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Image Denoising: A Nonlinear Robust Statistical
Approach

A. Ben Hamza and Hamid Krim, Senior Member, IEEE

Abstract—Nonlinear filtering techniques based on the theory of
robust estimation are introduced. Some deterministic and asymp-
totic properties are derived. The proposed denoising methods are
optimal over the Huber -contaminated normal neighborhood
and are highly resistant to outliers. Experimental results showing
a much improved performance of the proposed filters in the
presence of Gaussian and heavy-tailed noise are analyzed and
illustrated.

Index Terms— -stable noise, asymptotic analysis, nonlinear fil-
tering, robust estimation.

I. INTRODUCTION

L INEAR filtering techniques have been used in many image
processing applications, and their popularity mainly stems

from their mathematical simplicity and their efficiency in the
presence of additive Gaussian noise. A mean filter is the op-
timal filter for Gaussian noise in the sense of mean square error.
Linear filters, however, tend to blur sharp edges, destroy lines
and other fine image details, fail to effectively remove heavy
tailed noise, and perform poorly in the presence of signal-de-
pendent noise. This led to a search for nonlinear filtering al-
ternatives. The development of nonlinear median-based filters
in recent years has resulted in remarkable results and has high-
lighted some new promising research avenues. On account of its
simplicity, edge preservation property, and robustness to impul-
sive noise, the standard median filter remains the most popular
for image processing applications [1]. The median filter, how-
ever, often tends to remove fine details in the image, such as thin
lines and corners [1]. In recent years, a variety of median-type
filters such as stack filters [2], multistage median [3], weighted
median [4], rank conditioned rank selection [5], and relaxed me-
dian [6] have been developed to overcome this drawback.

The output of the relaxed median filter with parametersand
is determined by comparing lower and upper order statistics

to the center sample in the filter window [6]. Its filtering op-
eration is controlled by its parametersand , which provide
one with an ability to tradeoff between noise suppression and
detail preservation. It has been shown that this type of filter
provides improvement over other median-based filters in ad-
ditive Gaussian white and heavy-tailed noise removal and pre-
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serves details better that the standard median filter [6]. Roughly
speaking, median-based filters are selective filters, that is, the
output is always one of the input samples, and therefore, their
use is more limited to impulsive noise removal.

A variety of models have been sources in modeling impul-
sive noise including the Laplacian model, whose distribution
has heavier tails than the Gaussian. Examples of impulsive noise
include atmospheric noise, cellular communication, underwater
acoustics, and moving traffic. Recently, it has been shown that

-stable distributions can approximate impul-
sive noise more accurately that other models [7]. The parameter

controls the degree of impulsiveness (heaviness of the tails),
and the impulsiveness increases asdecreases. The Gaussian

and the Cauchy distributions are the only
symmetric -stable distributions that have closed-form proba-
bility density functions. The two most important properties of

-stable distributions are thestability propertyand thegeneral-
ized central limit theorem[7].

The LogCauchy filter proposed in [8], as the maximum like-
lihood of the location parameter for the Cauchy distri-
bution, has been shown to be efficient in removing highly im-
pulsive noise.

It is also known that in the presence of only Gaussian noise,
the efficiency of a median filter leaves room for much improve-
ment relative to that of a mean filter. This led to a number
of other proposed nonlinear schemes to attain a balance be-
tween the two. Among these proposed filters, figure Wilcoxon,
Hodges-Lehmann [1], and-trimmed mean [9].

Other approaches of wavelet-based denoising have generally
relied on the assumption on Gaussian noise [10] and are there-
fore sensitive to outliers, i.e., to noise distributions whose tails
are heavier than the Gaussian distribution, such as Laplacian and

-stable distributions [7]. For-contaminated Gaussian distri-
butions of the wavelet coefficients, Krim and Schick [11] de-
rive a robust estimator of the wavelet coefficients for wavelet
shrinkage and based on minimax description length.

In the next section, we provide a brief review of the Huber
minimax approach, some basic sliding window filters, and sym-
metric -stable distributions. In Section III, a competi-
tive filtering scheme called themean-medianfilter is proposed,
and its asymptotic analysis is performed. In Section IV, we pro-
pose an efficient class of nonlinear filters calledmean-relaxed
medianfilters, which are defined through a convex combina-
tion of the mean and relaxed median filters. Section V is de-
voted to another class of nonlinear denoising techniques called
Mean-LogCauchyfilters. Finally, in Section VI, we provide ex-
perimental results to show a much-improved performance of the
proposed filters and to substantiate our claims in this paper.

