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We present a method for discovering patterns of selectivity in fMRI data for experiments with multiple
stimuli/tasks. We introduce a representation of the data as profiles of selectivity using linear regression
estimates, and employ mixture model density estimation to identify functional systems with distinct types of
selectivity. The method characterizes these systems by their selectivity patterns and spatial maps, both
estimated simultaneously via the EM algorithm. We demonstrate a corresponding method for group analysis
that avoids the need for spatial correspondence among subjects. Consistency of the selectivity profiles across
subjects provides a way to assess the validity of the discovered systems. We validate this model in the
context of category selectivity in visual cortex, demonstrating good agreement with the findings based on
prior hypothesis-driven methods.
ificial Intelligence Laboratory,
02139, USA.
l@mit.edu (E. Vul),
olland).

ll rights reserved.
© 2010 Elsevier Inc. All rights reserved.
Introduction

Standard fMRI experiments investigate the functional organization
of the brain by contrasting the response to two or more sets of stimuli
or tasks that are hypothesized to be treated differently by the brain.
An activation map is generated by statistically comparing the fMRI
response of each voxel to one set of tasks or stimuli versus another.
The consistency of these activation maps across subjects is commonly
evaluated by aligning the brain data across multiple subjects in a
common anatomical space using spatial normalization. Using such
voxel-wise correspondence across subjects, statistical analyses can
test whether each voxel produces a higher response in one condition
than another, consistently across subjects. In an alternative region of
interest (ROI) method, discrete activation foci are functionally
identified within each individual subject, and the responses of a
given ROI to new conditions are then statistically compared across
subjects.

These standard practices have generated a wealth of knowledge
about the functional organization of the human brain, most of it
unknown just 20 years ago. However the standard methods are also
subject to two important limitations: (i) they can only test hypotheses
generated by the experimenter; they cannot discover new structure in
the fMRI response, and (ii) they assume some consistency across
subjects in the spatial pattern of activation across the brain. Here, we
introduce a new method that avoids both of these limitations,
enabling us to discover patterns of functional response that are
found robustly across subjects. These patterns do not have to be
hypothesized a priori and do not have to correspond to voxels that
exhibit spatial contiguity or spatial consistency across subjects.

Our exploratory approach introduces the concept of a selectivity
profile, which is a simple characterization of the function of a voxel in
terms of its response to each of the different experimental conditions.
The experimental conditions in this approach can number in the tens
or even hundreds, instead of the two to eight conditions used in most
imaging studies. We aim to discover selectivity profiles that best
explain the entire data set.

In the conventional univariate approach, the response of the entire
population of voxels is not considered as a whole; tests are performed
separately on single voxels to examine the significance of a priori
hypothesized activations. In contrast, we devise a model that explains
the selectivity profiles of all voxels by grouping them into a number of
systems (clusters), each with a distinct, representative selectivity
profile across the stimuli/tasks in the experiment. Once a small set of
robust systems is discovered, we can map the location of the voxels
that correspond to each system to find out where they are in the brain,
if they are spatially contiguous, and if they are in similar locations
across subjects. With our newmethod, the answers to these questions
are now genuine discoveries, not assumptions built into the method.

Our method offers an additional advantage for group analysis. In
the conventional hypothesis-driven analysis, in order to analyze a
cohort of subjects, we need to first normalize different subjects into a
common anatomical space. Since brain structure is highly variable
across subjects, establishing accurate correspondences among ana-
tomical images of different subjects is intrinsically challenging (Gee
et al., 1997; Thirion et al., 2006; Thirion et al., 2007a; 2007b). In
addition to this anatomical variability, functional properties of the
same anatomical structures are likely to vary somewhat across

mailto:danial@mit.edu
mailto:evul@mit.edu
mailto:ngk@mit.edu
mailto:polina@csail.mit.edu
http://dx.doi.org/10.1016/j.neuroimage.2009.12.106
http://www.sciencedirect.com/science/journal/10538119


1086 D. Lashkari et al. / NeuroImage 50 (2010) 1085–1098
subjects (Brett et al., 2002). This variability presents a fundamental
obstacle for anatomically-constrained characterization of functional
systems.

Since we are primarily interested in the systems with selectivity
profiles that are shared across subjects, the space of these profiles for a
certain experimental setup can act as a common space for represent-
ing data from different subjects. Hence, our model does not require
spatial information, and we can analyze group data from different
runs and subjects without a need for spatial normalization. Further-
more, rather than relying on spatial consistency to establish the
validity of selectivity patterns, we employ functional consistency
defined as the robustness of the estimated profiles across subjects.
Because our representation of the data relies solely on the functional
response, and the basic analysis knows nothing about the location of
each voxel, the resulting systems we discover are not constrained to
be spatially clustered together or in similar locations across subjects.

Several exploratory, unsupervised learning methods have been
previously applied to the analysis of fMRI data. Some methods
consider the spatial patterns of response across many voxels; for
instance, they may apply an algorithm such as agglomerative
clustering to these spatial patterns to infer the hierarchical grouping
of stimuli (Kriegeskorte et al., 2008). In contrast, we seek groups of
voxels that respond similarly across a large set of images and to
characterize the nature of their response.

Most exploratory methods that attempt to partition the set of
voxels consider raw fMRI time courses and use clustering (Baum-
gartner et al., 1997; Baumgartner et al., 1998; Moser et al., 1997; Golay
et al., 1998; Filzmoser et al., 1999; Fadili et al., 2000; Golland et al.,
2007) or Independent Component Analysis (ICA) (McKeown et al.,
1998; Beckmann and Smith, 2004, 2005; Calhoun et al., 2001a, 2001b)
to estimate a decomposition of the data into a set of distinct time
courses of interest and their localization maps. However, these
methods do not readily express the relationship between the
discovered time courses and the functional response of voxels to the
experimental conditions. Some variants employ information from the
experimental setup to define a measure of similarity between voxels,
effectively projecting the original high-dimensional time courses onto
a low dimensional feature space, followed by clustering in the new
space (Goutte et al., 1999; Goutte et al., 2001; Thirion and Faugeras,
2003). Nevertheless, these methods mainly focus on the spatial maps
of the clusters corresponding to the activation of interest as the main
result of the analysis. Few exploratory or multivariate methods
systematically address the issue of group analysis (Calhoun et al.,
2001b).

