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Image Denoising: A Nonlinear Robust Statistical
Approach

A. Ben Hamza and Hamid KripSenior Member, IEEE

Abstract—Nonlinear filtering techniques based on the theory of - serves details better that the standard median filter [6]. Roughly
robust estimation are introduced. Some deterministic and asymp- speaking, median-based filters are selective filters, that is, the

totic properties are derived. The proposed denoising methods are 41t js always one of the input samples, and therefore, their
optimal over the Huber e-contaminated normal neighborhood . 0 . . . ! ’
use is more limited to impulsive noise removal.

and are highly resistant to outliers. Experimental results showing . . L
a much improved performance of the proposed filters in the A variety of models have been sources in modeling impul-
presence of Gaussian and heavy-tailed noise are analyzed andsive noise including the Laplacian model, whose distribution

illustrated. has heavier tails than the Gaussian. Examples of impulsive noise
Index Terms—e-stable noise, asymptotic analysis, nonlinear fil- include atmospheric noise, cellular communication, underwater
tering, robust estimation. acoustics, and moving traffic. Recently, it has been shown that

a-stable(0 < « < 2) distributions can approximate impul-
sive noise more accurately that other models [7]. The parameter
« controls the degree of impulsiveness (heaviness of the tails),
L INEAR filtering techniques have been used in many imagg,qd the impulsiveness increasesaadecreases. The Gaussian
processing applications, and their popularity mainly stemg = 2) and the Cauchya = 1) distributions are the only
from their mathematical simplicity and their efficiency in thesymmetrica-stable distributions that have closed-form proba-
presence of additive Gaussian noise. A mean filter is the o}ty density functions. The two most important properties of
timal filter for Gaussian noise in the sense of mean square erlsiaple distributions are thetability propertyand thegeneral-
Linear filters, however, tend to blur sharp edges, destroy ling&d central limit theorenfi7].
and other fine image details, fail to effectively remove heavy The LogCauchy filter proposed in [8], as the maximum like-
tailed noise, and perform poorly in the presence of signal-dgood of the location parameter for the Caudlay= 1) distri-
pendent noise. This led to a search for nonlinear filtering alytion, has been shown to be efficient in removing highly im-
ternatives. The development of nonlinear median-based f"t?félsive noise.
in recent years has resulted in remarkable results and has highy is also known that in the presence of only Gaussian noise,
lighted some new promising research avenues. On account ofs efficiency of a median filter leaves room for much improve-
simplicity, edge preservation property, and robustness to impilant relative to that of a mean filter. This led to a number
sive noise, the standard median filter remains the most popugrother proposed nonlinear schemes to attain a balance be-
for image processing applications [1]. The median filter, howgeen the two. Among these proposed filters, figure Wilcoxon,
ever, often tends to remove fine details in the image, such as tPinges-Lehmann [1], ang-trimmed mean [9].
lines and corners [1]. In recent years, a variety of median-typeother approaches of wavelet-based denoising have generally
filters such as stack filters [2], multistage median [3], weightg@jied on the assumption on Gaussian noise [10] and are there-
median [4], rank conditioned rank selection [5], and relaxed Mgsre sensitive to outliers, i.e., to noise distributions whose tails
dian [6] have been developed to overcome this drawback.  gre heavier than the Gaussian distribution, such as Laplacian and
The output of the relaxed median filter with parameteasid  ,_staple distributions [7]. Foe-contaminated Gaussian distri-
u is determined by comparing lower and upper order statistiggtions of the wavelet coefficients, Krim and Schick [11] de-
to the center sample in the filter window [6]. Its filtering op+jve a robust estimator of the wavelet coefficients for wavelet
eration is controlled by its parametefsandw, which provide shrinkage and based on minimax description length.
one with an ability to tradeoff between noise suppression and the next section, we provide a brief review of the Huber
detail preservation. It has been shown that this type of filtgfinimax approach, some basic sliding window filters, and sym-
provides improvement over other median-based filters in aghetric o-stable(S«.5) distributions. In Section Ill, a competi-
ditive Gaussian white and heavy-tailed noise removal and pggre filtering scheme called th@ean-mediafilter is proposed,
and its asymptotic analysis is performed. In Section IV, we pro-
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[I. BACKGROUND Such estimators are well founded and well known for a Gaussian
and Laplacian distributions. Note that the mean and median fil-
ters are the maximum likelihood estimators of the location pa-
X;=S;+V;, iezm 1) :grr}eter for the Gaussian and Laplacian distributions, respec-
ively.

where{S;} is a discreten-dimensional deterministic sequence The general class of-stable distributions has also been
corrupted by the zero-mean noise sequejigg, and{X;} is shown to accurately model heavy_—talled noise [7]. A symmetric
the observed sequence. The objective is to estimate the sequengiable (Sa.5) random variable is, however, only described
S; based on a filtering outpuf; = F(X;), whereF is a fil- by its characteristic function
tering operator. . @

