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Regularized Discriminant Analysis 
JEROME H. FRIEDMAN* 

Linear and quadratic discriminant analysis are considered in the small-sample, high-dimensional setting. Alternatives to the 
usual maximum likelihood (plug-in) estimates for the covariance matrices are proposed. These alternatives are characterized 
by two parameters, the values of which are customized to individual situations by jointly minimizing a sample-based estimate 
of future misclassification risk. Computationally fast implementations are presented, and the efficacy of the approach is examined 
through simulation studies and application to data. These studies indicate that in many circumstances dramatic gains in 
classification accuracy can be achieved. 

1. CLASSIFICATION 
The formal purpose of classification or discriminant 

analysis is to assign objects to one of several (K) groups 
or classes based on a set of measurements X = (X1, X2, 
. . . , Xp) obtained from each object or observation. Clas- 
sification techniques are also used informally to study the 
separability of labeled groups of observations in the mea- 
surement space. In the formal setting, an object is assumed 
to be a member of one (and only one) class and an error 
is incurred if it is assigned to a different one. The cost or 
loss associated with such an error is defined as 

L(k, k), 1 ' k, k ' KK (1) 
where k is the correct group on class assignment and k is 
the assignment that was actually made [L(k, k) is usually 
taken to be 0 and L(k, k) > O]. 

The vector-valued measurements associated with all of 
the members of each class k (population) are seldom iden- 
tical but compose a distribution of values characterized by 
a probability density fk(X). The usual goal is to minimize 
the misclassification risk, which is defined as the expected 
misclassification loss [Eq. (1)] over the sample to be clas- 
sified. If the class conditional densities fk(X) are known, 
then it is possible to calculate misclassification risk and 
derive an assignment or classification rule to minimize it. 
The risk (expected loss) incurred in classifying an object 
with measurement vector X as k is 

R k I=l L(k, k)fk(X) 7k 
R(k |IX) = fk(X) rk , (2) 

where 7tk iS the unconditional prior probability of observing 
a class k member. This can be minimized by choosing 
k to minimize the numerator in Equation (2). For the 
special but commonly occurring case 

L(k, k) = 1 - 6(k, k), (3) 
this reduces to the following simple rule: Choose k such 
that 

fk(X)JCk = max fk(X)7tk. (4) 

The loss matrix [Eq. (3)] assigns a loss of one unit for each 
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mistake, irrespective of its type. The misclassification risk 
is then just the fraction of assignments that are incorrect., 
The rule resulting from choosing k to minimize R ( I X) 
[Eq. (2) or (4)] is known as the Bayes rule, and it achieves 
minimal misclassification risk among all possible rules. 

The class conditional densities fk(X) are seldom known. 
More often we are able to obtain a sample of observations 
from each class that are correctly classified by some ex- 
ternal mechanism. The objective is to use these observa- 
tions as a training sample to construct a classification rule 
by obtaining suitable estimates of the fk(X). Since these 
estimates generally deviate from the true population den- 
sities, such a rule will not likely achieve minimal risk, 
except perhaps asymptotically. Sometimes the uncondi- 
tional class (prior) probabilities are also unknown. If the 
pooled (over classes) training data can be regarded as a 
random sample from the pooled population distribution, 
then the prior probabilities can be estimated by the frac- 
tion of each class in the pooled sample 

7tk = WkIW, (5) 

with 
Wk= 2 Wv (6a) 

c(v)=k 

and 
K 

W= E Wk- (6b) 
k=1 

Here v labels the observations in the training sample, c(v) 
is the class of the vth observation, and wv is a weight or 
mass assigned to each observation. 

2. LINEAR AND QUADRATIC 
DISCRIMINANT ANALYSIS 

The most often applied classification rules are based on 
the normal distribution 

fk(X) = 

(27r)P'211k1-112 exp[-1/2(X - Pk) k (X Pk)], (7) 

where Pk and Ik are the class k (1 < k < K) population 
mean vector and covariance matrix. Assuming the simple 
loss structure [Eq. (3)] and substituting Equation (7) into 
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Equation (4) leads to the classification rule 

dk(X) = min dk(X), (8) 
l1k-K 

with 

dk(X) = (X - Pk) >k(X - Pk) + lnlkI- 2 ln ik. 

(9) 
This quantity is often called the discriminant score for the 
kth class, whereas dk(X) + 2 ln TCk is referred to as the 
discriminant function. The first term on the right side of 
Equation (9) is the well-known Mahalanobis distance be- 
tween X and 1k* 

Using the classification rule [Eqs. (8) and (9)] is called 
quadratic discriminant analysis (QDA), since it separates 
the disjoint regions of the measurement space correspond- 
ing to each class assignment by quadratic boundaries. An 
important special case occurs when all of the class co- 
variance matrices are presumed to be identical: 

Y-k -, l'!5k'-<K. (10) 
This is referred to as linear discriminant analysis (LDA) 
because the quadratic terms associated with Equations (8) 
and (9) cancel, resulting in linear decision boundaries. 

Quadratic and linear discriminant analysis can be ex- 
pected to work well if the class conditional densities are 
approximately normal and good estimates (for classifica- 
tion purposes) can be obtained for the population param- 
eters defining the distributions (class mean vectors P k and 
covariance matrices 1k). In the classification context the 
ellipsoidal symmetry associated with the normal distri- 
bution appears to be the important aspect rather than its 
detailed shape (see James 1985; Lachenbruch 1975). Clas- 
sification rules based on QDA are known to require gen- 
erally larger samples than those based on LDA (Wald and 
Kronmal 1977) and seem to be more sensitive to violations 
of the basic assumptions. 

In most applications of linear and quadratic discriminant 
analysis the parameters associated with the class densities 
are estimated by their sample analogs 

Pk = Xk W c wvxv (11) 
Wk c(v)=k' 

and 

Y_ k 
I 

k wv(Xv 
- Xk)(X. - Xk), (12) 

Wk Wk c(v) =k 

with Wk given by Equation (6a). These so-called "plug- 
in" estimates are straightforward to compute and repre- 
sent the corresponding maximum likelihood estimates. 
(Often the covariance matrix estimates are scaled by a 
factor to remove bias.) Although seemingly reasonable, 
this approach can be justified only on intuitive grounds, 
and it enjoys no optimality properties (except asymptot- 
ically) even when the population distributions are normal 
(Anderson 1958). Also, any sensible Bayesian rule will 
not lead to this approach, except either asymptotically or 
under very restrictive conditions (Enis and Geisser 1974). 