In this paper, we employ the studies of category selectivity in the
visual pathway as a concrete example for the applications of our
method in fMRI studies with a rich space of experimental conditions.
FunctionalMRI studies of vision have provided a great example for the
success of fMRI in revealing structure in brain's functional organiza-
tion (Grill-Spector and Malach, 2004). Using the conventional
hypothesis-driven approach, fMRI data have identified a handful of
regions with specific category selectivity in the visual cortex
(Kanwisher, 2003). For instance, the fusiform face area and occipital
face area (FFA and OFA) are associated with face selectivity (McCarthy
et al., 1997; Kanwisher et al., 1997; Kanwisher and Yovel, 2006;
Rossion et al., 2003) while the parahippocampal place area (PPA)
(Epstein and Kanwisher, 1998; Burgess et al., 1999; Aguirre et al.,
1998) and the extrastriate body area (EBA) (Downing et al., 2001;
Schwarzlose et al., 2005; Peelen and Downing, 2007) exhibit high
selectivity for places and body parts, respectively. In addition, an
object-selective region in the lateral occipital complex (Malach et al.,
1995) and a small area in the left fusiform gyrus with selectivity to
letter strings and visually-presented words (Baker et al., 2007) have
been identified and further characterized. However, the collection of
all currently known category selective areas constitutes a small part of
the visual pathway and accounts for a limited set of categories in the
visual world. Further studies to find other selective areas have
generally failed, leaving many questions unanswered (Downing et al.,
2006).

We face several methodological challenges in proceeding with the
present hypothesis-driven approach. With the increasing number of
image categories included in the experiments, it becomes more
challenging to explore the entire set of possible patterns of selectivity
by only comparing voxel responses to two conditions at a time. In
principle, for any candidate category, we have to search for a brain
region that shows significant activation in pairwise contrasts with all
the other categories in the experiment. Moreover, we should also
consider possible meta-categories (categories comprised of multiple
other categories) in the experiment that might form natural classes of
selectivity for a brain system. For instance, if we have images of both
human faces and human bodies in the experiment, we can also
consider the set of all these images as one candidate category. Finally,
the conventional approach uses spatial contiguity of the regions and
their spatial consistency across subjects as the only method to
evaluate whether a system is truly selective (Kanwisher et al., 1997;
Spiridon et al., 2006). Hence, anatomical variability of functional
systems in the brain fundamentally restricts the power of this
method.

As an illustration of how our method can address the basic
limitations of the conventional hypothesis-drivenmethod, we apply it
to the data from an experiment investigating category selectivity in
the visual cortex. Our results replicate prior findings obtained via
numerous hypothesis-driven fMRI studies. We robustly discover the
known selectivity patterns, further opening up the possibility of
studies on richer sets of stimuli.

Methods

In this section, we define the main elements of our approach in
three steps. First, we introduce the space of selectivity profiles and
explain how this representation enables discovery of the patterns of
selectivity in the brain systems of interest. Second, we formulate our
model for the analysis of the data, represented in the space of
selectivity profiles, and derive an algorithm for estimating the model
parameters from fMRI data. Third, we present our approach to
validating the results based on our definition of cross-subject and
within-subject consistency measures. In the last part, we discuss
alternative validation procedures.

Space of selectivity profiles

The goal of our method is to discover the types of response
specificity that appear across multiple voxels in our data. Hence, we
choose to represent an fMRI time course by a profile that characterizes
the selectivity of the voxel response to the set of all experimental
conditions. The notion of selectivity focuses on the relative response;
for instance, the rough definition of a selective system in high level
vision states that a selective voxel's response to the preferred stimulus
is at least twice as high as its response to other stimuli (Op de Beeck et
al., 2008). This definition involves only a ratio of the responses and is
independent of their overall magnitude. Our profile representation,
therefore, aims to capture this relative response of the voxels based on
their observed BOLD time course.

It is customary to use regression to estimate the contributions of
different experimental conditions to the BOLD signal. In this set up, we
can represent the BOLD response xv∈ IRT of voxel v at the T time
points as:

xv = Hαv + Gβv + ev; ð1Þ

where the columns of matrices H and G are the temporal regressors
corresponding to the protocol-independent nuisance factors and the
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D experimental conditions, respectively. Assuming white temporal
noise, ɛv∼N (0, σv

2I), the least square solution yields the estimates of
the regression coefficients βv̂ and αv̂:

α̂vβ̂v
� �

= AtA
� �−1

Atxv; ð2Þ

where A=[H G]. Component i of the estimated vector β ̂v is commonly
interpreted as a measure of the response of voxel v to stimulus i. The
above model is usually used for assessing the statistical significance of
different hypotheses about the response in the framework of the
General Linear Models (GLM) (Friston et al., 1994). More accurate
models of fMRI signal also account for autocorrelations present in the
covariance structure of the temporal noise ɛv (Aguirre et al., 1997;
Woolrich et al., 2001), but the above simple model is adequate for the
demonstration of our method.

We define the voxel selectivity profile to be a vector containing the
estimated regression coefficients for the experimental conditions,
normalized to unit magnitude, that is,

yv =
β̂v

jjβ̂vjj
; ð3Þ

where jjajj = ffiffiffiffiffiffiffiffiffiffiffiha; aip
with h , i denoting the inner product. Selectivity

profiles lie on a hyper-sphere SD−1 and imply a pattern of selectivity
to the D experimental conditions defined by a direction in the
corresponding D-dimensional space. Normalization removes the
contribution of the overall magnitude of response and presents the
estimated response as a ratio with respect to this overall response.
Furthermore, it is well-known that the magnitude of overall BOLD
response of the voxel is mainly a byproduct of irrelevant variables
such as distance frommajor vessels or general response to the type of
stimuli used in the experiment (Friston et al., 2007). This provides
another justification for the normalization of response vectors, in
addition to our interest in representing selectivity as a relative
measure of response.