1053–587X/01$10.00 © 2001 IEEE
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II. BACKGROUND

Consider the additive noise model

(1)

where is a discrete -dimensional deterministic sequence
corrupted by the zero-mean noise sequence , and is
the observed sequence. The objective is to estimate the sequence

based on a filtering output , where is a fil-
tering operator.

Here, we assume that the noise probability distribution is a
scaled version of aknownmember of the family of -con-
taminated normal distributions proposed by Huber [12], [13]

where is the standard normal distribution,is the set of all
probability distributions symmetric with respect to the origin
(i.e., such that ), and is the known
fraction of “contamination.” It is worth noting that under cer-
tain conditions and assuming that the distribution of the obser-
vations is anunknownmember of the family , Huber found
the least-favorable distribution in the set to have exponen-
tial tails in the no-process noise case and is simply the one
minimizing the Fisher information [13]. The presence of out-
liers in a nominally normal sample can be modeled here by
a distribution with tails that are heavier than normal. Note
that symmetry ensures the unbiasedness of the maximum like-
lihood estimator, making the expression for its asymptotic vari-
ance considerably simpler. Although this restriction obviously
precludes cases where outliers are grouped on one side of the
mean of the nominal (“underlying”) distribution, the model is
general enough to represent many realistic situations. The asy-
metric case has been studied in [14] and [15].

Krim and Schick [11] proposed a robust wavelet thresholding
technique based on the minimax description length (MMDL)
principle, determining the least favorable distribution in a-con-
taminated normal family as the member that maximizes the en-
tropy. The MMDL approach results in a thresholding scheme
that is resistant to heavy-tailed noise.

Let be a sliding window of size . Define
to be the window data sequence centered at

location .
The output of the mean filter is given by

(2)

where is the sample mean of , and is the estimation
parameter.

Denote by the th-order statistic [6] of the samples
in , that is

The output of the standard median filter (SM) is given by

(3)

Such estimators are well founded and well known for a Gaussian
and Laplacian distributions. Note that the mean and median fil-
ters are the maximum likelihood estimators of the location pa-
rameter for the Gaussian and Laplacian distributions, respec-
tively.

The general class of -stable distributions has also been
shown to accurately model heavy-tailed noise [7]. A symmetric

-stable random variable is, however, only described
by its characteristic function

where is the imaginary unit, is the location pa-
rameter (centrality), is the dispersion of the distribution
and , which controls the heaviness of the tails, is the
characteristic exponent [7].

When , an random variable has infinite vari-
ance, and the Cauchy is the only distribution that has a
closed form for the probability density function. This is, in fact,
useful when using the principle of maximum likelihood estima-
tion.

The LogCauchy (LC) filter [8] is the maximum log-likeli-
hood estimator of the location parameter for a Cauchy density
and yields the following

LC (4)

where is the dispersion, andis the estimation parameter.
In the next section, a competitive nonlinear filter inspired

by Huber’s approach to robust estimation is introduced, and its
asymptotic variance is derived.

III. M EAN-MEDIAN FILTER

Robust estimation answers the need raised by the common
situation where the distribution function is in factnot precisely
known. In this case, a reasonable approach would be to assume
that the density is a member of some set, or some family of para-
metric families, and to choose thebestestimate for theleast fa-
vorablemember of that set. Huber [12] proposed an-contami-
nated normal set and found that the least favorable distribu-
tion in that maximizes the asymptotic variance (or, equiv-
alently, minimizes the Fisher information) is Gaussian in the
center and Laplacian in the tails and switches from one to the
other at a point whose value depends on the fraction of contam-
ination , larger fractions corresponding to smaller switching
points, and vice versa.

From (2) and (3), it can easily be seen that the mean filter is
optimal for Gaussian noise in the sense of mean square error,
whereas the standard median filter for Laplacian noise in the
sense of mean absolute error. Assume that the noise probability
distribution is a scaled version of a member of, such that

, where is Gaussian with vari-
ance , and is Laplacian (or double-exponential)
with variance (clearly, ). The most commonly used
form in modeling outliers for detection and robustness studies
is the two-component mixture, where both distributions are zero
mean, but one has greater variance than the other. Although the
tails of the normal distribution are relatively light, this model is
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the basis of a number of robust estimators in the literature. Our
above assumption for the noise to be-contaminated Gaussian
and Laplacian distributed is mainly due to the fact that heavier
tails than the Gaussian mixture are provided by the Laplace dis-
tribution, which is used as a contaminant of the Gaussian distri-
bution. It is worth noting that as shown above, Huber found the
least favorable member of to have exponential tails (in the
no process noise case).

