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Abstract—It has recently been proposed to orthogonalize
the data streams of n interfering source-destination pairs by
employing an intermediate stage of non-cooperating coherent
amplify-and-forward relays. This distributed zero-forcing scheme
achieves a spatial multiplexing gain n/2 and does not require
multi-antenna nodes. In this paper we generalize the concept
from a single to multiple relay stages. Due to the concatenation
of relay stages, the gain allocation problem becomes nonlinear.
We show that the zero-forcing relay gain coefficients are given by
the common roots of a set of polynomials, and we identify the set
of network configurations for which such roots exist. In general,
there exist multiple common roots. Based on experimental results
we study the impact of the root selection and the number of relay
stages on achievable rates. Finally, we propose a new scheme
to achieve spatial orthogonalization in a single-hop interference
network. Our proposal is based on the observation, that the
mathematical model of the multihop problem is identical with
the one of a single-hop network if we allow signals to be bounced
forth and back between sources and destinations.

I. INTRODUCTION

Cooperative relaying schemes are considered as promising
candidates for next generation wireless systems, e.g. upcoming
cellular and ad-hoc networks. The density of wireless nodes
in such networks is expected to increase significantly in the
future, thus rendering node cooperation a key enabler for
enhancing data rates, link reliability or coverage of these
systems. Extension of coverage is expected to be one of
the main upcoming challenges, in particular when systems
are operated at higher carrier frequencies (> 5 GHz). One
motivation for resorting to such carrier frequencies is their po-
tential of enabling the integration of large antenna arrays even
in mobile stations, thus providing additional multiple-input-
multiple-output (MIMO) gains. However, as a consequence
in cellular networks, cell sizes must be reduced significantly
compared to current 2G and 3G networks [1], [2]. Using relays
and multihop strategies for assisting transmission in cellular
networks has been shown to be an effective means for coverage
improvement [3]. This means that higher data rates can be
carried over larger distances, thus reducing the required base
station density in a cellular network.

In this contribution, we investigate a scenario where several
stages of relay nodes assist the communication between a
cluster of n source nodes and a cluster of n destination nodes
making up n source-destination pairs (cf. Fig. 1). The source
signals reach the destination nodes by successively traversing
all relay stages in the network on a common physical channel
(frequency flat and slow fading), and thus are subject to

inter-stream interference in general. Reference [4] presented a
method for canceling the inter-stream interference in two-hop
networks in a completely decentralized fashion by employing
an amplify-and-forward architecture with a certain relay gain
allocation. As a generalization of this method, we aim to come
up with amplify-and-forward strategies ensuring inter-stream
interference cancellation in multihop networks of arbitrary
length.

A main result of this paper is the insight that the total
number of relay nodes required for the orthogonalization of the
source-destination pairs is hardly affected by the number of
hops separating source and destination cluster. This implies
that the considerable constraint on the required number of
relays in the two-hop network can be relaxed significantly,
in the sense that the relay nodes can be accumulated over
multiple hops in the network. This, in turn, results into a
smaller number of relays required per stage. In particular, we
shall see that n relay nodes per stage suffice to provide network
orthogonalization in a sufficiently long network.

In a second step, we apply our findings on multihop
networks to multi-stream interference cancellation in single-
hop interference networks. Our approach is to mimic a mul-
tihop network by transmitting signals forth and back be-
tween sources and destinations several times, thus making
the respective interference cancellation techniques applicable.
This method is shown to provide a spatial multiplexing gain
linear in n if source and/or destination cluster are amended
by additional relay nodes. In a cellular environment, e.g.,
this method could be employed for inter-cell interference
cancellation in both up- and down-link.

Conceptually all results obtained for single antenna nodes
in this contribution carry over to multi-antenna nodes in a
straightforward fashion.

The paper is structured as follows: Section II formally
introduces the multihop setting and discusses under which
conditions distributed zero-forcing of the source-destination
pairs is feasible. In Section III we transfer the distributed mul-
tihop zero-forcing concept to single-hop interference networks.
Section IV provides an experimental performance analysis. We
provide some concluding remarks in Section V.