When the class sample sizes Nk (1 c k c K) are small 
compared with the dimension of the measurement space 
p, the covariance matrix estimates, especially, become 
highly variable. Moreover, when Nk < p not all of their 
parameters are even identifiable. The effect this has on 
discriminant analysis can be seen by representing the class 
covariance matrices by their spectral decompositions 

p 
kVT Xk = eikViikvk 

i=1 

where eik is the ith eigenvalue of Ik (ordered in decreasing 
value) and Vik is the corresponding eigenvector. The in- 
verse in this representation is 

P T 
I 1= E VikVik 

i=1 eik 

and the discriminant score [Eq. (9)] becomes 
P [VT(X - IL) 

d 
ick(x PF) + ln eik - 2 ln 7rk (13) 

i=l eik i=l 

The discriminant score [Eq. (13)] is heavily weighted by 
the smallest eigenvalues and the directions associated with 
their eigenvectors. When sample-based plug-in estimates 
are used, this becomes the eigenvalues and eigenvectors 
Of Ik [Eq. (12)]. 

It is well known that the estimates based on Equation 
(12) produce biased estimates of the eigenvalues; the larg- 
est ones are biased high and the smallest ones are biased 
toward values that are too low. This bias is most pro- 
nounced when the population eigenvalues tend toward 
equality, and it is correspondingly less severe when their 
values are highly disparate. In all cases, this phenomenon 
becomes more pronounced as the sample size decreases. 
When Nk < p the sample covariance matrix is singular 
with rank < Nk and the smallest p - Nk + 1 eigenvalues 
are estimated to be 0. The corresponding eigenvectors are 
then arbitrary, subject perhaps to orthogonality con- 
straints. 

The net effect of this biasing phenomenon on discrim- 
inant analysis is to (sometimes dramatically) exaggerate 
the importance associated with the low-variance subspace 
spanned by the eigenvectors corresponding to the smallest 
sample eigenvalues. Therefore, most of the variance in- 
curred in estimating the discriminant scores [Eqs. (9) and 
(13)] is associated with directions of low sample variance 
in the measurement space. 

3. REGULARIZATION AND SHRINKAGE 
One way to attempt to mitigate this problem is to try 

to obtain more reliable estimates of the eigenvalues by 
correcting the eigenvalue distortion in the sample covari- 
ance matrix. James and Stein (1961), Stein, Efron, and 
Morris (1972), Stein (1973, 1975), Efron and Morris 
(1976), 01ki and Sellian (1977), Haff (1980), Lin and 
Perlman (1984), Takemura (1984), and Dey and Srmiva- 
san (1985) studied this approach by seeking estimates that 
minimize particular loss criteria (often some form of 
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squared-error loss) on the eigenvalue estimates. None of 
these loss criteria that have been studied, however, is re- 
lated to misclassification risk of a discriminant function. 
Also, they nearly all require that lk be nonsingular. 

Another approach is to employ a regularization method. 
Regularization techniques have been highly successful in 
the solution of ill- and poorly-posed inverse problems. [See 
Titterington (1985) and O'Sullivan (1986) for reviews.] 
Roughly, a problem is poorly posed if the number of pa- 
rameters to be estimated is comparable to the number of 
observations and ill-posed if that number exceeds the sam- 
ple size. In these cases the parameter estimates can be 
highly unstable, giving rise to high variance. By employing 
a method of regularization, one attempts to improve the 
estimates by biasing them away from their sample-based 
values toward values that are deemed to be more "phys- 
ically plausible." [Cornfield (1967) suggested applying 
James-Stein shrinkage to the individual class location es- 
timates.] Regularization reduces the variance associated 
with the sample-based estimate at the expense of po- 
tentially increased bias. This bias variance trade-off is 
generally regulated by one or more (degree-of-belief) 
parameters that control the strength of the biasing toward 
the "plausible" set of (population) parameter values. For 
given value(s) of the regularization parameter(s), the in- 
crease in bias will depend on how closely the plausible set 
of parameters actually represents those parameters of the 
population. Therefore, if a bad guess were made, one 
would like to employ a small amount of regularization, 
whereas for a good guess, a high degree of regularization 
would be appropriate, dramatically decreasing the vari- 
ance at the expense of low increase in bias. Since one 
seldom knows the accuracy of the guess, sample-based 
methods are often used to try to estimate values for the 
regularization parameters as well. 

Quadratic discriminant analysis is clearly ill-posed if Nk 

c p for any class, and poorly posed whenever Nk is not 
considerably larger than p. One method of regularization 
that is routinely applied in discriminant analysis is to re- 
place the individual class sample covariance matrices by 
their average 

A A 

k= = S/W, (14) 

where 
K 

S = Sk, (15) 
k=1 

with W given by Equation (6b) and Sk by Equation (12). 
This applies a considerable degree of regularization by 
substantially reducing the number of parameters to be 
estimated. Even if the population class covariance matrices 
are substantially different, the decrease in variance ac- 
complished by using the pooled covariance estimate can 
sometimes lead to superior performance, especially in 
small-sample settings. This is a large part of the reason 
for the success and popularity of linear discriminant anal- 
yi. 
The choice between linear and quadratic discriminant 

analysis represents a fairly restrictive set of regularization 
alternatives. A less limited set of alternatives is repre- 
sented by 

A 

k( A) = SkJi)IWk(i), (16a) 
where 

Sk(A) = (1 - A)Sk + AS (16b) 

and 

Wk(A) = (1 - )Wk + A)W, (16c) 

with Sk given by Equation (12), S by Equation (15), and 
Wk and W by Equations (6). The regularization parameter 
A takes on values 0 ? A < 1. It controls the degree of 
shrinkage of the individual class covariance matrix esti- 
mates toward the pooled estimate. The value A = 0 gives 
rise to QDA, whereas A = 1 yields LDA. Values between 
these limits represent degrees of regularization less severe 
than LDA. Since it is often the case that even small 
amounts of regularization can largely eliminate quite dras- 
tic instability (Titterington 1985), smaller values of A 
(smaller than 1) have the potential of superior perform- 
ance when the population class covariance matrices sub- 
stantially differ. 

