}.

3. Model Selection and Posterior Inference

3.1. MCMC simulation

In order to infer the sampling parameters from the posterior distribution, we use Markov
chain Monte Carlo (MCMC) simulations. The Gibbs sampling method is used to update zsc,
whereas the Metropolis-Hastings (MH) sampling is used to get the samples of wtc and p0. We
omit detail except the one for sampling zsc. Due to exchangeability, we let SNV s be the last
customer. Let z−s,c be the set of assignment of all other SNVs but SNV s for subclone c, m−cq



the number of SNVs with level q, not including SNV s and m−c· =
∑Q

q=1m
−
cq. We obtain,

p(zsc = q | z−s,c, rest) ∝
(
m−c·
s

)
×
(
βq +m−cq

β? +m−c·

) T∏
t=1

(
Nst

nst

)
(p′st)

nst(1− p′st)(Nst−nst)

for any c such that m−c· > 0, where rest includes the data and current MCMC values for all the
other parameters. Also, p′st is value of pst by plugging the current MCMC values and setting
zsc = q.

3.2. Choice of C

The number of subclones C in cIBP is unknown and must be estimated. We discuss a model
selection to select the correct value for C. We use predictive densities as a selection criterion.
Let n−st denote the data removing nst. Also denote the set of parameters for a given C by
ηC . The conditional predictive ordinate (CPO)15 of nst given n−st is given by the following
integral,

CPOst = p(nst|n−st) =

∫
p(nst|ηC ,n−st)p(ηC |n−st) dηC . (5)

The Monte-Carlo estimate of (5) is the harmonic mean of the likelihood values16 p(nst | ηCl ),

p̂(nst|n−st) ≈
1

L−1
∑L

l=1 p(nst | ηCl )
−1 (6)

where ηCl ’s are MCMC draw’s and L is the number of iterations. We take each data point
out from n and compute average log-pseudo-marginal likelihood (LPML) over this set as
LC =

∑
nst∈n log[p̂(nst|n−st)]. For different values of C, we compare the values of LC and

choose that Ĉ which maximizes LC .

3.3. Estimate of Z

The MCMC simulations generate posterior samples of the categorical matrix Z and other
parameters. Directly taking sample average is not desirable since it will result in an estimated
matrix with entries taking values outside the set {0, 0.5, 1}. Instead, we define a posterior point
estimate of Z similar to that in Ref. [9], i.e.,

Ẑ = arg min
Z′

1

L

L∑
l=1

d(Z(l),Z′) (7)

where Z(l), l = 1, . . . , L are MCMC samples. The term d(Z(l),Z′) is a distance with the following
definition. Note that the MCMC samples Z(l) may have different labels for Z across iterations.
Therefore we introduce a permutation for comparing any two matrices. For two matrices
Z and Z ′, let Dcc′(Z,Z

′) =
∑S

s=1 |zsc − z′sc′ | for two columns c and c′. We define a distance
d(Z,Z′) = minζ

∑C
c=1Dc,ζc(Z,Z

′) where ζc, c = 1, . . . , C is a permutation of {1, . . . , C}. Having
the permutation ζc resolves the potential label-switching issue in the MCMC samples.



4. Results

4.1. Simulated Data

We evaluate our proposed model with a simulated dataset. We take a set of S = 100 SNV
locations and consider T = 30 samples. The true number of latent subclones is C = 4 in this
experiment. The true Z values are given in the left most panel of Figure 3.

True Z C = 2 C = 3 C = 4 C = 5 C = 6

Fig. 3. True Z and estimate Ẑ in (7) with green standing for homozygous mutation i.e. zsc = 1, brown for
heterozygous mutation i.e. zsc = 0.5 and white for homozygous wild type i.e. zsc = 0. The model with C = 4
fits the data the best.