Fig. 1A illustrates the population of unnormalized estimated
vectors of regression coefficients β ̂v for all the voxels identified by
the conventional hypothesis-driven analysis as selective for one of
three different conditions. The differences between voxels with
different types of selectivity are not well expressed in this
representation; there is no apparent separation between different
groups of voxels. We also note that there is an evident overlap
between the sets of voxels assigned to these different patterns of
selectivity. The standard analysis in this case uses a contrast
comparing each of the three conditions of interest with a fourth
experimental condition; therefore, it is possible for a voxel to
appear selective for all three of these contrasts. In order to explain
the selectivity of such a voxel, we can define a novel type of
selectivity towards a meta-category which is composed of the three
categories represented by these contrasts. The same argument can
be applied to any combinations of the categories presented in the
experiment to form various, new candidates as possible types of
selectivity.

Fig. 1B shows the selectivity profiles yv formed for the same
data set. We observe that the voxels associated with different types
of activation become more separated, exhibiting an arrangement
that is similar to a clustering structure. Furthermore, it is easy to
see that the set of voxels shared among all three patterns of
selectivity has a distinct structure of its own, mainly concentrated
around a direction close to 111½ �t =

ffiffiffi
3

p
on the sphere. We interpret

the center of a cluster of selectivity profiles as a representative for
the type of selectivity shared among the neighboring profiles on the
sphere.

Although the clusters of the profiles are not well separated, the
arrangement of concentrations of profiles on the sphere can carry
important information about the types of selectivity more heavily
represented in the data. This information becomesmore interesting as
the number of dimensions (experimental conditions) grows and the
overall density of profiles on the sphere decreases. This motivates us
to consider application of mixture model density estimation, the
probabilistic modeling formulation of clustering (McLachlan and Peel,
2000), to the set of selectivity profiles. Each component in themixture
model represents a cluster of voxels, i.e., a functional system,
concentrated around a central direction on the sphere. The
corresponding cluster center, which we call system selectivity profile,
specifies that system's type of selectivity.

Model

Let {yv}v=1
V be a set of selectivity profiles of V brain voxels. We

assume the vectors are generated i.i.d. by a mixture distribution

p y; qk;mkf gKk = 1;λ
� �

=
XK
k=1

qkf y;mk;λð Þ; ð4Þ

where {qk}k=1
K are the weights of K components and f(·, m, λ) is the

likelihood of the data parameterized by m and λ. We assume that the
likelihood model describes simple directional distribution on the
hyper-sphere and choose the von Mises–Fisher distribution (Mardia,
1975) for the mixture components:

f y;m;λð Þ = CD λð Þeλhy;mi
; ð5Þ

where inner product corresponds to the correlation of the two vectors
on the sphere. Note that this model is in agreement with the notion
that on a hyper-sphere, correlation is the natural measure of similarity
between two vectors. The distribution is an exponential function of
the correlation between the vector y (voxel selectivity profile) and
the mean direction m (system selectivity profile). The normalizing
constant CD(λ) is defined in terms of the γ-th order modified Bessel
function of the first kind Iγ:

CD λð Þ = λD=2−1

2πð ÞD=2ID=2−1 λð Þ : ð6Þ

The concentration parameter λ controls the concentration of the
distribution around the mean direction m similar to the reciprocal of
variance for Gaussian models. In general, mixture components can
have distinct concentration parameters but in this work, we use the
same parameter for all the clusters to ensure a more robust
estimation. This model has been previously employed in the context
of clustering (Banerjee et al., 2006).

We formulate our problem as a maximum likelihood estimation:

qTk;m
T
k

n oK

k = 1
;λT

� �
= argmax

qk ;mkf gKk=1 ;λ

XV
v=1

log p yv; qk;mkf gKk = 1;λ
� �

: ð7Þ

Employing the Expectation–Maximization (EM) algorithm (Dempster
et al., 1977) to solve the problem involves adding membership
variables p(k|yv), for k=1, …, K, that describe the posterior
probability that voxel v is associated with the mixture component k.
The details of the EM derivation are presented in Appendix A.

Starting with initial values {qk(0), mk
(0)}k=1

K and λ(0) for the model
parameters, we iteratively compute the posterior assignment prob-
abilities p(k|yv) and then update the parameters {qk, mk}k=1

K and λ. In
the E-step, we fix the model parameters and update the system
memberships:

p tð Þ k jyvð Þ = q tð Þ
k eλ

tð Þhyv ;m tð Þ
k
i

PK
k V= 1 q

tð Þ
kVe

λ tð Þhyv ;m tð Þ
k Vi

: ð8Þ
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Fig. 2. The results ofmixturemodel density estimationwith 5 components for the set of selectivity profiles in Fig. 1B. The resulting system selectivity profiles (cluster centers) are denoted
by the red dots; circles around them indicate the size of the corresponding clusters. The box shows an alternative presentation of the selectivity profiles where the values of their
components are shownalongwith zero forfixation. Since this format allowspresentation of the selectivity profiles in general caseswithDN 3,we adopt thisway of illustration throughout
the paper. The first selectivity profile, whose cluster includes most of the voxels in the overlapping region, does not show a differential response to our three categories of interest.
Selectivity profiles 2, 3, and 4 correspond to the three original typesof activation preferring faces, bodies, and scenes, respectively. Selectivity profile 5 shows exclusive selectivity for bodies
along with a slightly negative response to other categories.
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In the M-step, we update the model parameters:

q t + 1ð Þ
k =

1
V

XV
v=1

p tð Þ k jyvð Þ; ð9Þ

m t + 1ð Þ
k =

PV
v = 1 yvp

tð Þ k jyvð Þ
jjPV

v = 1 yvp
tð Þ k jyvð Þjj : ð10Þ

After computing the updated cluster centers mk
(t+1), the new

concentration parameter λ(t+1) is found by solving the nonlinear
equation

AD λ t + 1ð Þ� �
= C t + 1ð Þ ð11Þ

for positive values of λ(t+1), where

C t + 1ð Þ =
1
V

XK
k=1

XV
v=1

p tð Þ k jyvð Þhm t + 1ð Þ
k ; yvi ð12Þ

and the function AD(·) is defined as

AD λð Þ = ID=2 λð Þ
ID=2−1 λð Þ : ð13Þ
Fig. 1. An example of voxel selectivity profiles in the context of a study of visual category sele
faces, bodies, scenes, and objects, defined as different experimental conditions. (A) Vectors o
selective to bodies, faces, and scenes in one subject. As is common in the field, the conven
response to the category of interest and its response to objects. (B) The corresponding sele
Our algorithm for solving this equation is presented in Appendix B.
Iterating the set of E-step and M-step updates until convergence, we
find K system selectivity profiles mk and a set of soft assignments p(k|
yv) for k=1, …, K. The assignments p(k|yv), when projected to the
anatomical locations of voxels, define the spatial maps of the
discovered systems.

Fig. 2 illustrates 5 systems and the corresponding profiles of
selectivity found by this algorithm for the population of voxels shown
in Fig. 1B. As expected, the analysis identifies clusters of voxels
exclusively selective for one of the three conditions, but also finds a
cluster selective for all three conditions along with a group of body
selective voxels that show inhibition towards other categories. More
complex profiles of selectivity such as the two latter cases cannot be
easily detected with the conventional method.

Cross-subject consistency analysis

Consider a group study where a group of subjects take part in an
fMRI experiment. We denote a voxel in an experiment with S subjects
by yv

s , where s∈{1, …, S} is the subject index, and v is the voxel index
as before. We aim to discover the brain systems with distinct profiles
of selectivity that are shared among all subjects. Let us assume that
ctivity. The block design experiment included several categories of visual stimuli such as
f estimated regression coefficients β̂=[βFaces, βBodies, βScenes]t for the voxels detected as
tional method detects these voxels by performing significance tests comparing voxel's
ctivity profiles y formed for the same group of voxels.
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two selectivity profiles yvs and yv′
s′, corresponding to voxel v of subject

s and voxel v′ of subject s′, belong to the same selective system in the
two brains. The overall magnitude of response of these two voxels can
be different but the two profile vectors have to still reflect the
corresponding type of selectivity. Therefore, they should resemble
each other as well as the selectivity profile of the corresponding
system. This suggests that we can fuse data from different subjects
and cluster them all together in order to improve the estimates of
system selectivity profiles. This approach can be thought of as a simple
model that ignores possible small variability in subject-specific
selectivity profiles of the same system, similar to the way that fixed
effect analysis simplifies the more elaborate hierarchical model of
random effect analysis in the hypothesis-driven framework (Penny
and Holmes, 2003). At this stage, we choose to work with this simpler
model and defer the development of a corresponding hierarchical
model to future work.

Based on the above argument, if the set of vectors {mk}k=1
K

describes all relevant selectivity profiles in the brain system of
interest, each voxel yvs can be thought of as an independent sample
from the distribution in Eq. (4). Thus, we combine the data from

several subjects to form the group data, i.e., ysv
� �Vs

v = 1

n oS

s = 1
, to

perform our analysis across subjects. Applying our algorithm to the
group data, the resulting set of assignments p k jysv

	 
� �Vs

v = 1 defines the
spatial map of system k in subject s.

In conventional group data analysis, spatial consistency of the
activation maps across subjects provides a measure for the evaluation
of the results. In ourmethod, we focus on the functional consistency of
the discovered system selectivity profiles. To quantify this consisten-
cy, we define a consistency score (cs) for each selectivity profile found

in a group analysis. Let ysv
� �Vs

v = 1

n oS

s = 1
be the group data including

voxel profiles from S different subjects, K be the number of desired
systems, and {mk

G}k=1
K be the final set of system selectivity profiles

found by the algorithm in the group data. We also apply the algorithm
to the S individual subject data sets ysv

� �Vs

v = 1 separately to find their
corresponding S sets of subject-specific systems {mk

s}k=1
K . We can

then match the selectivity profile of each group system to its most
similar system profile in each of the S individual data sets.

Matching selectivity profiles across subjects
The matching between the group and individual selectivity

profiles is equivalent to finding S one-to-one functions ωs:{1, …,
K}→{1, …, K} which assign system profile ms

ωs kð Þ in subject s to the
group system profile mk

G. We select the function ωs such that it
maximizes the overall similarity between the matched selectivity
profiles:

ωT
s �ð Þ = argmax

ω �ð Þ

XK
k=1

ρ mG
k ;m

s
ω kð Þ

� �
: ð14Þ

Here, ρ(·,·) denotes the correlation coefficient between two vectors.
The maximization in Eq. (14) is performed over all possible one-
to-one functions ω. Finding this function is an instance of graph
matching problems for a bipartite graph (Diestel, 2005). The graph
is composed of two sets of nodes, corresponding to the group and
the individual system profiles, and the weights of the edges
between the nodes are defined by the correlation coefficients. We
employ the well-known Hungarian algorithm (Kuhn, 1955) to
solve this problem for each subject.1
1 We used the open source Matlab implementation of the Hungarian algorithm
available at http://www.mathworks.com/matlabcentral/leexchange/11609.
Having matched each group system with a distinct system within
each individual subject result, we compute the consistency score csk
for group system k as the average correlation of its selectivity profile
with the corresponding subject-specific system profiles:

csk =
1
S

XS
s=1

ρ mG
k ;m

s
ωT

s kð Þ
� �

: ð15Þ

Consistency score values measure how closely a particular type of
selectivity repeats across subjects. Clearly, cs=1 is the most
consistent case where the corresponding profile identically appears
in all subjects. Because of the similarity-maximizing matching
performed in the process of computing the scores, even a random
data set would yield non-zero consistency score values. We employ
permutation testing to establish the null hypothesis distribution for
the consistency score.