The regularization provided by Equations (16) is still 
fairly limited and is not the only natural way to regularize 
QDA. First, it might not provide for enough regulariza- 
tion. If the total sample size 

K 

N- Nk (17) 
k=1 

is less than or comparable to p, then even LDA is ill- or 
poorly-posed. Second, biasing the sample class covariance 
matrices toward commonality may not be the most effec- 
tive way to shrink them. For example, if the population 
class covariance matrices were all (quite different) mul- 
tiples of the identity matrix, then shrinkage toward LDA 
would introduce severe bias, whereas shrinking each sam- 
ple class covariance matrix toward the identity matrix mul- 
tiplied by its average eigenvalue [tr(lk)Ip] would intro- 
duce almost no bias. Ridge regression regularizes ordinary 
linear least squares regression by shrinking toward a mul- 
tiple of the identity matrix. 

To these ends we further regularize the sample class 
covariance matrix estimates beyond that provided by 
Equations (16) through 

Zk(A, y) = (1 - Y)Yk(A) + -tr [k(A)]I, (18) 

with lk(A) given by Equations (16) and Ibeing the identity 
matrix. For a given value of A, the additional regularization 
parameter y (0 < y c 1) controls shrinkage toward a mul- 
tiple of the identity matrix. The multiplier is just the av- 
erage eigenvalue of lk(A). This shrinkage has the effect 
of decreasing the larger eigenvalues and increasing the 
smaller ones, thereby counteracting the biasing inherent 
in sample-based estimation of eigenvalues. 

Equations (16) and (18) represent a two-parameter fain- 
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ily of regularized sample class covariance matrix esti- 
mators, to be used with the class discriminant scores 

_ A_ 

dk(X) = (X - Xk)T Y4(k, y)(X - Xk) 

+ lnlIk(, y)J - 2 ln 7tk, (19) 

to perform discriminant analysis. Values for the two reg- 
ularization parameters, 0 c A c 1 and 0 c y < 1, are 
chosen to minimize jointly an unbiased estimate of future 
misclassification risk (see Sec. 4). We refer to this ap- 
proach as regularized discriminant analysis (RDA). 

Regularized discriminant analysis provides for a fairly 
rich class of regularization alternatives. The four corners 
defining the extremes of the A, y plane represent fairly 
well-known classification procedures. The lower left cor- 
ner (A - 0, y = 0) represents QDA. The lower right (A 
= 1, y = 0) represents LDA. The upper right corner (A 
= 1, y = 1) corresponds to the nearest-means classifier 
well known in pattern recognition; an observation is as- 
signed to the class with the closest (Euclidean distance) 
mean. The upper left corner of the plane represents a 
weighted nearest-means classifier, with the class weights 
inversely proportional to the average variance of the mea- 
surement variables within the class. Holding y fixed at 0 
and varying A produces models between QDA and LDA. 
Holding A fixed at 0 and increasing y attempts to unbias 
the sample-based eigenvalue estimates. Holding A fixed at 
1 and increasing y gives rise to a ridge-regression analog 
for LDA. 

4. MODEL SELECTION 

A good pair of values for A and y is not likely to be 
known in advance. We must, therefore, have a (training) 
sample-based method to estimate them. This is a common 
objective associated with methods of regularization. For 
classification, two sample reuse methods, cross-validation 
(Geisser 1977; Lachenbruch 1975) and bootstrapping (Ef- 
ron 1983), have been suggested. The computational ad- 
vantages associated with the cross-validation approach in 
the particular application of this section make it the most 
attractive choice here. The basic idea of cross-validation 
is to obtain a (nearly) unbiased estimate of the future 
prediction error associated with a particular observation 
Xv by removing it from the model-building process. That 
is, the classification rule is developed on the N - 1 training 
observations exclusive of Xv and then used to classify Xv. 
Each of the training observations is in turn held out and 
then classified in this manner. The resulting misclassifi- 
cation loss averaged over the training sample is then used 
as an estimate of future misclassification risk. 

Our approach to model selection is to choose values of 
the covariance-matrix mixing parameter A and the eigen- 
value shrinkage parameter y that jointly minimize this 
cross-validated estimate of future misclassification risk. 
This gives rise to a two-parameter numerical minimization 
problem. Our strategy is to choose a grid of points on the 
i., y plane (0 c 2i c 1, 0 c y c 1), evaluate the cross- 
validated estimate of misclassification risk at each pre- 
scribed point on the grid, and then choose the point with 
the smallest estimated risk as oulr estimate for the optimal 

regularization parameter values, A and y. Typically, the 
size of the optimization grid Np is taken to be from 25 to 
50 points. 

This strategy, if implemented in a straightforward man- 
ner, would require excessive computation. At each grid 
point, N [Eq. (17)] sets of discriminant scores [Eq. (19)] 
would have to be calculated. Thus the increase in com- 
putation for the entire procedure would be Np x N times 
the computation required for a single discriminant anal- 
ysis. Fortunately, however, it is possible to develop a strat- 
egy based on matrix updating formulas to reduce dra- 
matically this computational burden and bring it to an 
acceptable level. 

To apply cross-validation it is necessary to compute the 
K discriminant scores [Eq. (19)] with the observation to 
be classified (say Xv) left out: 

_ A_ 

dk\v(Xv) = (XV - Xk\v) Tk\v(A Y)(XV -Xk\v) 

+ ln Ilk\v(A, Y)| - 2 ln 7JIk. (20) 

Here the notation \v refers to the corresponding quantity 
computed with the vth observation removed. One could 
simply recompute the quantities involved from scratch, 
using the N - 1 observations exclusive of Xv. As already 
indicated, however, this results in excessive total com- 
putation. In the case of linear and quadratic discriminant 
analysis advantage can be taken of the fact that a covari- 
ance matrix with an observation removed differs from the 
complete covariance matrix by a rank-one matrix. One 
can then express the covariance matrices through their 
Cholesky decompositions and take advantage of fast rank- 
one down-dating formulas to compute dk\v [Eq. (20)] from 
dk [Eq. (19)] (see Golub and Van Loan 1983). 