We generate the true proportion matrix w by setting wt0 = 0.05 to account for the back-
ground noise in sample t, and the rest wtc’s from the permutations of (0.5, 0.3, 0.1, 0.05) (where
c = 1, 2, 3, 4). We take the true p0 as 0.01 and fix Nst = 50 for all s = 1, 2, · · · , 100 and
t = 1, 2, · · · , 30. Finally we generate nst from Binomial(Nst, pst). Hyperparameters are set up
as follows: for wt: a0 = a1 = a2 = · · · = aC = 1, for πc: α = 1, β1 = β2 = 2, and for p0:
α0 = 1, β0 = 100. Given C, we randomly initialize the binary matrix Z and draw the initial p0
from the specified prior. The initial wt are generated by drawing gamma random variables from
the prior θt ∼ Gamma(a0, a1, . . . , aC), and then normalizing them. That is, wtc = θtc/(

∑C
k=0 θtk).

We compare C = 2, 3, 4, 5, 6 and according to LPML, Ĉ = 4 is selected as the best model
which coincides with the true value of C. For MCMC simulations, we ran 4,000 iterations,
discard the initial 2,000 as burn in, and take one sample every 5-th sample afterwards for
thinning.
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(a) True w (b) Estimate ŵ

Fig. 4. True w and estimated proportions ŵ for Ĉ = 4 with simulated data.

We find the estimate Ẑ in (7) based on the posterior samples drawn from MCMC simula-
tions. After burn-in iterations the Markov chain converges quickly. In Figure 3, we compare
the truth with estimates Ẑ for different values of C. Table 1 presents the average LPML for
various values of C. As we can see, LC is maximized at Ĉ = 4, which is the true C. Also we

Table 1. LPML LC for C values. The simulation truth is 4.

C 2 3 4 5 6
LC -9144.4 -6664.1 -4992.869 -5218.707 -5034.129

plot the true w and estimate ŵ across all the samples using Ĉ = 4 in Figure 4. They have
almost identical values.

As model checking we computed the difference between the true pst and the posterior mean
p̂st, for different model C. With the correct value of C, the difference of p̂st and true pst is the
smallest, see Figure 5.

Also the posterior mean of p0 is 0.0107 for the correct value of C, which is very close to
the simulation truth p0 = 0.01. All the other parameters in the model were closely estimated
under the Bayesian model as well.

Lastly, we compare the simulation results with PyClone,12 which uses Dirichlet process to
partition SNVs into mutation clusters. In Figure 6, we plot the true p = [pst], estimate p̂ by our
model and cellular prevalences inferred by PyClone, which is equivalent to p̂ in our models.
PyClone estimates six SNV clusters. It differs from the true number of four subclones. Also,
the L1-norm,

∑
s,t |pst− p̂st| equals 35.24 for our method, compared to 132.04 for PyClone. The

histogram of (pst− p̂st) for PyClone is also provided in Figure 5. The fitting is worse than our
model when C = 4.
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Fig. 5. Histogram of (pst − p̂st) across SNVs and samples, for the proposed models with different C values
and for PyClone. Here p̂st is the posterior mean for the proposed models and estimated cellular prevalence for
PyClone.
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Fig. 6. True and estimated (by our model) expected VAF and cellular prevalence inferred by PyClone

4.2. Intra-Tumor Lung Cancer Samples

We record whole-exome sequencing for four surgically dissected tumor samples taken from a
single patient diagnosed with lung adenocarcinoma. A portion of the resected tumor is flash
frozen and another portion is formalin fixed and paraffin embedded (FFPE). Two different
specimens are taken from the frozen portion of the resected tumor and another two from the
FFPE portion. Genomic DNA is extracted from all four specimens and an exome capture is
done using Agilent SureSelect v5+UTR probe kit. The exome library is then sequenced in



paired-end fashion on an Illumina HiSeq 2000 platform. Only two specimens are sequenced
on each to ensure a high depth of coverage. We map the reads to the human genome (version
HG19)17 using BWA18 and called variants using GATK.19 Post-mapping, the mean coverage
of the samples is around 100 fold.

We restrict our attention to the SNVs that (i) exhibit significant coverage in all our samples
(total number of mapped reads Nst are ranged in [100, 240]) and (ii) have reasonable chance
of mutation (the empirical fractions nst/Nst in [0.25, 0.75]). This filtering left us with 12, 387

SNV’s. We then randomly select S = 150 for computational purposes. In summary, using the
above notations, the data record the read counts (Nst) and mutant allele read counts (nst) of
S = 150 SNVs from T = 4 tumor samples.