From the above discussion, a convex combination of the mean
and the median filters can be defined as follows.

Definition 1:: The output of the Mean-Median (MEM) filter
is given by

As a suitable performance measure for a robust estimator,
Huber suggests its asymptotic variance since the sample vari-
ance is strongly dependent on the tails of the distribution. In-
deed, for any estimator whose value is always contained within
the convex hull of the observations, the supremum of its ac-
tual variance is infinite. For this reason, the performance of the
mean-median filter is carried out using its asymptotic variance.

The asymptotic variance of an estimator at the
distribution is given by

(5)

where is the influence function of at , which is
defined as

at all points where the limit exists, and stands for delta
distribution function, i.e., with unit mass at. The influence
function gives the effect of an infinitesimal perturbation to the
data at the point .

It can be shown that the influence function of the mean and
the standard median filters are given by [13]

and

where is the common distribution function of
the input, and is the corresponding density function. It follows
that the influence function of the MEM filter is given by

MEM
sign

(6)

Using (5) and (6), we obtain the following result.
Proposition 1: The asymptotic variance MEM of the

MEM filter at the distribution is given by

MEM (7)

where are the central moments.

Remark: While the independence assumption of the filter
input simplifies the tractability of the problem, it is not strictly
valid.

Choosing the asymptotic variance as performance measure,
it is necessary to obtain the minimum attainable asymptotic
variance. The filter attaining that minimum asymptotic variance
(i.e., minimizing over ) will then provide the best filtering per-
formance.

Corollary 1: The minimum value of MEM is
attained at which is given by

(8)

Proof: Denote by . Using (7), the
asymptotic variance of the MEM filter can be written as

Differentiating with respect to and solving ,
we obtain a critical point given by

The second derivative of is positive

since , by the Cauchy-Schwartz inequality. Then,
is the global minimum of , and the proof is completed.

In the following example, the minimum values for some
common probability distributions are derived.

Example: To see how successful the median filter is in
improving the mean filter for heavy-tailed noise distributions,
let us consider the asymptotic relative efficiency (ARE) of

with respect to for an arbitrary symmetric
distribution . The ARE is defined as a ratio between the
asymptotic variances, that is

ARE

Suppose that the input is i.i.d. with variance ; then

and

provided has a density with . It follows that

ARE

If the input is i.i.d. Gaussian , then because
, we have ARE . Therefore, the

mean filter performs better than the median filter in removing
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Fig. 1. Relaxed median filtering operation.

Gaussian noise. Using (8), it is easy to check that the minimum
value of is attained at .

Similarly, if the input is Laplacian with mean
and variance , then ARE . Thus, the median filter has
better performance than the mean filter in the presence of Lapla-
cian noise. The minimum value of MEM is attained at

.
If we stretch the tail of the distribution, thereby increasing
, the efficiency will increase and tend to as . A

limiting case is the Cauchy distribution ( distribution with
) in which so that ARE .

A generalization of the median filters is the class of L-filters
[16]. Its output is given by

where are the filter coefficients. It is easy to show that the
MEM filter is a special case of L-filters with corresponding
weights

if

otherwise

Since the relaxed median filter provides improvement over
the standard median filter in preserving details and removes
noise better than other median-based filters, a novel class of
nonlinear filters as a convex combination of the mean and the
relaxed median is defined in the next section.

IV. M EAN-RELAXED MEDIAN FILTERS

Definition 2: The output of the relaxed median (RM) filter
with parameters and is given by

RM
if
otherwise

(9)
where and are such that .
Note that when and , the RM filter becomes
the identity filter (no filtering), and when , the
output of the RM is simply the median. Fig. 1 illustrates the
structure of the relaxed median filter.

It is worth noting that the symmetric relaxed median filter is
also called rank conditioned median filter [5]. In [6], the output

distribution of the relaxed median filter is given in a more gener-
alized form, and its statistical properties for details preservation
are also presented and illustrated.

A convex combination of the mean and relaxed median filters
gives rise to a competitive class of nonlinear filters defined as
follows.