Unfortunately, removing an observation does not result 
in a rank-one down-date of Yk(A, y) [Eqs. (16) and (18)]. 
It can be shown that 

A A 

Wk\v(A) Yk\v(Al Y) = Wk(;) lk(Aq Y) 

- (1 - y) ZUZvT - 
Y 

IZV12I, (21a) 

with Wk(;) given by Equation (16c), and 

Wk\v(A) = Wk) - Sk(V)Wv, (21b) 

Sk(V) = 1 if c(v) = k 

- A otherwise, (21c) 

Zv = \7(iV(Xv - Xc(v)) (21d) 
and 

bk(V) = Sk(V)WC(v)WvI(Wc(v) - wv). (21e) 

Thus, removing an observation is equivalent to down-dat- 
ing 14A, y) by a rank-one matrix plus a multiple of the 
identity matrix. The only matrix representation for which 
it is easy to obtain the inverse of a matrix down-dated by 
a multiple of I, from its original inverse, is the spectral 
decomposition 

W,j1() >,-l, y) = E v1v[ (22a) 
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Then 

[Wk(i).)Yk(;, y) - al]-l = v , (22b) 
j=1 ei - a 

where ei is the ith eigenvalue of Wk(;) lk(A, Y), Vi iS its 
corresponding eigenvector, and a is a real-valued scalar. 
Once this down-date has been performed, the remaining 
rank-one down-date can be accomplished through the 
Sherman-Morrison formula (Golub and Van Loan 1983): 

(A - rrT)-1 = A-' + A- rfTA-l (23) 

where A is a nonsingular matrix and r is a vector. In our 
case A- is given by Equations (22) with 

a = ylZV12/p (24a) 
and 

r = x/Y'7zv, (24b) 
with Zv given by Equations (21). 

In addition to the down-dated inverse class covariance 
matrix, we still need to down-date its determinant and the 
class mean vector to obtain the down-dated discriminant 
score [Eq. (20)]. It is easily verified that 

Xk\v = Xk if c(v) #A k 

WkXk - WX WkXk -VV otherwise (25) 
Wk - WV 

and 

InjWk\v(A)Y,k\v(A9 y)j 

p p~F r,21 
- >E ln(ei - a) +ln[1- E , (26) 

i=1 L i~~~~j1 ei - a 

with ei given by Equations (22) and a and r given by Equa- 
tions (24). 

These quantities [Eqs. (21)-(26)] can be substituted into 
Equation (20) to obtain the K-class cross-validated dis- 
criminant scores with computation proportional to p2 for 
each observation. The corresponding average misclassifi- 
cation loss over the training sample using these cross-val- 
idated scores is then taken to be an estimate of the future 
misclassification risk for the corresponding values of A 
and y. 

A substantial amount of additional computation can be 
saved by taking advantage of the fact that for a fixed value 
of A the eigenvectors vi [Eq. (22a)] are independent of y. 
Changing y is equivalent to an update by a multiple of the 
identity matrix. Thus the K spectral decompositions and 
the corresponding rotations vik(Xv - Xk)(l < i C p, 1 c 
k c K, 1 c v c N) need only be recalculated when the 
value of A changes. For each distinct value of A on the 
optimization grid, the set of points corresponding to dif- 
ferent values of y can each be cross-validated in time pro- 
portional to pN. Therefore, the grid points should be 
visited in an order that causes iL to change as few times as 
possible. 

5. DISCUSSION 

The potential for RDA to improve misclassification risk 
over that of QDA or LDA will depend on the situation 
(class population distributions and sample size). In situ- 
ations for which the class sample sizes Nk are all much 
larger than the dimension of the measurement space p, no 
regularization is needed and the model-selection proce- 
dure should tend to produce small values of A and y. The 
estimates of the optimal regularization parameters them- 
selves have an associated bias and variance, however, so 
one would expect the performance of RDA to be slightly 
worse than QDA. In these large-sample settings, however, 
one might question the use of procedures based on nor- 
niality and favor more nonparametrically oriented meth- 
ods such as nearest neighbors (see Lachenbruch 1975) or 
recursive partitioning (Breiman, Friedman, Olshen, and 
Stone 1983). 

In small-sample settings where QDA is either ill- or 
poorly-posed, it is not likely to be competitive with either 
LDA or RDA. Situations in.which the population class 
covariance matrices are either very different and/or not 
too ellipsoidal should favor RDA. (Note that in these 
settings the sample class covariance matrices are nearly 
always highly ellipsoidal.) 

Another situation that favors RDA is when the (stan- 
dardized) differences between the class means project 
mainly on the high-variance subspaces. The most difficult 
situation for RDA is when the population class covariance 
matrices are all equal and highly ellipsoidal and the dif- 
ferences between the class means project mostly on the 
low-variance subspace. In this case any regularization 
away from LDA (A = 1, y = 0) will be highly counter- 
productive. Again, owing to the bias and variance asso- 
ciated with the regularization parameter estimates, RDA 
should be slightly worse than LDA. When the sample size 
is small enough so that even LDA is ill- or poorly-posed, 
in any situation the regularization afforded by RDA is the 
only hope. 

It is the goal of the model-selection procedure to pick 
appropriate values for the regularization parameters for 
each particular situation. For those that are favorable to 
RDA the procedure should choose a high degree of reg- 
ularization substantially reducing the variance while intro- 
ducing little extra bias, thereby dramatically reducing mis- 
classification risk. On the other hand, when the situation 
is unfavorable to RDA, the hope is that the model-selec- 
tion procedure will (on average) produce a small degree 
of regularization so that the performance of RDA will be 
only slightly worse than that of LDA or QDA. All of this 
depends, of course, on the performance of the model- 
selection procedure. This is investigated in the next sec- 
tion. 

6. SIMULATION STUDIES 

In this section we use computer simulation to investigate 
the performance of RDA compared with LDA and QDA 
in a variety of settings (class population distributions and 
ratios of variables to observations). The goal is to study 
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the overall effectiveness of RDA and to identify some 
situations where one would (and would not) expect sub- 
stantial improvement with RDA. In all cases the popu- 
lation class conditional distributions were normal [Eq. (7)] 
and the total sample size was N = 40 [Eq. (17)]. A fairly 
wide spectrum of situations was chosen in terms of the 
mean and covariance structure of the class populations, 
some of which would be suspected to be highly favorable, 
and others highly unfavorable, to RDA. For each situa- 
tion, simulation experiments were performed for p = 6, 
10, 20, and 40. In all cases there were K = 3 groups or 
classes. The optimization grid of (A, y) values was defined 
by the outer product of ) = (0, .125, .354, .650, 1.0) and 
y = (0, .25, .5, .75, 1.0). (When the class covariance matrix 
estimates associated with QDA or LDA happened to be 
singular, the zero eigenvalues were replaced with a small 
number just large enough to permit numerically stable 
inversion. This has the effect of producing a classification 
rule based on Euclidean distance in the zero-variance sub- 
space.) 