Permutation test for the consistency scores
To construct the baseline distribution for the consistency scores

under the null hypothesis, we make randommodifications to the data
in such a way that the correspondence between the components of
the selectivity profiles and the experimental conditions is removed.
Specifically, we randomize the condition labels before the regression
step so that the individual regression coefficients do not correspond to
any non-random distinctions in the task. More formally, we
implement such a randomization in the linear analysis stage in Eq.
(1). Each temporal block in the experiment has a category label that
determines its corresponding regressor in the design matrix G. We
randomly shuffle these labels and, as a result, the regressors in the
design matrix include blocks of images from random categories. The
resulting estimated regression coefficients do not correspond to any
coherent set of stimuli. Applying our analysis to this modified data set
still yields a set of group and individual system selectivity profiles and
corresponding cs values. Since there is no real structure in the data, all
cs values obtained in this manner can serve as samples from the
desired null hypothesis.

We estimate the null distribution of the cs values by generating
randomly shuffled data sets, finding selectivity profiles of the group
systems, and treating the resulting consistency scores for the K
selectivity profiles as samples from our null distribution.We evaluate
statistical significance of the cs value of each system selectivity
profile based on this null distribution. In practice, for up to 10,000
shuffled data sets, the consistency scores of most system selectivity
profiles in the real data exceed all the cs values estimated from the
shuffled data, implying the same empirical significance of p=10−4.
To distinguish the significance of these different profiles through our
p-value, we fit a Beta distribution to the null-hypothesis samples and
compute the significance from the fitted distribution. Using a linear
transformation to match the range [−1, 1] of cs values to the support
[0,1] of the Beta distribution, we obtain the pdf of the null
distribution

fNull cs; a; bð Þ = 2
B a; bð Þ

1 + cs
2

� �a−1 1−cs
2

� �b−1
; ð16Þ

where B(a,b) is the beta function. We find the maximum-likelihood
pair (a,b) for the observed samples in the shuffled data set. We then
characterize the significance of a selectivity profile with consistency
score cs via its p-value, as inferred from the parametric fit to our
simulated null-hypothesis distribution: p =

R 1
cs fNull u; a; bð Þdu.

Other validation procedures

In the previous section, we presented our procedure for assess-
ment of the cross-subject consistency of the discovered selectivity
profiles. An alternative way to assess the resulting system selectivity

http://www.mathworks.com/matlabcentral/leexchange/11609
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Fig. 3. (A) A set of 10 discovered group system selectivity profiles for the 16-Dimensional group data. The colors (black, blue) represent the two distinct components of the profiles
corresponding to the same category. We added zero to each vector to represent Fixation. The weight q for each selectivity profile is also reported along with the consistency scores
(cs) and the significance values found in the permutation test, sig=− log10 p. (B) A set of individual system selectivity profiles in one of the 6 subjects ordered based onmatching to
the group profiles in (A).
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profiles is to examine their consistency across repetitions of the same
category in different blocks. If we define two groups of blocks that
present stimuli from the same category as two distinct experimental
conditions, we expect the corresponding components of a consistent
system selectivity profile to be similar. We will employ this method
for a qualitative study of consistency.

While our analysis is completely independent of the spatial
locations associated with the selectivity profiles, we can still examine
the spatial extent of the discovered systems as a way to validate the
results. If the selectivity profile of a system matches a certain type of
activation, i.e., demonstrates exclusive selectivity for an experimental
condition, we can compare the map of its assignments with the
localization map detected for that activation by the conventional
method. We use this comparison to ensure that our method yields
systems with spatial extents that correspond to the previously
characterized selective areas in the brain.

Once we identify a system to be associated with a certain
activation, we quantify the similarity between the spatial maps
estimated by our method and that obtained via the standard
hypothesis-driven method. We employ an asymmetric overlap
measure between the spatial maps, equal to the ratio of the number
of voxels in the overlapping region to the number of all voxels
assigned to the system in ourmodel. The asymmetry is included since,
as we saw in the example in Space of Selectivity Profiles, being
functionally more specific, our discovered systems are usually subsets
of the localization maps found via the standard statistical test.
Results

We demonstrate our method on the data from a block design
fMRI study of high level vision with 6 subjects. The images were
acquired using a Siemens 3T scanner and a custom 32-channel coil
(EPI, flip angle=90°, TR=2 s, in-plane resolution=1.5 mm, slice
thickness=2 mm, 28 axial slices). The experimental protocol
included 8 categories of images: Animals, Bodies, Cars, Faces, Scenes,
Shoes, Trees, and Vases. For each image category, two different sets
of images were presented in separate blocks. We used this setup to
test that our algorithm successfully yields profiles with similar
components for different images from the same category. Each block
lasted 16 seconds and contained 16 images from one image set of
one category. The blocks corresponding to different categories were
presented in permuted fashion so that their order and temporal
spacing was counter-balanced. With this design, the temporal noise
structure is shared between the real data and the random
permutations constructed by the procedure of Methods. For each
subject, there were 16 to 29 runs of the experiment where each run
contained one block from each category and three fixation blocks.
We perform motion correction, spike detection, intensity normali-
zation, and Gaussian smoothing with a kernel of 3-mm width using
the standard package FsFast.2

http://surfer.nmr.mgh.harvard.edu/fswiki/fsfast
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By modifying the condition-related part of the design matrix G in
Eq. (1) and estimating the corresponding regression coefficients β̂, we
created three different data sets for each subject:

• 8-Dimensional Data: All blocks for one category were represented
as a single experimental condition by one regressor and, accord-
ingly, one regression coefficient. The selectivity profiles were
composed of 8 components each representing one category.

• 16-Dimensional Data: The blocks associated with different image
sets were represented as distinct experimental conditions. Since we
had two image sets for each category, the selectivity profiles had
two components for each category.