Here, we assume that the noise probability distribution is a ¢(t) = exp(j6t — v[t[*)
scal'ed version of anownmember of the familyP, of ¢-con- where;j € C is the imaginary unitd € R is the location pa-
taminated normal distributions proposed by Huber [12], [13] rameter (centrality)y € R is the dispersion of the distribution
anda € (0, 2], which controls the heaviness of the tails, is the
characteristic exponent [7].

where® is the standard normal distributio§, is the set of all Whena € (0,2), anSa$ rgndom vana_ble_ ha_s infinite vari
L S . .ance, and the Cauclijyx = 1) is the only distribution that has a

probability distributions symmetric with respect to the origin e . . o

(i.e., such thal (—z) = 1— H(z)), ande € [0, 1] is the known closed form for the probability density function. This is, in fact,

fraction of “contamination.” It is worth noting that under Cer_gseful when using the principle of maximum likelihood estima-
tain conditions and assuming that the distribution of the obsé'rc—m'
The LogCauchy (LC) filter [8] is the maximum log-likeli-

vations is arunknownmember of the family?,, Huber found : : .
o hood estimator of the location parameter for a Cauchy density

the least-favorable distribution in the sBt to have exponen- . .

. o . T and yields the following

tial tails in the no-process noise case and is simply the one

minimizing the Fisher information [13]. The presence of out-y. _ | ¢ (W) = are min log(~2 Y

ninir , = = arg s(v% + (X, 6 4

liers in a nominally normal sample can be modeled here by * +(W3) 5 2 los iy =07) (&)

a distribution 4 with tails that are heavier than normal. Note ) ) ) ) o

that symmetry ensures the unbiasedness of the maximum likg1erey is the dispersion, anglis the estimation parameter.

lihood estimator, making the expression for its asymptotic vari- [N the next section, a competitive nonlinear filter inspired

ance considerably simpler. Although this restriction obviousRY Huber's approach to robust estimation is introduced, and its

precludes cases where outliers are grouped on one side of@f¥mptotic variance is derived.

mean of the nominal (“underlying”) distribution, the model is

general enough to represent many realistic situations. The asy- ll. M EAN-MEDIAN FILTER

metric case has been studied in [14] and [15]. Robust estimation answers the need raised by the common
Krim and Schick [11] proposed a robust wavelet thresholdingtyation where the distribution function is in fawt precisely
technique based on the minimax description length (MMDInown. In this case, a reasonable approach would be to assume
principle, determining the least favorable distribution ia@on- thatthe density is amember of some set, or some fam”y of para-
taminated normal family as the member that maximizes the gfietric families, and to choose thestestimate for théeast fa-
tropy. The MMDL approach results in a thresholding schemgyrablemember of that set. Huber [12] proposedcazpontami-

Consider the additive noise model

P.={(1-e)®+eH: HeS}

TCW

that is resistant to heavy-tailed noise. nated normal seP. and found that the least favorable distribu-
Let W be a sliding window of siz&N + 1. DefineW; = tjon in P. that maximizes the asymptotic variance (or, equiv-
{Xj4r : 7 € W} to be the window data sequence centered gfently, minimizes the Fisher information) is Gaussian in the
locations. center and Laplacian in the tails and switches from one to the
The output of the mean filter is given by other at a point whose value depends on the fraction of contam-
_ . ) ination ¢, larger fractions corresponding to smaller switching
Vi =W;=ag mmn Z (Xjyr —0) (2 points, and vice versa.
rcw From (2) and (3), it can easily be seen that the mean filter is

optimal for Gaussian noise in the sense of mean square error,

where ¥ is the sample mean 0¥, andf is the estimation whereas the standard median filter for Laplacian noise in the

parameter. sense of mean absolute error. Assume that the noise probabilit
Denote by[Wj]x) the kth-order statistic [6] of the samples” -~ "~ . . ; P y
in W, that is distribution P is a scaled version of a member®Bf, such that

P = (1 - ¢)G+ eL, where@ is GaussianV (0, ) with vari-
2 i i i 2
Woliis < TWolior < oo < [Wolvo s anceo,, andL is Laplacian (or double-exponential)0, o7 )
Wilw = Wil < - s Wilenry with variances? (clearly, L € S). The most commonly used
The output of the standard median filter (SM) is given by ~ form in modeling outliers for detection and robustness studies
is the two-component mixture, where both distributions are zero
Y; = [Wyl(v41) = arg mein Z X — 0. (3) mean, but one has greater variance th_an the_ other._AIthough the
rew tails of the normal distribution are relatively light, this model is
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the basis of a number of robust estimators in the literature. OurRemark: While the independence assumption of the filter
above assumption for the noise to deontaminated Gaussianinput simplifies the tractability of the problem, it is not strictly
and Laplacian distributed is mainly due to the fact that heaviealid.