II. MULTIHOP RELAY NETWORKS

A. I-O-Relation and Zero-Forcing Constraints

We consider a network consisting of L + 2 clusters: a
source cluster S = {S1, . . . ,Sn} and a destination cluster
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Fig. 1. Network Graph.

D = {D1, . . . ,Dn} containing n nodes each, as well as L

relay stages Rl = {R(l)
1 , . . . ,R(l)

n
(l)
R
}, l = 1, . . . , L, containing

n
(l)
R nodes in stage l. All nodes are equipped with a single

antenna and nodes within the same cluster are assumed not to
exchange any information about their receive signals. We con-
sider transmission of a single codeword per source-destination
pair. Transmission is divided into L+1 time slots and initiated
by the source cluster in the first time slot. In time slot l, relay
stage Rl receives signals from relay stage Rl−1 (or the source
cluster S if l = 1). Each relay R(l)

k ∈ Rl scales and phase
rotates its receive signal, i.e. performs a multiplication with a
complex scalar g

R
(l)
k

before re-transmission in time slot l+1. In
time slot L+1 the destination cluster receives the transmission
of RL. After at most L + 1 time slots the source cluster can
inject new signals into the network without posing interference
to the transmission of the previous codeword. The considered
setting is depicted in Fig. 1.

We assume a slow and frequency flat fading channel model
and denote by hIJ the multiplicative fading coefficient describ-
ing transmission from node J to node I. The effective multi-
plicative fading coefficient dDiSj

describing the transmission
from source node Sj to destination node Di is then obtained
as the superposition of all paths connecting these nodes in the
network graph:
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We aim to identify sets of complex gain coefficients which
ensure that each destination node Di receives no other signals
than those of its associated source node Si. That is, we want to
suppress spatial interference between the n source-destination
links by multihop distributed beamforming. In this context
“distributed” refers to the constraint that beamforming must
be performed solely based on a multiplication of the received
signal by a complex scalar at each relay (as opposed to
a matrix multiplication of the vector of signals received in
the whole relay stage). In mathematical terms, interference
free communication between all pairs {Si,Di}n

i=1 (network

orthogonalization), is established if

dDiSj
= 0 for all (Di,Sj) ∈ D × S s.t. i �= j, (2)

dDiSi
�= 0 for all i ∈ {1, . . . , n}. (3)

Considering the left hand sides of these conditions as mul-
tivariate polynomials in the g

R
(l)
k

, orthogonalization of the
network is possible, whenever the polynomials dDiSj

, i �= j,
have at least a single common root that is not a root of any
of the polynomials dDiSi

.
We remark that solving the equation system (2) requires

global channel state information, i.e. the knowledge of all
fading coefficients hIJ.

B. Existence of Solutions

In the single relay stage case (L = 1) the equation system
(2) is a linear one, and therefore well analyzable by standard
linear algebra methods [4]. In the general case of arbitrary
L, we are confronted with a multi-linear polynomial equation
system. Whether (and how many) solutions to such systems
exist is well understood in the case that the system has generic
coefficients. In this context, “generic” – loosely speaking –
means that all coefficients of the monomials are independent
parameters. It is a seminal result from algebraic geometry,
that the number of solutions is then fully determined by the
structure of the monomials for almost all sets of coefficients
[5]. In the case at hand the n(n− 1)

∏
l n

(l)
R monomial coeffi-

cients depend on n ·n(1)
R +

∑L−1
l=1 n

(l)
R n

(l+1)
R + n

(L)
R ·n fading

coefficients only, thus being subject to a certain structure
themselves. This issue renders proving general conditions on
sets {n(l)

R }L
l=1 for a network with n source-destination pairs

being orthogonalizable difficult.
In this paper we restrict ourselves to stating the following

conjecture, which is in line with numerical experiments:
Assuming all fading coefficients to be distributed according
to a continuous probability distribution, the subsequent con-
ditions are necessary and sufficient for orthogonalization in
the multihop network with n source-destination pairs being
possible with probability one:

L∑
l=1

n
(l)
R ≥ n(n − 1) + L (4)

n
(l)
R ≥ n ∀l ∈ {1, . . . , L}. (5)

For L = 1, condition (4) reduces to the well-known necessary
and sufficient condition nR ≥ n(n − 1) + 1 for two-hop
networks while condition (5) is redundant [4].