• 32-Dimensional Data: We split the blocks for each image set into
two groups and estimated one coefficient for each split group. In this
data set, the selectivity profiles were 32 dimensional and each
category was represented by four components.

To discard the voxels with no visual activation, we formed
contrasts comparing the response of voxels to each category versus
fixation and applied the t-test to detect voxels that show significant
levels of activation. The union of the detected voxels served as the
mask of visually responsive voxels used in our experiment. Signifi-
cance thresholds were chosen to p=10−2, p=10−4, and p=10−6,
for 32-Dimensional, 16-Dimensional, and 8-Dimensional data, re-
spectively, so that the visually selective masks for different data sets
are of comparable size. An alternative approach for selecting relevant
voxels is to use an F-test considering all regressors corresponding to
Fig. 4. Sets of 10 discovered group system selectivity profiles for (A) 8-dimensional, and
components of the profiles corresponding to the same category. We added zero to each vec
with the consistency score (cs) and the significance value.
the visual stimuli (columns of matrix G in Eq. (1)). We observed
empirically that the results presented here are fairly robust to the
choice of the mask and other details of preprocessing.

Selectivity profiles

We apply the analysis to all three data sets. Fig. 3A and Fig. 4 show
the resulting selectivity profiles of the group systems in the three data
sets, where the number of clusters is K=10. We also report cluster
weights qk, consistency scores csk, and their corresponding signifi-
cance values sig=−log10 p. In all data sets, the most consistent
profiles are selective of only one category, similar to the previously
characterized selective systems in high level vision. Moreover, their
peaks match with these known areas such that in each data set, there
are selectivity profiles corresponding to EBA (body-selective), FFA
(face-selective), and PPA (scene-selective). For instance, in Fig. 3A,
selectivity profiles 1 and 2 show body selectivity, selectivity profile 3
is face selective, and selectivity profiles 4 and 5 are scene selective.
Similar profiles appear in the case of 8-Dimensional and 32-
Dimensional data as well. Comparing the selectivity profiles found
for one of the individual 16-Dimensional data sets with those of the
group data in Figs. 3A and B shows that the more consistent group
profiles resemble their individual counterparts.

In each data set, our method detects systems with rather flat
profiles over the entire set of presented categories. These profiles
match the functional definition of early areas in the visual cortex,
(B) 32-dimensional data. Different colors (blue, black, green, red) represent different
tor to represent Fixation. The weight q for each selectivity profile is also reported along
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selective to lower level features in the visual field. Not surprisingly,
there is a large number of voxels associated with these systems, as
suggested by their estimated weights.

The 16-Dimensional and 32-Dimensional data sets allows us to
examine the consistency of the discovered profiles across different
image sets and different runs. Different components of the selectivity
profiles that correspond to the same category of images, illustrated
with different colors in Fig. 3, have nearly identical values. This
demonstrates consistency of the estimated profiles across experi-
mental runs and image sets. The improvement in consistency from the
individual data in Fig. 3B to the group data of Fig. 3A further justifies
our argument for fusing data from different subjects.

To examine the robustness of the discovered selectivity profiles to
the change in the number of clusters, we ran the same analysis on the
16-Dimensional data for 8 and 12 clusters. Comparing the results in
Fig. 5 with those of Fig. 3A, we conclude that selectivity properties of
the more consistent selectivity profiles remain relatively stable. In
general, running the algorithm for many different values of K, we
observed that increasing the number of clusters usually results in the
split of some of the clusters but does not significantly alter the pattern
of discovered profiles and their maps.
Fig. 5. Group system selectivity profiles in the 16-Dimensional data for (A) 8, and (B) 12 c
corresponding to the same category, and the weight q for each system is also indicated along
In order to find the significance of consistency scores achieved by
each of these selectivity profiles, we performed a permutation test as
described in Methods. For each data set, we generated 10,000
permuted data sets by randomly shuffling labels of different
experimental blocks. The resulting null hypothesis distributions are
shown in Fig. 6 for different data sets. Using these distributions, we
compute the statistical significance of the consistency scores
presented for the selectivity profiles in Figs. 3, 4, and 5.

Spatial maps

We also examine the spatial maps associated with each system.
Fig. 7 shows the standard localization map for the face selective areas
FFA and OFA in blue. This map is found by applying the t-test to
identify voxels with higher response to faces when compared to
objects, with a threshold p=10−4, in one of the subjects. For
comparison, Fig. 7 also shows the voxels in the same slices assigned
by our method to the system with the selectivity profile 3 in Fig. 4A
that exhibits face selectivity (red). The assignments found by our
method represent probabilities over cluster labels. To generate the
map, we assign each voxel to its corresponding maximum a posteriori
lusters. The colors (blue, black) represent the two distinct components of the profiles
with the consistency score (cs) and its significance value found in the permutation test.



Fig. 6. Null hypothesis distributions for the consistency score values, computed from 10,000 random permutations of the data. Histograms A, B and C show the results for 8-, 16-, and
32-dimensional data with 10 clusters, respectively. Histograms D, E, and F correspond to 8, 10, and 12 clusters in 16-dimensional data (B and E are identical). We normalized the
counts by the product of bin size and the overall number of samples so that they could be compared with the estimated Beta distribution, indicated by the dashed red line.
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(MAP) cluster label. We have identified on these maps the
approximate locations of the two known face-selective regions, FFA
and OFA, based on the result of the significance map, as it is common
in the field. Fig. 7 illustrates that, although the two maps are derived
with very different assumptions, they mostly agree, especially in the
more interesting areas where we expect to find face selectivity. As
mentioned in Space of Selectivity Profiles, the conventional method
identifies a much larger region as face selective, including parts in the
higher slices of Fig. 7 which we expect to be in the non-selective V1
area. Our map, on the contrary, does not include these voxels.