tails than the Gaussian mixture are provided by the Laplace dis<Choosing the asymptotic variance as performance measure,
tribution, which is used as a contaminant of the Gaussian disitiis necessary to obtain the minimum attainable asymptotic
bution. It is worth noting that as shown above, Huber found thariance. The filter attaining that minimum asymptotic variance
least favorable member @?. to have exponential tails (in the (i.e., minimizing over\) will then provide the best filtering per-

No process noise case). formance.
From the above discussion, a convex combination of the mearCorollary 1: The minimum value of V(MEM, F,) is
and the median filters can be defined as follows. attained at\,,;;,, which is given by
Definition 1:: The output of the Mean-Median (MEM) filter 1
is given by Ain, = < __M )/( + _ M ) 8
2= ae) )\ ager ) ©

Y= (1= NW; + AW;livtn), A€01].

Proof: Denote byV(\) = V(MEM, Fp). Using (7), the
As a suitable performance measure for a robust estimafdfymPptotic variance of the MEM filter can be written as

Huber suggests its asymptotic variance since the sample vari- 1 )
ance is strongly dependent on the tails of the distribution. IM(A) = <M2 + 0z~ —9>
. ; : L 418> f(®)
deed, for any estimator whose value is always contained within
the convex hull of the observations, the supremum of its ac- + <% — 2#2) A+ po.

tual variance is infinite. For this reason, the performance of the

mean-median filter is carried out using its asymptotic variancgjferentiating () with respect tox and solvingl’(A) = 0,
The asymptotic varianc® (7', I') of an estimatofl’ at the e gbtain a critical poinf, given by

distribution £ is given by

V(T,F) = /IF(a:;T, F)2dF(x) 5) to = <“2 - %) /(NQ " 4fg—9)“’ - %) '

The second derivative af(\) is positive
wherel F(z; T, F) is the influence function df’ at ', which is

defined as 1

) = I N U B
IF(z;T,F) = li T(1-t)F +tA,) = T(F) Vi) =2 <<\/LL_2 2f(9)) + 7(6) (\//TQ Nl)) >0
) = fim ;

since,/jiz > 1, by the Cauchy-Schwartz inequality. Thew,
at all pointsz where the limit exists, and\,. stands for delta is the global minimum o#¥’, and the proof is completed. =
distribution function, i.e., with unit mass at The influence In the following example, the minimum valuas;;,, for some
function gives the effect of an infinitesimal perturbation to theommon probability distributions are derived.

data at the point. Example: To see how successful the median filter is in
It can be shown that the influence function of the mean amthproving the mean filter for heavy-tailed noise distributions,
the standard median filters are given by [13] let us consider the asymptotic relative efficiency (ARE) of
L [Wil(v41) with respect toW; for an arbitrary symmetric
IF(z; Wi, Ig) =2 — 0 distribution F'. The ARE is defined as a ratio between the
and asymptotic variances, that is
ign(z — 6) -
IF (x5 [Wil(nvy1), Fo) = Slg;—e — V(W;, Fy)
1) ARE([WZ](AH)’WZ) V([Wi](N+1)7F0).

whereFy = F(xz — 6) is the common distribution function of ) o ) )
the input, andf is the corresponding density function. It followsSUPPOse that the input is i.i.d. with variane# < oo; then

that the influence function of the MEM filter is given by VAN TI(T; — ) D N(0,0%)
7 — y T )y
[F(2; MEM, Fy) = (1 — A)(z — 6) + A%@e). 6 and )
V2N + H([Wel(vgny — 0) 2N <07 W)
Using (5) and (6), we obtain the following result.
Proposition 1: The asymptotic variancé(MEM, Fy) of the providedF, has a density with £(6) > 0. It follows that

MEM filter at the distributionZy is given by

2 ARE([W;] (1), Wy) = 4o f(6)°.

A 231
_ 2
V(MEM, Fy) = (1 = A)"pz + 4f(6)2 +A( )‘)f(g) (™) It the input is i.i.d. Gaussia (y1, o%), then becausg(;) =
1/(v/2n0o), we have ARE= 2/x = 0.637. Therefore, the
whereyy, = E|X — 6|*, k = 1,2 are the central moments. mean filter performs better than the median filter in removing



3048 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 12, DECEMBER 2001

Wil Wil Wsliven) Wil W;lien+1)

ordered
input

no filtering

4
N\

Wil Wil

Wi]( i Wil Wilen+y

output

Fig. 1. Relaxed median filtering operation.

Gaussian noise. Using (8), it is easy to check that the minimudistribution of the relaxed median filter is given in a more gener-

value of V(MEM, Fy) is attained al\,,;, = 2/(7 + 2). alized form, and its statistical properties for details preservation
Similarly, if the input is LaplacianC(u, 0?) with meany  are also presented and illustrated.

and variancer?, then ARE = 2. Thus, the median filter has A convex combination of the mean and relaxed median filters

better performance than the mean filter in the presence of Lapifves rise to a competitive class of nonlinear filters defined as

cian noise. The minimum value & (MEM, Fy) is attained at follows.