In full generality, we can neither prove sufficiency of both
conditions nor necessity of the first condition. The second
condition is necessary, in fact: The source transmit vector is
seen at the destination antennas under the linear transformation
determined by the matrix

D = HL+1GLHL · · ·G1H1, (6)



where
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(
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if l = L + 1.

In order to fulfill (2) and (3) simultaneously, D must be
a diagonal matrix with non-zero entries on the diagonal.
Accordingly, its rank rk{D} must be n. We conclude that
(5) is necessary, since

rk(D) ≤ min
(

min
l

(rk{Gl}),min
l

(rk{Hl})
)

≤ min
l

(rk{Gl}).

For condition (4), let us first define the
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We realize that whenever the system (2) has a solution g∗,
then there must exist infinitely many solution constituting an
L-dimensional affine variety: Let c1, . . . , cL be arbitrary, non-
zero complex scalars and define g̃

R
(l)
k

� clgR
(l)
k

. Then, also g̃∗

fulfills (2). This is seen by inspecting (1), which reveals the
relation

dDiSj

∣∣∣∣
g=g̃∗

= c1 · · · cL · dDiSj

∣∣∣∣
g=g∗

for all i �= j. (7)

The left hand side of this equation is zero if and only if the
right hand side is zero. By the same reasoning, we can say
that g∗ fulfills (3) if and only if also g̃∗ fulfills (3).

Due to property (7) the considered system (2) is said to be
L-homogeneous (homogeneous in the L groups of gain coef-
ficients) with multi-degree (1, . . . , 1) or also L-linear (since
the cl occur to the first power on the right hand side of (7)).
While such systems have either no or infinitely many solutions
in C

∑
l n

(l)
R , they can have a finite number of solutions in the

product of projective spaces1
P

n
(1)
R −1×. . .×P

n
(L)
R −1 (e.g. [6]).

It is noteworthy, that in affine space the cl are (up to phase
shifts) determined nevertheless if a sum-power constraint is
imposed on each stage.

Assuming that no equation or set of equations is implied by
any other set of equations, (4) has either no or finitely many
solutions in the product of projective spaces if the system
has L more unknowns than equations, i.e. if condition (4)
holds with equality. In this particular case a dehomogenized
system (e.g. with g

R
(l)
1

= 1 for l ∈ {1, . . . , L}) has as many
degrees of freedom as equations. Whether solutions indeed do
exist depends on whether the coefficients are generic enough
(cf. Section II-C), i.e. on whether the coefficients depend

1The projective space Pk is the set of all k dimensional lines in Ck+1

passing through the origin.

on sufficiently many parameters in a sufficiently unstructured
way. We assume that this is the case as long as condition (5)
holds.

If it is true that there are finitely many solutions to (2),
when (4) holds with equality and (5) is fulfilled, reducing
the number of unknowns (total number of relays) renders the
system overconstrained and does not allow for any solution.
Vice versa, if the number of relays is increased the system is
underconstrained and there are infinitely many solutions lying
on a non-zero dimensional projective variety in the product of
projective spaces. This leads to the conjecture that conditions
(4) and (5) are necessary and sufficient in fact.

Generally, a necessary and sufficient condition for the
existence of a solution is given by the projective weak Nullstel-
lensatz [6]. The problem with this approach is that it requires
the construction of a reduced Groebner basis, which is difficult
to obtain for general networks.

C. Number of Solutions

Given the conjecture that there exist finitely many solutions
to (2) if condition (4) holds with equality, we can give an
upper bound on the actual number of solutions. This bound is
due to D.N. Bernstein [5] who linked the number of solutions
of a system of polynomial equations to the structure of the
Newton polytopes of the polynomials. A Newton polytope is
defined as follows:

Definition. Consider a multivariate polynomial
p(z1, . . . , zm) =

∑
α cα

∏m
i=1 zαi

i . The Newton polytope
of p, denoted by Δp, is defined as the convex hull of the set
of exponents α, considered as vectors in Z

m.