We compute three localization maps for face, scene, and body
selective regions by applying statistical tests comparing response of
each voxel to faces, scenes, and bodies, respectively, with objects, and
thresholding them at p=10−4. To define selective systems in our
results, we employ the conventional definition requiring the response
to the preferred category to be at least twice the value of the response
to other stimuli. We observe that the largest cluster always has a flat
profile with no selectivity, e.g., Figs. 4A and B. We form the map
associated with the largest system as another case for comparison and
call it the non-selective profile. Table 1 shows the resulting values of
our overlap measure averaged across all subjects for K=8, 10, and 12.
We first note that the overlap between the functionally related
regions is significantly higher than that of the unrelated pairs.
Moreover, these results are qualitatively stable with changes in the
number of clusters.

In the table, we also present the results of the algorithm applied to
the data of each individual subject separately. We notice higher
average overlap measures and lower standard deviations for the
group data. This is due to the fact that fusing data from a cohort of
subjects improves the accuracy of our estimates of the category
selective profiles. As a result, we discover highly selective profiles
whose response to the preferred stimuli satisfies the condition for
being more than twice the other categories. On the other hand, in the
results from the individual data for some noisier subjects, even the
selective system does not satisfy this definition. For these subjects, no
system is identified as exclusively selective of that category, degrading
the average overlap measure. The improved robustness of the
selectivity profile estimates in the group data prevents this effect
and leads to better agreement in the spatial maps.

Discussion

Our newmodel rediscovers selectivity for faces, places, and bodies,
now without assuming spatial contiguity of functionally similar
voxels and without even assuming that category selectivity itself is
a dominant property of the visual pathway.

Interestingly, we do not detect other possible profiles not known
to have a corresponding selective area based on the high level vision
literature. Prior work has shown that categories such as cars, shoes,
and animals do not correspond to selective regions as robust and
consistent as EBA, PPA, and FFA (Downing et al., 2006). Our results
clearly agree with these findings but now from a completely data-
driven perspective. This finding shows that the method allows us to
explore the space of selectivity profiles in a less biased fashion and to
search for types of selectivity that have not been hypothesized before.
A possible example is the selectivity profile 6 in Fig. 3A that
consistently appears with the same shape in all individual subjects,
despite not being exclusively selective of a single category.

The cross-subject consistency scores show qualitative correlation
with consistency across runs and different image sets. For example,



Fig. 7. Spatial maps of the face selective regions found by the significance test (light blue) and themixturemodel (red). Slices from the eachmap are presented in alternating rows for
comparison. The approximate locations of the two face-selective regions FFA and OFA are shown with yellow and purple circles, respectively.
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consider the 10th selectivity profile in Fig. 4B that has low consistency
score and whose components show considerable variability across
repetitions of the category. By its definition, cross-subject consistency
Table 1
Asymmetric overlap measures between the spatial maps corresponding to our method and
three categories of Bodies, Faces, and Scenes, and the non-selective system (rows) are comp
averaged across all 6 subjects in the experiment.

Gr. K=10 Face Body Place

Face 0.78±0.08 0.14±0.11 0
Body 0.07±0.06 0.94±0.01 0.01±0.02
Scene 0.01±0.01 0.04±0.04 0.57±0.19
Non-selective 0.06±0.03 0.02±0.02 0.1±0.05

Gr. K=8 Face Body Place
Face 0.72±0.08 0.16±0.11 0
Body 0.07±0.06 0.94±0.1 0.01±0.02
Scene 0.02±0.03 0.04±0.06 0.79±0.19
Non-selective 0.05±0.02 0.02±0.02 0.09±0.04
does not have to necessarily predict consistency of a profile across
image sets and experimental runs. But if selectivity profiles are true
signatures of the types of category selectivity existing in all subjects,
the conventional hypothesis-driven approach. The exclusively selective systems for the
ared with the localization maps detected via traditional contrasts (columns). Values are

Indiv. K=10 Face Body Place

Face 0.28±0.44 0.05±0.11 0.00±0.01
Body 0.01±0.09 0.65±0.51 0.01±0.02
Scene 0.01±0.01 0.05±0.08 0.61±0.47
Non-selective 0.09±0.09 0.09±0.08 0.13±0.13

Gr. K=12 Face Body Place
Face 0.83±0.06 0.15±0.12 0.0±0.01
Body 0.07±0.06 0.94±0.09 0.01±0.02
Scene 0.01±0.01 0.05±0.05 0.66±0.19
Non-selective 0.08±0.04 0.03±0.03 0.09±0.05



1096 D. Lashkari et al. / NeuroImage 50 (2010) 1085–1098
we expect them to exhibit consistent patterns both across subjects
and across different samples of the same categories of visual stimuli.

We discussed in Spatial Maps that the spatial maps of our systems
have considerable overlap with the corresponding thresholded
significance maps found by the conventional method. Note however
that we do not expect a perfect overlap between the two methods.
The experts commonly identify some subsections of the significance
maps as the selective regions based on their prior anatomical
knowledge. Therefore, the degree of overlap between our systems
and the localization maps does not necessarily yield a quantitative
measure of accuracy of our results. Rather, it acts as an argument for
relative agreement of these two different definitions of selectivity.

Several dimensions remain for further extension and improve-
ments of the current model. As with many other learning methods,
our approach so far does not offer a systematic way to choose the
number of clusters (model components, K). Although our results
show relative robustness to changes in K, it is more desirable to have a
method for automatic selection of the number of systems. By
employing nonparametric approaches, such as Dirichlet processes
(Teh et al., 2006), that integrate estimation of component number
within the modeling framework, we can design appropriate infinite
mixture models suited to our application (Rasmussen, 2000). Another
possible extension involves introducing an explicit model of inter-
subject variability. The model, as it stands now, does not distinguish
the individual selectivity profiles from the group profiles, effectively
assuming identical structure at the group level and at the individual
subject level. We are developing a hierarchical model to address this
point.