Amin = 2/3. Definition 3: The output of the mean-relaxed median
If we stretch the tail of the distribution, thereby increasingViRM,,,) filters with parameterg andw is given by

o2, the efficiency will increase and tend to aso? — oo. A

limiting case is the Cauchy distributio ¢S distribution with Y; = MRM¢, (W;) = (1 — ,\)Wi+ ARM,, (W;) (10)

a = 1) in which ¢? = oo so that ARE= oo.
A generalization of the median filters is the class of L-filter§nere ) < [0,1],andl < £/ < N +1 < u < 2N + 1.

[16]. Its output is given by The parameteré, « and\ allow the MRM, filter to have a

IN+1 variety of characteristics. Note that whés= 1 andu = 2N+-1,
Y; = Z ar Wil the output of the mean-relaxed median filter becomes
k=1

wherea;, are the filter coefficients. It is easy to show that the Y= - )W+ A%

MEM filter is a special case of L-filters with corresponding

weights and if we choose\ .:.o—fq/.(o-fq +0%), vv_hereo—g; is the sample
variance of the original image and. is the noise variance,
(SR fRk=N+1 then the mean-relaxed median filter is simply the local linear
= 211\7;-?1’ otherwise minimum mean square error (LLMMSE) filter [17].

As two important special cases, wh&n= 1, we obtain the

Since the relaxed median filter provides improvement ove|axed median filter, and wheth= «, the MRM,, becomes
the standard median filter in preserving details and removgs: mean-median filter.

noise better than other median-based filters, a novel class of\n jmportant statistical property of the relaxed median

nonlinear filters as a convex combination of the mean and thiger is the probability that the center sample of the windowed

relaxed median is defined in the next section. sequence be the output, in other words, the probability that a
sample remains unchanged by the relaxed median filter. This

IV. MEAN-RELAXED MEDIAN FILTERS probability gives some information about the filter capacity to
Definition 2: The output of the relaxed median (R)) filter ~ Preserve details. Additional statistical properties are studied
with parameterg andu is given by in detail in [6]. The following result follows directly from the
definition of relaxed median filters.
¥; = RMeu (W;) = X; if X; e.[[Wi]@), Wilw] Proposition 2: Let the input of the RN, filter be i.i.d. with
4 “ (Wil(v41), otherwise © a continuous distribution function; then
9
where/ andw are suchthat < / < N+1 < u < 2N+ 1. u—~f+1
Note that wherf = 1 andu = 2N +1, the RM,, filter becomes PriY; = X;] = oON + 1

the identity filter (no filtering), and whef = v = N + 1, the

output of the RM,, is simply the median. Fig. 1 illustrates thefor all £ andu suchthatl < /< N +1 <4 < 2N + 1.

structure of the relaxed median filter. Note that ag decreases, the probability that the relaxed me-
It is worth noting that the symmetric relaxed median filter iglian filter outputs a center sample increases, and therefore, the

also called rank conditioned median filter [5]. In [6], the outputelaxed median filter tends to preserve more details.
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To show the improvement of the mean-relaxed median ovie MEM filter can be improved, replacing the median by the
the mean-median in detail preservation, some deterministiogCauchy, and therefore, a new class of nonlinear filters is de-
properties of relaxed median filters such as roots and constaméd and will be defined in the next section.
neighborhoods are derived in the next subsection. Statistical
properties for detail preservation can be found in [6]. V. MEAN-LOGCAUCHY FILTERS

Analogously to Section Ill, we now assume that the noise

) ] o ) probability distributionP is a scaled version of a member®f
In this subsection, some deterministic properties of relaxgflch that? = (1 — ¢)@ + ¢S5, whereG is GaussianV(0, o2,),
median filters are presented. First, itis easy to show that relaxgeis is S«.S with location parametet and dispersions. The

A. Properties of Relaxed Median Filters

median filters are translation and scale invariant, that is parameterr controls how impulsive the distribution is.
Suppose thatz and S are the cumulative distribution func-
RMeu(sWy +1) = sSRMeu(W3) +¢, Vst €R. tions of two independent random variabl€g and X s, respec-

o ] . tively. Then, it is easy to show that the characteristic function
For the sake of simplicity, we consider a symmetric reIaxq/ge of the random variablél — €)X + eXs is given by
median filter, that is, the parametefsand » are symmetric

(v = 2N +2—¢). This restriction is appropriate when the signal . 202 5w o
and noise are symmetric and to ensure the unbiasedness of fiét) = exp <J69t (19 ot e st ) e €[0.1]
filter. Therefore, the symmetric relaxed median W + 1; )
filter is completely specified by two parameters: the windowor o € (1,2], all SS random variables have finite mean
width and the lower bound The deterministic behavior of the given by their location parametét Moreover, it is shown in
relaxed median filter can be analyzed by considering its effgdi8] that anS«.S distribution with zero mean can be approx-
on arbitrary sequences. The following result gives a necessanated by a finite-Gaussian mixture. Assuming tlais zero
and sufficient condition for an arbitrary signal to be a root (fixetheanS«S(1 < o < 2), thenP = (1 — ¢)G + ¢S can be ap-
point) of the relaxed median filter. proximated by a finite-Gaussian mixture, and hence, the noise