Figure 7 shows a summary of the data. The large values for Nst make the binomial likeli-
hood very informative. For the prior specification, we adopt the same hyperparameters in the
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Fig. 7. SNV Data. The left panel shows a histogram of the total number of mapped reads, Nst, and the right
panel shows a histogram of the empirical fractions, nst/Nst.

simulation study. We ran MCMC for 6, 000 iterations, discarding the first 3, 000 iterations as
initial burn-in and thinning by 3. We consider C = 2, 3, 4, 5, 6, using LPML to select the best
C, shown in Table 2. The LPML is maximized at Ĉ = 3 implying that three distinct subclones
are present. Conditioning on Ĉ = 3, the estimate Ẑ is shown in Figure 8(a). The proportions of

Table 2. LPML LC for C values.

C 2 3 4 5 6
LC −1991.87 −1991.82 −1992.64 −1993.57 −1994.67

the three subclones in each of the four samples are plotted in Figure 8(b). A phylogenetic tree
is hypothesized in Figure 8(c). In particular, subclone 1 appears to be the parent giving birth
to two branching child subclones 2 and 3. Comparing columns in Figure 8(a), we hypothesize
that subclones 2 and 3 arise by acquiring additional somatic mutations in the top portion
of the SNV regions where subclone 1 shows “white” color, i.e., homozygous wild type. The
three subclones share the same genotype in the middle and lower half of the SNVs (the large



chunk of “brown” bars in Figure 8(a)), suggesting that these could be either somatic muta-
tions acquired in the parent subclone 1, or germline mutations. All four tumor samples have
similar proportions of the subclones, showing lack of geographical heterogeneity although each
sample is mosaic. This is expected since the four tumor samples were dissected from regions
that were close by on the original lung tumor.

1 2 3

1 2 3

4

3

2

1

0.28 0.3 0.32 0.34
Value

Color Key

(a) Estimate Ẑ (b) Subclone proportions ŵ (c) An estimated lineage for subclones

Fig. 8. Subclone structures, proportions and a possible lineage for the lung cancer data.

Clinically, our analysis provides valuable information for treatment considerations. Since
each tumor sample is mosaic consisting of three subclones, detailed mutational annotation
could be conducted to seek potential biomarker mutations for targeted therapy. Also, com-
binational drugs could be considered if possible to specifically target each subclone. Since
the four tumor samples possess similar proportions of subclones, the tumor appears to be
homogeneous spatially. The results from our subclonal analysis could be used as a future ref-
erence should the disease progress or relapse. For example, future subclonal analysis could be
compared to the existing one to understand the temporal genetic changes.

5. Discussion and future work

One of the major motivations to detect the heterogeneity in tumors is personalized medicines.20

Measure of heterogeneity can be useful as a prognosis marker.21 Using NGS data to study the
co-existence of genetically different subpopulations across tumors and within a tumor can shed
light on cancer development. The main feature of BayClone is the model-based and principled
inference on subclonal genomes for a set of SNVs, which directly genotypes subclones and
the associated variabilities. Although not shown, posterior variances are easily obtained using
MCMC samples for the Z and w matrices in our examples. More importantly, the feature
allocation model, cIBP, reflects the underlying evolutionary biology of clonal expansion and
explicitly model overlapping SNVs across subclones. This is a distinction from clustering-based
approaches in the existing literature.



There can be a number of possible extensions to the current model. First, the number of
SNVs examined in this paper was relatively limited (about 150). Other than computational
complexity, there is no limitation on extending the current model to analyze a large set of
SNVs. We have begun to investigate efficient computational algorithms to take on a large
number of SNVs, see Ref. [22].

As another important extension, we are considering joint modeling SNVs and copy number
variations (CNVs) using linked feature allocation models. Briefly, we could consider a sampling
model for the total read counts Nst to estimate the sample copy numbers, conditional on which
a couple of feature allocation models can be linked for estimating subclonal copy numbers and
DNA sequences.
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