By inspecting (1), we realize that all dDiSj
share the same

Newton polytope. Such systems are said to be unmixed and
allow to use a corollary to Bernsteins’ general result [7]:

Theorem (Kushnirenko). If m polynomials p1, p2, . . . , pm

with identical Newton polytope have a finite number of
joint zeros in (C\0)m, their number is upper bounded by
m!Volume(Δp). The bound holds with equality for generic
coefficients.

Note that the quantity m!Volume(Δp) always evaluates to
an integer value. Specifically, in the case at hand it can be
shown that

(n2 − n)!Volume
(
ΔdDiSj

)
=

(n2 − n)!∏L
l=1(n

(l)
R − 1)!

.

The fact that solutions containing zero gain coefficients are
not accounted for is uncritical. In case such a solution would
exist, condition (4) could be relaxed, since relays with zero
gain coefficient can be considered as not being present in the
network.

An important conclusion from this theorem is that the
number of solutions to a polynomial equation system is fully
determined by the structure of the monomials for generic coef-
ficients. As discussed in the previous section, the coefficients
in (1) depend on a number of parameters which is significantly



TABLE I
NUMBER OF ZERO-FORCING SOLUTIONS FOR SEVERAL NETWORKS.

Configuration Solutions Upper-Bound
(n, n(n − 1) + 1) 1 1

(2, 2, 2) 2 2
(3, 5, 3) 6 15
(3, 3, 5) 6 15
(3, 4, 4) 12 20

(3, 3, 3, 3) 18 90
(4, 7, 7) ≥ 528 924

(4, 5, 5, 5) n/a 34650
(4, 4, 4, 4, 4) n/a 369600

smaller than the number of coefficients. According to the
bound of the theorem this lack of genericity can only lead
to a reduction of the number of solutions.

In Tab. I we show for a couple of configurations
(n, n

(1)
R , . . . , n

(L)
R ) how the number of actual solutions (as

identified by numerical solvers) compares to the upper bound.
We observe that both the actual number of solutions and the
upper bound increase rapidly both in L and in n. The upper-
bound holds with equality in the cases L = 1 and L = 2.
For larger L the bound is loose in general. We observe, that
distributing relays uniformly over the stages seems to yield
more solutions than asymmetric stage allocations.

III. “PING-PONG” IN INTERFERENCE NETWORKS

The orthogonalization of multihop networks as studied in
the previous section inspires a new approach to orthogonal-
izing interference networks with a source and a destination
cluster in single-hop distance. A set of source nodes can
communicate to a set of destination nodes in an interference
free fashion on the same physical channel if both sets of nodes
transmit their signals forth and back several times (cf. left hand
sketch in Fig. 2). E.g., consider a set of n source nodes that
wish to communicate to n destination nodes. Let us denote the
fading matrix describing the MIMO channel between source
and destination nodes by H ∈ C

n×n. Assuming channel
reciprocity, the fading matrix describing the channel from
destination to source nodes is then given by HT . In the
previous section we found that a multihop relay network with
n relay stages containing n relays each can be orthogonalized,
since both (4) and (5) are fulfilled with equality. Accordingly,
we might expect to be able to orthogonalize n (assumed to
be an even number) source-destination pairs by transmitting
n + 1 times forth and back. The effective fading matrix (cf.
(6)) would then write as:

D = HGnHT Gn−1 · · ·HG2HT G1H,

where all matrices Gn with odd indices correspond to amplify-
and-forward operations at the destination nodes and those
with even indices to amplify-and-forward operations at the
source nodes. For this particular setting numerical experiments
suggest that orthogonalization is indeed feasible. Also, the
numbers of solutions obtained are in line with those obtained
in the equivalent multihop networks. This is far from being
evident in fact, since the coefficients in (1) are even less
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Fig. 2. Mimicking Multihop Networks.

generic in this example: Since each hop is associated with
the same channel matrix H or its transposed, the randomness
in the network is reduced from (L + 1) · n2 independent
random variables (parameters) in the multihop network case to
n2 independent random variables. Therefore, one might have
expected that also the number of solutions is reduced.