Definition 3: The output of the mean-relaxed median
(MRM ) filters with parameters and is given by

MRM RM (10)

where , and .
The parameters and allow the MRM filter to have a

variety of characteristics. Note that when and ,
the output of the mean-relaxed median filter becomes

and if we choose , where is the sample
variance of the original image and is the noise variance,
then the mean-relaxed median filter is simply the local linear
minimum mean square error (LLMMSE) filter [17].

As two important special cases, when , we obtain the
relaxed median filter, and when , the MRM becomes
the mean-median filter.

An important statistical property of the relaxed median
filter is the probability that the center sample of the windowed
sequence be the output, in other words, the probability that a
sample remains unchanged by the relaxed median filter. This
probability gives some information about the filter capacity to
preserve details. Additional statistical properties are studied
in detail in [6]. The following result follows directly from the
definition of relaxed median filters.

Proposition 2: Let the input of the RM filter be i.i.d. with
a continuous distribution function; then

Pr

for all and such that .
Note that as decreases, the probability that the relaxed me-

dian filter outputs a center sample increases, and therefore, the
relaxed median filter tends to preserve more details.
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To show the improvement of the mean-relaxed median over
the mean-median in detail preservation, some deterministic
properties of relaxed median filters such as roots and constant
neighborhoods are derived in the next subsection. Statistical
properties for detail preservation can be found in [6].

A. Properties of Relaxed Median Filters

In this subsection, some deterministic properties of relaxed
median filters are presented. First, it is easy to show that relaxed
median filters are translation and scale invariant, that is

RM RM

For the sake of simplicity, we consider a symmetric relaxed
median filter, that is, the parametersand are symmetric

. This restriction is appropriate when the signal
and noise are symmetric and to ensure the unbiasedness of the
filter. Therefore, the symmetric relaxed median RM
filter is completely specified by two parameters: the window
width and the lower bound. The deterministic behavior of the
relaxed median filter can be analyzed by considering its effect
on arbitrary sequences. The following result gives a necessary
and sufficient condition for an arbitrary signal to be a root (fixed
point) of the relaxed median filter.

Proposition 3: A signal is a root of RM if and
only if there are at least samples with the same value as the
center sample of the filter window.

Proof: According to (9), a signal is a root of the relaxed
median filter if and only if , that
is, if and only if there are at leastsamples with the same value
as . In other words, the filter window contains no less than
samples with the same value as the center sample.

When , a relaxed median filter is just a standard
median filter, in which case, it is well known that only signals
with constant neighborhoods (minimum length ) and edges
(monotonic regions between two constant neighborhoods of dif-
ferent values) are roots of the standard median filter.

According to Proposition 3, it is straightforward to prove the
following result.

Proposition 4: The minimum length of a constant neighbor-
hood of RM is .

Note that as decreases, the minimum length of a constant
neighborhood decreases, allowing finer details to be preserved.

The following result illustrates the relationship among root
signal sets of relaxed median filters with the same window width
and different lower bounds.

Proposition 5: If denotes the root set of RM
, then

where is the set of all signals.
Proof: A root signal of is also a root of .

Indeed, according to (9) and to the definition of order statistics,
implies

. The result follows by induction.
The LogCauchy filter has been shown to outperform the stan-

dard median filter in removing highly-stable noise [8]; then,

the MEM filter can be improved, replacing the median by the
LogCauchy, and therefore, a new class of nonlinear filters is de-
rived and will be defined in the next section.

V. MEAN-LOGCAUCHY FILTERS

Analogously to Section III, we now assume that the noise
probability distribution is a scaled version of a member of
such that , where is Gaussian ,
and is with location parameter and dispersion . The
parameter controls how impulsive the distribution is.

Suppose that and are the cumulative distribution func-
tions of two independent random variables and , respec-
tively. Then, it is easy to show that the characteristic function

of the random variable is given by

For , all random variables have finite mean
given by their location parameter. Moreover, it is shown in
[18] that an distribution with zero mean can be approx-
imated by a finite-Gaussian mixture. Assuming thatis zero
mean , then can be ap-
proximated by a finite-Gaussian mixture, and hence, the noise
model (1) becomes an-contaminated Gaussian mixture noise
model.

For , all random variables have a median,
and the only distribution that has a closed-form probability
density function is Cauchy distribution ; thus, the max-
imum log-likelihood principle can be applied to derive (4).

A convex combination of the mean and the LogCauchy filters
can then be defined as follows.

Definition 4: The output of the Mean-LogCauchy (MLC)
filter with parameter is given by

MLC LC (11)

where , and is the dispersion of a Cauchy distribu-
tion.