Each experiment consisted of 100 replications of the 
following procedure. First, N = 40 class identity labels 
were randomly drawn. Then, conditioned on each label, 
measurement vectors were drawn from the appropriate 
class distribution. The prior probability of each of the three 
classes was taken to be equal so that the expected number 
of observations in each class was 13.3; however, the actual 
number in any particular replication was itself a (multi- 
nomial) random variable. Each such training data set was 
used to construct the linear, quadratic, and estimated op- 
timal regularized discriminant rules. An additional (test) 
data set of size N = 100 was then randomly generated 
from the same population and classified with the three 
rules derived from the training set, thereby obtaining an 
estimate of the misclassification risk, using the misclassi- 
fication loss given by Equation (3). 

Tables 1-6, summarizing the results for each situation, 
present the average test misclassification risk (with stan- 
dard deviations) over the 100 replications for each of the 
three classification rules. Also presented are the average 
(minimizing) cross-validated estimate for the RDA rule, 
its correlation with the actual test-set estimate for the 
RDA rule, and the mean and standard deviations of the 
selected regularization parameter (l, ') values over the 
100 replications. 

6.1 Equal Spherical Covariance Matrices 

This is a situation that might somewhat favor RDA. 
lEach of the three classes was generated from a population 
with the identity covariance matrix. The population mean 
of the first class was the origin. The means of the other 
two classes were taken to be 3.0 in two orthogonal direc- 
tions. Table 1 summarizes the results. 

The quantities in parentheses are the standard devia- 
tions of the respective quantities over the 100 replications. 
The standard deviations of the corresponding averages are 
one-tenth these amounts. 

As suspected, RDA gives a uniformly lower misclas- 

Table 1. Equal Spherical Covariance Matrices 

P = 6 p = 10 p = 20 p = 40 

Misclassification risk 
RDA .11 (.03) .12 (.04) .16 (.05) .19 (.05) 
LDA .13 (.04) .16 (.05) .26 (.05) .58 (.08) 
ODA .26 (.08) .49 (.10) .57 (.07) .49 (.06) 

Minimizing cross-validated 
estimate for RDA .09 (.05) .10 (.05) .12 (.06) .15 (.06) 

Correlation 
(test set, cross-validation) - .1 1 - .10 .17 .15 

Average regularization 
parameter values 

A .77 (.37) .79 (.35) .75 (.37) .78 (.34) 
.74 (.34) .72 (.32) .74 (.28) .80 (.22) 

sification risk than LDA or QDA. As the dimension of. 
the measurement space increases (relative to sample size) 
its advantage increases, becoming dramatic for the higher 
dimensionalities. (Note that the risk estimates for the three 
methods are not independent when studying uncertainty 
estimates.) The cross-validated estimate of RDA risk at 
its minimum is seen to underestimate the actual risk by 
about 20% on average. The correlation between them is 
seen to be surprisingly small. As would be hoped, RDA 
is choosing a high degree of regularization for both A and 
y on average. 

6.2 Unequal Spherical Covariance Matrices 

This situation should favor RDA even more than the 
previous example because, unlike the previous one, here 
LDA is biased. Each of the three classes was generated 
with covariance matrix kI, where k is the class number (1 
< k < 3). As before, the population mean for the first 
class is at the origin; the means for classes 2 and 3 are 
shifted in orthogonal directions, class 2 by a distance of 
3.0 and class 3 by a distance of 4.0. Table 2 summarizes 
the results. As conjectured, RDA strongly dominates with 
a smaller risk at all dimensionalities, the relative improve- 
ment again increasing with dimension. The cross-validated 
estimate for RDA is, as before, about 20% below its actual 
risk and essentially uncorrelated with it. The model-se- 
lection procedure behaved quite reasonably, choosing 
small values of the covariance matrix mixing parameter ) 
and very large values for the eigenvalue shrinkage param- 
eter y. 

Table 2. Unequal Spherical Covariance Matrices 

P = 6 p = 10 p = 20 p = 40 

Misclassification risk 
RDA .17 (.04) .13 (.05) .10 (.05) .05 (.04) 
LDA .29 (.06) .32 (.06) .41 (.07) .59 (.07) 
QDA .33 (.07) .53 (.09) .60 (.07) .53 (.06) 

Minimizing cross-validated 
estimate for RDA .14 (.05) .11 (.04) .07 (.04) .04 (.03) 
Correlation 
(test set, cross-validation) -.03 .05 .05 .08 
Average regularization 
parameter values 

A ~~~~~~.10 (.13) .06 (.12) .04 (.08) .04 (.03) 
y ~~~~~.81 (.26) .88 (.20) .93 (.16) .97 (.11) 
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6.3 Equal Highly Ellipsoidal 
Covariance Matrices 

Here we consider two situations that ought to prove 
difficult for RDA. The covariance matrices of all three 
class populations are the same and highly ellipsoidal. The 
first case is constructed so that the location differences 
between the classes are concentrated in the low-variance 
subspace, whereas in the second they are concentrated in 
the high-variance subspace. The eigenvalues of the com- 
mon population covariance matrices are given by 

ei = [9(i - 1)I(p - 1) + 1]2, 1 c i c p, (27) 
so the ratio of the largest to smallest eigenvalues is 100. 

We first consider the case where the class mean differ- 
ences project mainly on the low-variance subspace. This 
represents the most difficult problem from the point of 
view of RDA. The mean of the first class is again located 
at the origin. The mean vectors for the class 2 and class 3 
populations in terms of the population eigenvectors are 

P2i = 2.5 elpP -'i 

and 

93i = (-1)92iq 1 p i p 

with ei given by Equation (27). The results are given in 
Table 3. 