Proposition 3: A signal is a root of RM2/N + 1;¢) if and model (1) becomes artcontaminated Gaussian mixture noise
only if there are at least samples with the same value as thenodel.
center sample of the filter window. For a € (0,1], all SaS random variables have a median,

Proof: According to (9), a signal is a root of the relaxedand the onlyS«a.S distribution that has a closed-form probability

median filter if and only iffW;],) < X; < [Wi]an42—0), that density function is Cauchy distributigiar = 1); thus, the max-
is, if and only if there are at leagtsamples with the same valueimum log-likelihood principle can be applied to derive (4).
as.X;. In other words, the filter window contains no less tifan A convex combination of the mean and the LogCauchy filters
samples with the same value as the center sample. O can then be defined as follows.

When/ = N + 1, a relaxed median filter is just a standard Definition 4: The output of the Mean-LogCauchy (ML
median filter, in which case, it is well known that only signaldilter with parametery is given by
with constant neighborhoods (minimum lengfh-1) and edges
(monotonic regions between two constant neighborhoods of dif- ~ Y; = MLC, (W) = (1 — \)W; + ALC,(W;) (11)
ferent values) are roots of the standard median filter.

According to Proposition 3, it is straightforward to prove th&hereX € [0,1], and~ is the dispersion of a Cauchy distribu-

following result. tion.
Proposition 4: The minimum length of a constant neighbor- The output of the LogCauchy filter is defined as a solution of
hood of RM2N + 1;¢) is £. the following maximum log-likelihood estimation problem

Note that a¢ decreases, the minimum length of a constant R
neighborhood decreases, allowing finer details to be preserved.  ¢; = argmax £,(6W5)
The following result illustrates the relationship among root
signal sets of relaxed median filters with the same window width = arg max log H ¥ 1 (12)
and different lower bounds. ¢ row T\ (X — 0)?
Proposition 5: If R, denotes the root set of RIAN +
1;¢), then where/., (6; W;) is the log-likelihood function of a Cauchy dis-
tribution C(+, 8).
.- C R§N+1 C Rg}flﬂ c-.-CS It is clear that for a giveny, solving (12) is equivalent to
minimizing the functiorp., (8; W;) given by

whereS is the set of all signals. 5 5
Proof: A root signal of RS, is also a root ofR5" ;. P (0:W7) = [] 7 + (X = 0)%) (13)
Indeed, according to (9) and to the definition of order statistics, rew
Wil < Xi < Wilan2—¢ implies [W;],_1y < X; < as well as to solving the problem (4) since thg(-) func-
[Wil2n+3-1)- The result follows by induction. tion is strictly monotone. Thus, the minimum of (4) is attained
The LogCauchy filter has been shown to outperform the staat- the same place as that pf(6; W;). This is very impor-
dard median filter in removing highlyg-stable noise [8]; then, tant because- (6; W;) is a polynomial of degre@(2/N + 1)
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in #, and its characteristics can then be obtained easily. It
shown in [19] thatp, (6; W;) is a convex function of if v >
(Wileen+1) — [Wily) and, therefore, has a unique minimun
6o € [[Wi](l)7 [Wi](g]\f+1)]. Aty =0, the fUﬂCtiOﬂpA{(e; W’l.)
has distinct minima at all the poinfs; .. If v is increased, the
number of minima decreases. After a certain limityofthere
is only a unigue minimum. Obviously; cannot be arbitrarily
large as it has to satisfy (12).

It has been shown in [20] that the myriad (LogCauchy) filte
possesses this important property; it converges to the mean fi
wheny — o, i.e., {a]

LC,(W;) — W; as v — oc. (14)

Asymptotically, the tuning parametertransforms a nonlinear
filter to a linear one. Thereforey is also called thdinearity
parameterof the myriad filter [20].

Hence, the Mean-LogCauchy filter becomes the mean filt g
wheny — oo. To this end, the following result gives an alter-
native and a simple proof for (14).

Proposition 6: Wheny — oo, the Mean-LogCauchy filter
becomes the mean filter, i.e.,

MLCW(W,,:) — WZ as vy — oo.