The output of the LogCauchy filter is defined as a solution of
the following maximum log-likelihood estimation problem

(12)

where is the log-likelihood function of a Cauchy dis-
tribution .

It is clear that for a given , solving (12) is equivalent to
minimizing the function given by

(13)

as well as to solving the problem (4) since the func-
tion is strictly monotone. Thus, the minimum of (4) is attained
at the same place as that of . This is very impor-
tant because is a polynomial of degree
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in , and its characteristics can then be obtained easily. It is
shown in [19] that is a convex function of if

and, therefore, has a unique minimum
. At , the function

has distinct minima at all the points . If is increased, the
number of minima decreases. After a certain limit of, there
is only a unique minimum. Obviously, cannot be arbitrarily
large as it has to satisfy (12).

It has been shown in [20] that the myriad (LogCauchy) filter
possesses this important property; it converges to the mean filter
when , i.e.,

LC as (14)

Asymptotically, the tuning parametertransforms a nonlinear
filter to a linear one. Therefore, is also called thelinearity
parameterof the myriad filter [20].

Hence, the Mean-LogCauchy filter becomes the mean filter
when . To this end, the following result gives an alter-
native and a simple proof for (14).

Proposition 6: When , the Mean-LogCauchy filter
becomes the mean filter, i.e.,

MLC as

Proof: Using basic properties of the arg min function, the
output of the LogCauchy filter can be expressed as

LC

Since

and the exponential function is monotonically in-
creasing, it follows that

LC as

This concludes the proof using (11) and (14).

VI. SIMULATION RESULTS

This section presents simulation results where the proposed
filters are applied to enhance images corrupted by impulsive
noise as well as-contaminated mixed noise. The performance
of a filter clearly depends on the filter type and its sliding
window size, the properties of signals/images, and the char-
acteristics of the noise. The choice of criteria by which to
measure the performance of a filter presents certain difficulties.
In particular, it is clear that a global performance measure such
as the mean square error only gives a partial picture of reality;
for instance, one filter may do very well at the nominal model
but badly at an outlier, whereas another may do poorly at the

Fig. 2. Filtering results for impulsive noise using a 3� 3 square window. (a)
Original image. (b) Noisy image (“Salt and Pepper noise” 10%). (c) Output of
the SM filter. (d) Output of the RM filter. (e) Output of the CWM(! = 3)
filter. (f) Output of the tri-state median filter.

nominal model but well at an outlier, and yet, the two could
have the same mean square value.

Another important performance measure in the mean abso-
lute error obviously tends to downplay the influence of large
errors, compared with mean square error, precisely in the pres-
ence of heavy-tailed noise.

To assess the performance of the proposed filters, mean
square error (MSE) between the filtered and the original image
is evaluated to quantitatively compare the performance of these
proposed techniques with other filtering schemes.

A. Relaxed Median Performance in Impulsive Noise

In order to evaluate the performance of relaxed median fil-
ters in the presence of heavy-tailed noise, the image shown in
Fig. 2(a) has been corrupted by “Salt and Pepper noise”

. Fig. 2 displays the results of filtering the noisy image
shown in Fig. 2(a) by a standard median (SM) filter, a relaxed
median filter (RM ), a center weighted median (CWM) filter
[4] with central weight , and a tri-state median filter [21]
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TABLE I
MSEs RESULTS FORIMPULSIVE NOISE

with central weight and threshold . Qualitatively,
we observe that the relaxed median filter RMis able to sup-
press impulsive noise while preserving important features in the
image. Table I compares the resulting MSE computations.

To demonstrate the performance of the relaxed median filter
in the presence of a noisy step edge, consider a widely used
model for the step edge, which results from the blurring of the
ideal step edge with Gaussian point spread function. A typical
2-D step edge is given by

where and are constants, and erf is the error function.
An example of this edge is shown in Fig. 3(a). The-stable

noisy step edge is shown in Fig. 3(b). The filtering
results using the standard median, the relaxed median, the
center weighted median, and the tri-state median are illustrated
in Fig. 3. It is clear that the relaxed median filter preserves the
edge well while removing -stable noise.