Linear discriminant analysis performs slightly better in 
all but the highest dimension, where no method does par- 
ticularly well. This situation, as constructed, is ideal for 
LDA, since any shrinkage away from the point (A = 1, y 
- 0) is strongly counterproductive. The regularization pa- 
rameter values selected by the cross-validation procedure 
are seen to be concentrated in this corner of the A, y plane. 
Note the increase in y as the dimension increases. At the 
highest dimensions considerable shrinkage is needed to 
damp the variance even though this introduces substantial 
bias. Overall, the average increased loss in using RDA in 
this most unfavorable circumstance is slight. 

We next modify this problem slightly. The same (un- 
favorable) covariance structure [Eq. (27)] is used for each 
class population, but the mean differences are concen- 
trated in the high-variance subspace. This provides the 

Table 3. Equal, Highly Ellipsoidal Covariance Matrices With Mean 
Differences in Low-Variance Subspace 

P = 6 p = 10 p = 20 p = 40 

Misclassification risk 
RDA .07 (.04) .07 (.04) .27 (.07) .39 (.06) 
LDA .06 (.03) .06 (.03) .24 (.06) .59 (.07) 
QDA .17 (.08) .14 (.12) .60 (.07) .60 (.06) 

Minimizing cross-validated 
estimate for RDA .05 (.04) .06 (.04) .21 (.07) .34 (.08) 
Correlation 
(test set, cross-validation) .19 0.0 0.0 .16 
Average regularization 
parameter values 

A .77 (.33) .83 (.27) .75 (.30) .72 (.32) 
y ~~~~~~.02 (.08) .07 (.16) .19 (.27) .45 (.25) 

Table 4. Equal, Highly Ellipsoidal Covariance Matrices With Mean 
Differences in High-Variance Subspace 

P= 6 p = 10 p =20 p =40 

Misclassification risk 
RDA .06 (.03) .05 (.02) .14 (.04) .18 (.05) 
LDA .07 (.03) .07 (.03) .24 (.06) .58 (.08) 
ODA .19 (.08) .43 (.12) .57 (.08) .48 (.07) 

Minimizing cross-validated 
estimate for RDA .04 (.03) .03 (.03) .11 (.05) .14 (.06) 
Correlation 
(test set, cross-validation) .16 -.20 - .07 .13 
Average regularization 
parameter values 

A .92 (.24) .86 (.30) .72 (.38) .76 (.36) 
.71 (.36) .66 (.36) .70 (.29) .79 (.23) 

shrinkage strategy with at least a chance of accomplishing 
some improvement. For this case the class 2 and class 3 
means are given by 

P2i = 2.5 V 2 - 1 

and 

93i = - 9i2ig i p. 

The class 1 mean is again located at the origin. Table 4 
summarizes the results. 

Even though the class population covariance matrices 
are highly ellipsoidal, the rather high degree of shrinkage 
toward the identity matrix does not increase the bias of 
the classification rule very much. The population class 
means differ here mostly in the high-variance subspace, 
so deemphasizing the low-variance subspace has little con- 
sequence in terms of biasing the discriminant rule, even 
though it highly biases the covariance matrix estimates. 
The corresponding decrease in variance, however, allows 
RDA to outperform LDA, again especially in the high- 
dimensional settings. Note that here, where the RDA mis- 
classification risk is quite small, the minimizing cross-val- 
idated estimate seems to underestimate more seriously the 
actual risk (z30%). 

6.4 Unequal Highly Ellipsoidal 
Covariance Matrices 

The last two examples complete the sequence by con- 
sidering cases where the class population covariance 
matrices are highly ellipsoidal and very unequal. The 
eigenvalues for class 1 are given by Equation (27). Those 
for class 2 are given by 

ei2 = [9(p - i)I(p - 1) + 1]2, 1 ? i p. 

Those for class 3 are 

ei3 = {9[i - (p -1)12]1(p - 1)}2, 1 C i 'p. 

The population eigenvectors for all three classes are the 
same. For the first two classes the ratio of the largest to 
smallest eigenvalues is 100, but their high and low variance 
subspaces are complementary to each other. This ratio for 
the third class is (p + 1)2. It has low variance in the 
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subspace of intermediate variance for the first two classes, 
and high variance where they have their complementary 
high/low variances. The first case we consider is where 
the population means are all identical so that the class 
distributions differ only in their covariance matrices. Table 
5 presents the results. 

As would be expected, LDA does very poorly because 
the population class means are all the same. For the lowest 
dimension, RDA is slightly worse than QDA, but for the 
rest RDA is substantially better. Again, the model-selec- 
tion procedure tends to do the right thing. Very little co- 
variance matrix mixing is selected at any dimension, but 
the eigenvalue shrinkage increases with dimension. 

The final simulation example uses the same covariance 
structure as the previous one. The population class means, 
however, are different. The class 1 mean is at the origin. 
The class 2 and class 3 mean vectors are given by 

2i- 14/v, /jPN= (= VP2i9 

along the respective eigenvectors. The results of this ex- 
periment are presented in Table 6. 

The presence of the differing class means improves the 
risk associated with all three methods. Again, RDA sub- 
stantially dominates the others except at the lowest di- 
mension, where it has risk comparable to QDA. 

6.5 Remarks on the Simulation Results 

The model-selection procedure based on cross-valida- 
tory choice seems to perform surprisingly well. In each 
of the simulated examples the best joint values for the 
covariance matrix mixing parameter A, and eigenvalue 
shrinkage parameter y, are roughly known. The distri- 
butions of the sample-based estimates are in each case 
seen to concentrate near these optimal values. This is why 
RDA seems to lose so little in situations unfavorable to it 
and gain so much in favorable ones. It is also surprising 
how small the observation-to-variable ratio can be and still 
permit fairly accurate classification with RDA. It is not 
surprising that the cross-validated estimate of misclassifi- 
cation risk for RDA somewhat underestimates the actual 
risk (-20%) on average, since this quantity is minimized 
with respect to the regularization parameters for each in- 
dividual training sample. What is surprising is its low cor- 

Table 5. Unequal, Highly Ellipsoidal Covariance Matrices With Zero 
Mean Differences 

P=6 p= 10 p=20 p=40 

Misclassification risk 
RDA .21 (.06) .15 (.06) .12 (.05) .12 (.06) 
LDA .61 (.06) .58 (.06) .58 (.06) .63 (.06) 
QDA .19 (.06) .35 (.13) .44 (.10) .43 (.07) 