Proof: Using basic properties of the arg min function, thi%,
output of the LogCauchy filter can be expressed as

LC,(W;) = arg Inein Z log(v* + (X; +7—6)%)

TeW
X, o — 0)?
- 21 0 ( 4T
= arg min log|{ 1+ —"———
gmi Z ~*log < =
TcwW
2
~
(Xipr — 0)
. . 47
= argmin Z log <1 + b .
TCW
Since Fig. 2. Filtering results for impulsive noise using &3 square window. (a)
R Original image. (b) Noisy image (“Salt and Pepper noise” 10%). (c) Output of
(X- _ 9)2 v the SM filter. (d) Output of the R\ filter. (e) Output of the CWNw. = 3)
lim log [ 14+ %7 —expd(X: .. — )2 filter. (f) Output of the tri-state median filter.
el S 42 p{( i+ )7}

and the exponential functioexp{-} is monotonically in- nominal model but well at an outlier, and yet, the two could
creasing, it follows that have the same mean square value.

Another important performance measure in the mean abso-
lute error obviously tends to downplay the influence of large
errors, compared with mean square error, precisely in the pres-

LC(W;) — arglrbin’rz‘; (X — 6 as vy — oo.
el

This concludes the proof using (11) and (14). B ence of heavy-tailed noise.
To assess the performance of the proposed filters, mean
VI. SIMULATION RESULTS square error (MSE) between the filtered and the original image

This section presents simulation results where the propoéﬁ&valuated to quantitatively compare the performance of these

filters are applied to enhance images corrupted by impulsi%Oposed techniques with other filtering schemes.

noise as well as-contaminated mixed noise. The performance ) ) ) )

of a filter clearly depends on the filter type and its sliding" Reélaxed Median Performance in Impulsive Noise

window size, the properties of signals/images, and the chardn order to evaluate the performance of relaxed median fil-
acteristics of the noise. The choice of criteria by which tters in the presence of heavy-tailed noise, the image shown in
measure the performance of a filter presents certain difficultidsg. 2(a) has been corrupted by “Salt and Pepper ndiseZ

In particular, it is clear that a global performance measure sughi). Fig. 2 displays the results of filtering the noisy image
as the mean square error only gives a partial picture of realishown in Fig. 2(a) by a standard median (SM) filter, a relaxed
for instance, one filter may do very well at the nominal modehedian filter (RM, ¢), a center weighted median (CWM) filter
but badly at an outlier, whereas another may do poorly at tfg with central weighto. = 3, and a tri-state median filter [21]
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TABLE |
MSEs ReSULTS FORIMPULSIVE NOISE

Filter type (3 x 3) MSE

p=01|p=015| p=02

SM 15.6750 | 28.9598 | 76.1020
RM,6 20.0122 | 85.4673 | 185.6687
CWM(w, = 3) 46.2378 | 89.1845 | 202.9764

Tri-State Median || 52.9664 | 106.7337 | 204.7532

with central weightu, = 3 and threshold” = 20. Qualitatively,
we observe that the relaxed median filter Rjs able to sup-
press impulsive noise while preserving important features int v
image. Table | compares the resulting MSE computations. *

To demonstrate the performance of the relaxed median filt
in the presence of a noisy step edge, consider a widely us o
model for the step edge, which results from the blurring of tt
ideal step edge with Gaussian point spread function. A typic
2-D step edge is given by

E(z,y) = g <1 +erf <%) +b>

wherea andb are constants, and érf is the error function.

An example of this edge is shown in Fig. 3(a). Thetable
(e = 0.8) noisy step edge is shown in Fig. 3(b). The filtering
results using the standard median, the relaxed median, ... (e)
center weighted median, and the tri-state median are illustrated

in Fig. 3. It is clear that the relaxed median filter preserves tlaeg. 3. Edge and filtering results for-stable noise. (a) Step edge. (b) Noisy

edge well while removinge-stable noise. step edged-stable noiser = 0.8). (c) Output of the SMfilter. (d) Output of the
RM, ¢ filter. (e) Output of the CWNw. = 3) filter. (f) Output of the tri-state
median filter.

B. Mean-Relaxed Median Performance in Mixed Noise

The Laplacian noise is somewhat heavier than the Gauss%nMean-LogCauchy Performance in Mixed Noise