We also aim to extend the model to include a clustering structure
in the space of experimental conditions. In the context of high level
vision, for instance, this will enable discovery of the categories of
visual stimuli intrinsic to the brain's visual representation. As a result,
we can present distinct images to the subjects in the experiment and
search for groupings of the images suggested by the data. We are
currently performing event-related visual fMRI experiments with
richer sets of images than presented here to examine the possibility of
discovering novel patterns of selectivity using our new approach to
data analysis.

To conclude, we presented an exploratory method that enables
automatic discovery of the patterns of selectivity in fMRI experiments
with numerous conditions. Our method is based on the idea of
selectivity profiles that characterize the specificity of response in a
variety of experimental conditions. The mixture model based on the
selectivity profiles yields algorithms for discovery of brain systems
with coherent patterns of selectivity that robustly appear across
subjects. Defining these systems on a purely functional basis opens up
the possibility of investigating likely functional systems with
significant anatomical variability. The method further allows us to
bypass the difficult procedure of spatial normalization for group
analysis.
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Appendix A. Derivation of the EM update rules

We let Θ={{qk,mk}k=1
K , λ} be the full set of parameters and derive

the EM algorithm for maximizing the log-likelihood function

L Θð Þ =
XV
v

logp yv;Θð Þ ðA:1Þ
for a mixture model p(y; Θ)=Σk=1
Kqkf(y;mk,λ). The EM algorithm

(Dempster et al., 1977) assumes a hidden random variable k that
represents the assignment of each data point to its corresponding
component in the model. This suggests a model in the joint space of
observed and hidden variables:

p yv; k;Θð Þ = qkf yv;mk;λð Þ; ðA:2Þ

where k∈{1,…,K}, and the likelihood of observed data is simply

p yv;Θð Þ =
XK
k=1

p yv; k;Θð Þ: ðA:3Þ

With a given set of parameters Θ(t) in step t, the E-step involves
computing the posterior distribution of the hidden variable given the
observed data. Since the data for each voxel is assumed to be an i.i.d.
sample from the joint distribution (A.2), theposterior distribution for the
assignment of all voxels can also be factored into terms for each voxel:
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Using this distribution, we can express the target function of the
M-step:

L Θ;Θ tð Þ� �
=
XV
v=1

Ek jyv;Θ tð Þ logp yv; k;Θð Þ½ �

=
XV
v=1

XK
k=1

p tð Þ k jyvð Þlogp yv; k;Θð Þ

=
XV
v=1

XK
k=1

p tð Þ k jyvð Þlog qkf yv;mk;λð Þ½ �

=
XV
v=1

XK
k=1

p tð Þ k jyvð Þ logqk + logCD λð Þ + λhmk; yvi½ �:

ðA:5Þ
Taking the derivative of this function along with the appropriate

Lagrange multipliers yields the update rules for the model parameters
in iteration (t+1). For the cluster centers mk, we have

0 =
A

Amk

XV
v=1

XK
kV=1

p tð Þ kVjyvð ÞhmkV; yvi −
XK
k V=1

γkV hmkV;mkVi − 1ð Þ
" #

=
XV
v=1

yvp
tð Þ k jyvð Þ− 2γkmk;

ðA:6Þ
which implies the update rule m t + 1ð Þ

k = 1
2γk

PV
v = 1 yvp

tð Þ k jyvð Þ. The
Lagrange multiplier ensures that mk is a unit vector, i.e.,

γk =
1
2
jj
XV
v=1

yvp
tð Þ k jyvð Þjj:

Similarly, we find the concentration parameter λ:
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where we have substitutedmk
(t+1) in the first line, used the definition

of Eq. (12) in the second line, and the last equality follows from the
properties of the modified Bessel functions. It follows then that AD

(λ(t+1))=Γ(t+1). Finally, for the cluster weights qk, adding the
Lagrange multiplier to guarantee that the weights sum to 1, we find

0 =
A

Aqk

XV
v=1

XK
kV=1

p tð Þ kVjyvð ÞlogqkV− f
XK
kV=1

qkV − 1

 !" #

=
1
qk

XV
v=1

p tð Þ k jyvð Þ− f;

ðA:8Þ

which together with the normalization condition results in the
update q t + 1ð Þ

k = 1
V

PV
v=1

p tð Þ k jyvð Þ.

Appendix B. Estimation of concentration parameter

In order to update the concentration parameter in the M-step
using (11), we need to solve for λ in the equation

AD λð Þ = ID=2 + 1 λð Þ
ID=2 λð Þ = G: ðB:1Þ

Fig. B.1 shows the plot of function AD(·) for several values of D.
This function is smooth andmonotonically increasing, taking values in
the interval [0,1). An approximate solution to (B.1) has been
suggested in (Banerjee et al., 2006) but the proposed expression
does not yield accurate values in our range of interest for D. Therefore,
we derive a different approximation using the inequality

x

γ + 1
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + γ + 3

2

	 
2q V
Iγ + 1 xð Þ
Iγ xð Þ V

x

γ + 1
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + γ + 1

2

	 
2q
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proved in (Amos, 1974). Defining u = D − 1
2λ , it follows from Eq. (B.1)

and Inequality (B.2) that

1
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as a function of α≥1,

this expression equals Γ for at least one value in the interval
1VαV1 + 2
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Fig. B.1. Plot of function AD(·) for different values of D.
The expression for u is a monotonically decreasing function of α2

−1 where 0bα2 − 1V 4D
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Finally, the parameter can be bounded by
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Because of the monotonicity of AD(·), starting from the average of
the two bounds and taking a few Newton steps towards zero of Eq.
(B.1), we easily reach a good solution. However, when Γ is too close to
1 and, hence, λ is large, evaluation of the function AD(·) becomes
challenging due to the exponential behavior of the Bessel functions. In

this case, when Γ is large enough such that
D 1 − C2ð Þ

D−1ð Þ2 1 holds, we can

approximate the second term in the upper bound of Eq. (B.7) as

1 +
D 1 − C2ð Þ

D−1ð Þ2

� �
, reaching the final approximation

λ≈ D − 1ð ÞC
1− C2 +

DC
2 D − 1ð Þ : ðB:8Þ
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