Minimizing cross-validated 
estimate for RDA .17 (.06) .13 (.05) .11 (.05) .12 (.06) 
Correlation 
(test set, cross-validation) .03 -.03 .09 .25 
Average regularization 
parameter values 

A .03 (.05) .04 (.06) .06 (.07) .05 (.07) 
y ~~~~.17 (.16) .27(.18) .46(.17) .60(.15) 

Table 6. Unequal, Highly Ellipsoidal Covariance Matrices With 
Nonzero Mean Differences 

P=6 p= 10 p=20 p=40 

Misclassification risk 
RDA .07 (.04) .07 (.03) .06 (.04) .07 (.06) 
LDA .17 (.04) .20 (.05) .28 (.06) .54 (.09) 
QDA .06 (.05) .28 (.16) .35 (.13) .28 (.08) 

Minimizing cross-validated 
estimate for RDA .04 (.03) .04 (.03) .05 (.03) .06 (.04) 
Correlation 
(test set, cross-validation) .11 .06 .05 .35 
Average regularization 
parameter values 

A .09 (.12) .10 (.11) .10 (.12) .10 (.12) 
.25 (.25) .38 (.28) .54 (.20) .62 (.18) 

relation with the actual misclassification risk. This means 
that when an especially favorable or unfavorable training 
sample is realized (from the population), the minimized 
cross-validation estimate provides no apparent reflection 
of this. Cross-validation provides an estimate of the av- 
erage performance of a procedure but not necessarily its 
performance with a particular training sample. 

The minimal Bayes risk for all of the simulated situations 
is quite low, but the class means were not widely separated 
with respect to their covariances. When the means are 
widely separated, any (reasonable) classification proce- 
dure will provide good results and regularization will not 
be particularly beneficial, although it will not hurt either. 
In well-posed situations where the class sample sizes are 
all very large compared with the number of measurement 
variables, there is usually little benefit to be derived from 
regularization, and as the simulations indicate, sometimes 
there is a small degradation in performance when em- 
ploying regularization in these settings. 

7. WINE-TASTING DATA 

This data set consists of 38 different wine samples made 
from the Pinot Noir (Burgundy) grape (Kwan and Ko- 
walski 1980). The wines were subjected to taste tests by 
16 judges and graded with numerical scores on 14 sensory 
characteristics. These characteristics were clarity, color, 
aroma intensity, aroma character, undesirable odor, acid- 
ity, sugar, body, flavor intensity, flavor character, oaki- 
ness, astringency, undesirable taste, and overall quality. 
These wines originate from three different geographical 
regions: 9 from California, 17 from the Pacific Northwest, 
and 12 from France. The purpose is to classify the geo- 
graphical origins of the wine samples from the 14 sensory 
characteristics. 

For this example, the prior probabilities were taken to 
be equal, 7lk = 3, for all classes. The optimization-grid 
point values for A were the same as for the simulation 
examples. The values for y were taken to be y = (0.0, 
.037, .105, .192, .30, .414, .544, .686, .838, 1.0). The intent 
here is to use these data to study the effect of regularization 
on misclassification risk, and not to present a complete or 
definitive analysis of these data. 

Two studies were performed. In the first, RDA, LDA, 
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and QDA were applied to the entire data set. In the second 
the data were divided into two samples, each of size 19. 
Each half sample was then used as a training set, and the 
three classification rules so obtained were validated on the 
other sample. In the first analysis there is no validation 
sample, so we must use a sample reuse technique to es- 
timate the future misclassification risk of the classification 
rules. We use the 632 bootstrap (Efron 1983), which has 
shown superior performance over other sample reuse tech- 
niques for this purpose in several simulation studies (Craw- 
ford 1986; Efron 1983; Gong 1982). One hundred boot- 
strap replications were employed. 

Applying RDA to the entire sample (N = 38) gave a 
minimizing cross-validated misclassification risk of .14 at 
A = .35 and y = .04. The 632 bootstrap estimates for 
RDA, LDA, and QDA were, respectively, .18, .26, and 
.36. The distribution of A over the 100 bootstrap replica- 
tions had a mean of ) = .49 and a standard deviation of 
v(A) = .37. The corresponding quantities for the distri- 
bution of y were r = .40 and a(y) = .31. 

The results for RDA averaged over the two half-sample 
runs (N = 19) gave ) = .56 and y = .48, with an averaged 
minimizing cross-validated risk of .19. The average mis- 
classification risks of RDA, LDA, and QDA, obtained 
from the half sample complementary to the corresponding 
training sample, were, respectively, .21, .50, and .59. 

Judging from the chosen values of the regularization 
parameters, this does not appear to be a situation favor- 
able to LDA. This is also indicated by the substantially 
superior performance of RDA for the larger (N = 38) 
sample, where LDA is fairly well-posed forp = 14. When 
the sample size is reduced to N = 19 the performance of 
RDA seems to be degraded surprisingly little, whereas 
LDA appears to completely collapse. 

8. INVARIANCE PROPERTIES 

The regularization method presented here is rotationally 
invariant. That is, if the measurement variables of the 
training data and future test data are subjected to the same 
orthonormal rotation, the RDA classification rule would 
not change. The same is, of course, true for LDA and 
QDA. Unlike LDA and QDA, however, RDA is not gen- 
erally scale invariant. That is, changing the relative scales 
of the measurement variables, or their linear combina- 
tions, can change the classification rule. This lack of scale 
invariance results from the introduction of the eigenvalue 
shrinkage parameter y. If y = 0 then RDA is scale in- 
variant. This lack of scale invariance is a common property 
of many regularization methods that shrink eigenvalues, 
such as ridge and principal-components regression. 