noise. Moreover, the Laplace distribution is similar to Huber's
least favorable distribution [11] (for the no process noise case),The scale-contaminated Gaussian and Laplace distributions
at least in the tails. To demonstrate the application of mean-e¥e relatively light tailed. TheSaS distributions are very
laxed median filters to image denoising, qualitative and quankieavy-tailed noise distributions. The Cauchy distribution is a
tative comparisons are performed to show the advantage of thesamber of this family(« = 1), whose variance is infinite.
filters over existing techniques. Fig. 4(b) shows a noisy image assess the performance of Mean-LogCauchy filters in
contaminated by-contaminated mixed Gaussian white noisenixed noise, the original image in Fig. 5(a) was contaminated
N(0,100) and Laplacian white nois&(0, 400). The fraction of by both Gaussian white nois&’(0,100) and «-stable noise
contaminatior is chosen to be equal foin all the experiments. SaS(« = 0.5). The e-contaminated mixed noise corrupted
Table Il summarizes the MSEs results obtained by applying theage is shown in Fig. 5(b). The visual comparison with other
MEM, MRMy ¢, Wilcoxon, and Hodges-Lehmann filters to theéechniques is shown in Fig. 5.
noisy image with the results shown in Fig. 4. Table 1ll compares several filters quantitatively using the
Note that the MRMs filter outperforms Wilcoxon and MSE criterion. The Mean-LogCauchy filter achieves the
Hodges-Lehmann filters in reducing mixed noise, whereas thest performance. The RM outperforms Wilcoxon and
MEM filter achieves the best performance. Comparison éfodges-Lehmann in suppressing highlystable noise, that
these images clearly indicates that the MRMilter preserves is, for « € (0,1]. This substantiates our discussion about the
details well while removing mixed noise. parameterx in Section V because far € (1,2], the noise
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Fig. 4. Filtering results fore-contaminated Gaussian and Laplacian noisgig. 5.  Filtering results using acontaminated Gaussian andstable noise
using a 3x 3 square window. (a) Original image. (B)mixed noisy image: 3 x 3 square window. (a) Original image. (b)nixed noisy imageA’(0, 100)
N(0,100) and£(0,400). (c) Output of the MEM filterA = 2/(2 + 7). (d)  andS«.5. (c) Output of the MLC filters = 2/(2+ ). (d) Output of the RM

Output of the MRM ¢ filter A = 2/(2 + ). (e) Output of the Wilcoxon filter. filter. (e) Output of the Wilcoxon filter. (f) Output of the Hodges-Lehmann filter.
(f) Output of the Hodges—Lehmann filter.

TABLE I
TABLE II MSES RESULTS FORe-CONTAMINATED MIXED GAUSSIAN AND

MSES RESULTS FORe-CONTAMINATED MIXED GAUSSIAN AND a-STABLE NOISE
LAPLACIAN NOISE

Filter type (3 x 3) | MSE: (1 — €)A(0, 100) + ¢(SaS)

Filter type (3 x 3) | MSE: (1 — €)N(0,100) + e£(0, 02
ye { ) (-9t )+ e£00,0%) a=05|a=12 a=17

02 =100 | o2 =200 | 0% =400

MLCi (A=33) [ 65.2731 | 50.7154 | 49.0220

MEM (A= 2%”) 184.4266 | 191.8701 | 207.0494 RM 68.8093 | 575971 | 56.6970
46 . . .

MRMys (A = 52 [ 185.4029 | 193.4539 | 209.4939

Wilcoxon 395.6731 | 53.3316 | 52.6859

Wilcoxon 214.4146 | 216.6895 | 225.0940

Hodges-Lehmann | 405.7872 | 54.2273 | 53.6443

Hodges-Lehmann || 223.8270 | 226.6227 | 233.7648

D. Influence of the Parameters on the Proposed Filters

distribution is approximately a Gaussian mixture, and there-The high sensitivity of many specific filters to an accurate
fore, the relaxed median filter is not very effective in removinghodeling of noise that is to be removed led us to investigate the
Gaussian noise compared with Wilcoxon and Hodges-Lehmapmoposed new techniques that include a number of filters whose
filters. optimality, when given a specific noise distribution, is attained
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— MEM

- - MAM,
+=" Wilcoxon
4= Hodges-Lehmann

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

Fig. 6. Influence of the contamination fractienon filtering performance:
MSE versuse. (a) Gaussian and Laplacian noise. (b) Gaussiancassthble
noise.

(9]

(10]

by merely adjusting or optimizing the parameke©On the other
hand, the filtering performance is also sensitive to the fractiont™!
of contaminatione. Whene = 0, the mixed noise is purely
Gaussian, and when= 1, it is purely Laplacian. Fig. 6 shows [12]
the influence of the parameteren the filtering performance. [13]
[14]

[15]

VIl. CONCLUSION [16]

Convex combinations of filtering methods using the meany;
the relaxed median, and the LogCauchy filters were proposed.
Some deterministic and statistical properties were studied, and
the asymptotic analysis of the mean-median filter was per-
formed. The decrease of the lower bound of the mean-relaxed
median filter yields better detail preservation at a cost of &1l
reduction in its noise reduction performance. It was shown tthO]
the proposed schemes are efficient in suppressing heavy-tailed
as well as mixed noise, compared with other filtering tech-

: ; -~ [21]
niques. In future work, we plan on extending the theoretlca[
and experimental results to nonrecursive and weighted filtering

3053

techniques, as well as on optimizing the performance of these
filters by selecting their optimal parameters. The results will be
reported elsewhere.

ACKNOWLEDGMENT

The authors would like to thank Dr. I. Shick for many fruitful
comments regarding this work. The authors would also like to
acknowledge the associate editor and the anonymous reviewers
for helpful and constructive comments.

REFERENCES

J. Astola and P. KuosmaneRundamentals of Nonlinear Digital Fil-
tering. Boca Raton, FL: CRC, 1997.

P. D. Wendt, E. J. Coyle, and N. C. Gallagher, “Stack filtel&EE
Trans. Acoust., Speech, Signal Processimd ASSP-34, pp. 898-919,
Aug. 1986.