B. Mean-Relaxed Median Performance in Mixed Noise

The Laplacian noise is somewhat heavier than the Gaussian
noise. Moreover, the Laplace distribution is similar to Huber’s
least favorable distribution [11] (for the no process noise case),
at least in the tails. To demonstrate the application of mean-re-
laxed median filters to image denoising, qualitative and quanti-
tative comparisons are performed to show the advantage of these
filters over existing techniques. Fig. 4(b) shows a noisy image
contaminated by-contaminated mixed Gaussian white noise

and Laplacian white noise . The fraction of
contamination is chosen to be equal toin all the experiments.
Table II summarizes the MSEs results obtained by applying the
MEM, MRM , Wilcoxon, and Hodges-Lehmann filters to the
noisy image with the results shown in Fig. 4.

Note that the MRM filter outperforms Wilcoxon and
Hodges-Lehmann filters in reducing mixed noise, whereas the
MEM filter achieves the best performance. Comparison of
these images clearly indicates that the MRMfilter preserves
details well while removing mixed noise.

Fig. 3. Edge and filtering results for�-stable noise. (a) Step edge. (b) Noisy
step edge (�-stable noise� = 0:8). (c) Output of the SM filter. (d) Output of the
RM filter. (e) Output of the CWM(! = 3) filter. (f) Output of the tri-state
median filter.

C. Mean-LogCauchy Performance in Mixed Noise

The scale-contaminated Gaussian and Laplace distributions
are relatively light tailed. The distributions are very
heavy-tailed noise distributions. The Cauchy distribution is a
member of this family , whose variance is infinite.
To assess the performance of Mean-LogCauchy filters in
mixed noise, the original image in Fig. 5(a) was contaminated
by both Gaussian white noise and -stable noise

. The -contaminated mixed noise corrupted
image is shown in Fig. 5(b). The visual comparison with other
techniques is shown in Fig. 5.

Table III compares several filters quantitatively using the
MSE criterion. The Mean-LogCauchy filter achieves the
best performance. The RM outperforms Wilcoxon and
Hodges-Lehmann in suppressing highly-stable noise, that
is, for . This substantiates our discussion about the
parameter in Section V because for , the noise
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Fig. 4. Filtering results for�-contaminated Gaussian and Laplacian noise
using a 3� 3 square window. (a) Original image. (b)�-mixed noisy image:
N (0; 100) andL(0;400). (c) Output of the MEM filter� = 2=(2 + �). (d)
Output of the MRM filter � = 2=(2+�). (e) Output of the Wilcoxon filter.
(f) Output of the Hodges–Lehmann filter.

TABLE II
MSES RESULTS FOR�-CONTAMINATED MIXED GAUSSIAN AND

LAPLACIAN NOISE

distribution is approximately a Gaussian mixture, and there-
fore, the relaxed median filter is not very effective in removing
Gaussian noise compared with Wilcoxon and Hodges-Lehmann
filters.

Fig. 5. Filtering results using a�-contaminated Gaussian and�-stable noise
3� 3 square window. (a) Original image. (b)�-mixed noisy image:N (0;100)
andS�S. (c) Output of the MLC filter� = 2=(2+�). (d) Output of the RM
filter. (e) Output of the Wilcoxon filter. (f) Output of the Hodges-Lehmann filter.

TABLE III
MSES RESULTS FOR�-CONTAMINATED MIXED GAUSSIAN AND

�-STABLE NOISE

D. Influence of the Parameters on the Proposed Filters

The high sensitivity of many specific filters to an accurate
modeling of noise that is to be removed led us to investigate the
proposed new techniques that include a number of filters whose
optimality, when given a specific noise distribution, is attained
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Fig. 6. Influence of the contamination fraction� on filtering performance:
MSE versus�. (a) Gaussian and Laplacian noise. (b) Gaussian and�-stable
noise.

by merely adjusting or optimizing the parameter. On the other
hand, the filtering performance is also sensitive to the fraction
of contamination . When , the mixed noise is purely
Gaussian, and when , it is purely Laplacian. Fig. 6 shows
the influence of the parameterson the filtering performance.

VII. CONCLUSION

Convex combinations of filtering methods using the mean,
the relaxed median, and the LogCauchy filters were proposed.
Some deterministic and statistical properties were studied, and
the asymptotic analysis of the mean-median filter was per-
formed. The decrease of the lower bound of the mean-relaxed
median filter yields better detail preservation at a cost of a
reduction in its noise reduction performance. It was shown that
the proposed schemes are efficient in suppressing heavy-tailed
as well as mixed noise, compared with other filtering tech-
niques. In future work, we plan on extending the theoretical
and experimental results to nonrecursive and weighted filtering

techniques, as well as on optimizing the performance of these
filters by selecting their optimal parameters. The results will be
reported elsewhere.
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