Changing the scales of the measurement variables or 
their linear combinations is equivalent to changing the 
regularization matrix for Ik(), y) in Equation (18). There 
lk(A) [Eqs. (16)] was regularized by shrinking it toward a 
multiple of the identity matrix I. There is clearly nothing 
special about this particular choice, and one could consider 
more general regularizations of the form 

Xk(jt v) = (1 -Y)~k()) + ytM, (28) 

with M a prespecified positive definite symmetric matrix 
and 

t = tr[.k(4)]ltr(M). (29) 

One can implement this generalized approach using the 
techniques outlined in Sections 3 and 4, first by applying 
a transformation to the data (rotation and scaling) that 
takes M to the identity matrix. Let M = LLT be the 
Cholesky factorization of M, where L is a lower triangular 
matrix. Applying the transformation 

Yv = L-'Xv, 1 c v < N, (30) 
performs a rotation and scaling such that the matrix M is 
represented by the identity matrix in the transformed co- 
ordinate system. Then applying RDA to the transformed 
data [Eq. (30)] is equivalent to specifying M as the reg- 
ularizing matrix [Eqs. (28) and (29)] in the original co- 
ordinate system. 

A common procedure is to standardize or "auto-scale" 
the data so that all variables have the same variance. This 
is equivalent to using the diagonal matrix 

M = diag(&l, &2, *.. 

for regularization, where vi is the sample standard devia- 
tion of the ith measurement variable. A more natural 
choice might be to auto-scale the data using the global 
within-class standard deviations. Another approach would 
be to shrink in a way that preserves large correlations at 
the expense of the smaller ones (Devlin, Gnanadesikan, 
and Kettenring 1975). If the regularizing matrix M [Eq. 
(28)] depends on the data, then the matrix updating for- 
mulas for cross-validation derived in Section 4 are only 
approximate in that they do not account for the sampling 
variability associated with the estimate of M. Choice of a 
particular matrix M is analogous to choosing a metric 
(M-1) for a nearest-means classification procedure. In the 
absence of any prior information, there is no clear best 
choice and one might experiment with several choices us- 
ing the minimized cross-validated risk estimate as a guide. 

There can be situations, however, where particular reg- 
ularizations are suggested. When the data-measurement 
vectors Xv arise from a signal or image, there is a natural 
distance measure between variables or, more precisely, 
their indexes. Each signal digitization point or each image 
pixel corresponds to a measurement variable. If one be- 
lieves that in the absence of error, close measurement 
variables ought to have similar values, then a natural reg- 
ularization matrix to try would be 

M = HTH, (31a) 

with H the matrix representation of some smoothing ker- 
nel 

Hi = h(dijls). (31b) 

Here h is (usually) a positive monotonically decreasing 
function such that 

p > Hi, = 1, (31c) 
j=1 
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dij is a distance between the indexes i and j, and s is the 
bandwidth parameter for the smoothing kernal. In the case 
of a signal this will produce a banded regularizing matrix 
with large values only near the diagonal. Using M [Eqs. 
(31)] for regularization tends to deemphasize directions in 
the measurement variable space dominated by differences 
of those variables that correspond to close pixels or digi- 
tization points. This approach attempts to use to advantage 
the spatial nature of the problem in suggesting a particular 
regularization matrix M. 

9. VARIABLE SUBSET SELECTION 
A common method of regularization used with LDA 

and QDA is measurement variable subset selection. One 
attempts to reduce variance while not introducing exces- 
sive bias by the judicious selection of a small subset of the 
original set of variables. Stepwise and "all subsets" strat- 
egies are often employed. (Unlike squared-error loss, 
there is no fast branch-and-bound algorithm for all subset 
selection using misclassification risk.) Subset selection is 
scale invariant, but clearly not rotationally invariant. If 
the mean vector and covariance matrix differences be- 
tween the class populations happen to align principally 
along a very small number of the original measurement 
variables, then subset-selection strategies can be effective. 
Variable subset selection can be used in addition to or in 
conjunction with the regularization methods presented 
here. Keep in mind, however, that although variable sub- 
set selection seems very natural and readily understand- 
able, it can be fairly ineffective in these settings where 
variance dominates the prediction error. A heuristic ex- 
planation for this is as follows. 

The bias of a prediction rule depends largely on the true 
underlying (population) means and covariance matrices, 
about which there is often little prior knowledge. The 
variance, on the other hand, depends mostly on the par- 
ticular estimation method used, about which there is con- 
siderable knowledge. Covariance matrix shrinkage tech- 
niques basically use this information to attempt to achieve 
maximal reduction in variance (for a given level of regu- 
larization) by preferentially damping the influence of those 
directions (eigenvectors) associated with the smallest ei- 
genvalues. These are the directions (linear combinations 
of the variables) that contribute most strongly to the vari- 
ance and are, of course, obtainable from the sample co- 
variance matrix. Therefore, in the absence of any prior 
knowledge of how one is affecting the bias, it makes sense 
to regularize in a way that achieves the largest reduction 
in variance for a given level of regularization. 

Variable subset selection, on the other hand, assumes 
fairly specific prior knowledge concerning the population 
class means and covariance matrices-namely, that the 
(standardized) class means and covariance matrices differ 
mostly in a small subset of the measurement variables. If 
this is true and if one can reliably identify the small subset, 
then by damping the influence of the complement subset 
of variables, one introduces very little bias while achieving 
some reduction in variance. 

The relative efficacy of the two approaches in particular 

situations depends on the degree to which the assumption 
inherent in the subset selection method is valid. The size 
of the influential subset must be surprisingly small, how- 
ever, for subset selection techniques to be competitive with 
other regularization methods, or even no regularization at 
all (see Copas 1983). 

10. CONCLUDING REMARKS 

The simulation studies and the data example indicate 
that the method of regularization applied here has the 
potential to (sometimes dramatically) increase the power 
of discriminant analysis in settings for which sample sizes 
are small and the number of measurement variables is 
large. There appears to be at most a small loss in applying 
RDA in situations unfavorable to it, and often substantial 
gains in favorable circumstances. Of course, one does not 
generally know the type of situation in advance when con- 
fronted with a particular data set. 

As the examples indicate (and as is well known) QDA 
is only viable in situations where.the ratio of sample size 
to variable count is large. For these situations nonpara- 
metric classification techniques are generally more appro- 
priate (see Breiman et al. 1983; Lachenbruch 1975). For 
the situations considered here (small samples and high 
variable count) LDA has been the method of choice in 
the past. The additional regularization alternatives pro- 
vided by RDA can substantially improve misclassification 
risk when the population class covariance matrices are not 
close to being equal and/or the sample size is too small 
for even LDA to be viable. 

A FORTRAN program implementing the RDA pro- 
cedure is available from me. 

[Received October 1987. Revised October 1988.] 
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