G. R. Arce and R. E. Foster, “Detail preserving ranked-order based filters
forimage processingJEEE Trans. Acoust., Speech, Signal Processing
vol. 37, pp. 83-98, Jan. 1989.

R. Yang, L. Yin, M. Gabbouj, J. Astola, and Y. Neuvo, “Optimal
weighted median filters under structural constraind§EE Trans.
Signal Processingvol. 43, pp. 591-604, Mar. 1995.

R. C. Hardie and K. E. Barner, “Rank conditioned rank selection fil-
ters for signal restorationfEEE Trans. Image Processingol. 3, pp.
192-206, Mar. 1994.

A. Ben Hamza, P. Luque, J. Martinez, and R. Roman, “Removing noise
and preserving details with relaxed median filtety, Math. Imag. Vi-
sion vol. 11, no. 2, pp. 161-177, Oct. 1999.

M. Shao and C. L. Nikias, “Signal processing with fractional lower order
moments: Stable processes and their applicatidh®¢. IEEE vol. 81,

pp. 986-1010, July 1993.

S. Ambike and D. Hatzinakos, “A new filter for highly impulsive
«a-stable noise,” inProc. Int. Workshop Nonlinear Signal Image
Process. Greece, 1995.

J. B. Bednar and T. L. Watt, “Alpha-trimmed means and their relation-
ships to median filters [EEE Trans. Acoust., Speech, Signal Processing
vol. ASSP-32, pp. 145-153, Feb. 1987.

H. Krim, D. Tucker, S. Mallat, and D. Donoho, “On denoising and
best signal representationEEE Trans. Inform. Theoryol. 45, pp.
2225-2238, Nov. 1999.

H. Krim and I. C. Schick, “Minimax description length for signal de-
noising and optimized representatiolEEE Trans. Inform. Theoryol.

45, pp. 898-908, Apr. 1999.

P. Huber, “Robust estimation of a location parameta&ni. Math. Staf.

vol. 35, pp. 1753-1758, 1964.

——, Robust Statistics New York: Wiley, 1981.

L. A. Jaeckel, “Robust estimates of location: symmetry and assymetry
contamination,”Ann. Math. Stat.vol. 42, no. 3, pp. 1020-1034, 1971.

J. R. Collins, “Robust estimation of a location parameter in the presence
of assymetry,”Ann. Math. Stat.no. 4, pp. 68-85, 1976.

A. C. Bovik, T. S. Huang, and D. C. Munson, “A generalization of me-
dian filtering using linear order statisticdEEE Trans. Acoust., Speech,
Signal Processingvol. ASSP-31, pp. 1342-1350, Dec. 1983.

D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, “Adaptive noise
smoothing filter for images with signal-dependent noisEEE Trans.
Pattern Anal. Machine Intellvol. PAMI7, pp. 165-177, Mar. 1985.

] E. E. Kuruoglu, C. Molina, S. J. Gosdill, and W. J. Fitzgerald, “A new

analytic representation of the-stable density function,” iffroc. Amer.
Stat. S0¢.1997.

F. Steiner,The Most Frequent Value Budapest, Hungary: Akademiai
Kiado, 1991.

J. G. Gonzalez and G. R. Arce, “Optimality of the myriad filter in prac-
tical impulsive-noise environments|EEE Trans. Signal Processing
vol. 49, pp. 438-441, Feb. 2001.

T. Chen, K. K. Ma, and L. H. Chen, “Tri-state median filter for image
denoising,”|EEE Trans. Image Processingpl. 8, pp. 1834-1838, Dec.
1999.



3054 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 12, DECEMBER 2001

A. Ben Hamzareceived the doctorate degree in applied mathematics from thlamid Krim (M’'80-SM’98) received all his degrees in electrical engineering.
University of Granada, Grenada, Spain. He is currently pursuing the Ph.D. deAs a Member of Technical Staff at AT&T Bell Labs, Murray Hill, NJ, he
gree in electrical engineering at North Carolina State University, Raleigh (N@s worked in the areas of telephony and digital communication systems/sub-
State). systems. Following an NSF postdoctoral fellowship at Foreign Centers of Ex-
From March 2000 to February 2001, he was a Research Associate with Dellence, LSS/University of Orsay, Paris, France, he became a Research Sci-
partment of Elecrtical and Computer Engineering, NC State. His research intentist at the Laboratory for Information and Decision Systems, Massachusetts
ests include nonlinear probabilistic and variational filtering, information-thednstitute of Technology, Cambridge, performing and supervising research. He is
retic measures, and applied differential geometry and topology. presently on the faculty in the ECE Department of Electrical and Computer En-
gineering, North Carolina State University, Raleigh. His research interests are
in statistical signal and image analysis and mathematical modeling with a keen
emphasis on applied problems.