The above example was of little practical value: We man-
aged to orthogonalize n data streams by using n + 1 time
slots. This corresponds to a spatial multiplexing gain of
n/(n + 1) < 1. Accordingly, a simple time-division multiple
access scheme outperforms our scheme. Nevertheless, we can
render this approach beneficial. In order to achieve spatial
multiplexing gains larger than one, the source and/or the
destination cluster need to be assisted by additional relay nodes
(cf. right hand sketch in Fig. 2). In doing so, we can achieve
network orthogonalization with a reduced number of forth and
back transmissions N (an odd number ≥ 3), thus increasing
the spatial multiplexing gain n/N .

Consider for example a network of four source-destination
pairs, where source and destination cluster are assisted by
three additional relay nodes each. Indeed, this network can
be orthogonalized by transmitting three times forth and back.
Accordingly, we achieve a spatial multiplexing gain of 4/3.

Sticking to the strategy of distributing the additional relay
nodes equally over the source and destination cluster (nR
per cluster), our approach achieves a spatial multiplexing gain
n/N according to (4) as long as

nR ≥ n(n − 1)
N − 1

+ 1 − n.

Numerical experiments suggest that for symmetric relay allo-
cations the number of solutions to (2) is sustained despite of
the reduced genericity.

Let us finally consider an asymmetric relay node alloca-
tion over the source and destination cluster. For simplicity,
we assume a network of three source-destination pairs with
two additional relay nodes in the destination cluster, and no
additional relay nodes in the source cluster. Again, condition
(4) is fulfilled with equality, and also condition (5) holds.
In this example, however, we observe that no solution is
found by our numerical solver. Here, indeed the effect of
lacking genericity in the polynomial coefficients kicks in.
Note that this problem is circumvented if the forth and back



transmissions are performed over different subcarriers in a
frequency selective environment. Then, each transmission is
again associated with a different fading matrix, and from an
analysis point of view one is back to the multihop network
from the previous section.

Ref. [8] provides a coding scheme that achieves a spatial
multiplexing gain of n/2 in an n user interference network
without making use of any relay nodes. Although the scheme
outlined above is inferior to this scheme both in terms mul-
tiplexing gain and transmit power efficiency, its beauty lies
in the much reduced coding complexity. E.g., In a cellular
environment, the scheme can be employed for mitigating
multi-cell interference. Assuming a cluster of base stations
and a cluster of mobile stations (each cluster including some
idle stations acting as relays), (matrix) channel estimation and
exchange of channel state information is only required on
base station side. The latter might be handled via a backbone
network. Once the base stations have determined the gain
coefficients, only the gain coefficients of the mobile stations
need to be disseminated over the wireless channel. Moreover,
in the symmetric case only a single fading matrix has to be
learned on base station side. The scheme is suitable both for
up- and downlink transmission.

IV. EXPERIMENTAL INSIGHTS

In this section we discuss the following two issues by
means of simulation results: First, we are interested in the
performance of the different zero-forcing solutions, in par-
ticular in the question to which extend performance varies
under different solutions. Second, we want to understand the
impact of the dimensions of the network, in particular how
performance is influenced by the length (L) of the network.
Our measure of performance is achievable rate. Since each
source-destination pair communicates over an additive white
Gaussian noise channel for a given fading realization, the rate
of source-destination pair i under zero-forcing solution j is
given by

R
(j)
i = log(1 + SNR(j)

i ), (8)

where the (L + 1)−1 pre-log factor is discarded2 and

SNR(j)
i =

PS/n

σ2
· |dDiSi

|2
1 +

∑
l,kl

∣∣d
DiR

(l)
kl

∣∣2 (9)

is the corresponding signal-to-noise ratio. Here, we denote
by PS the source cluster transmit power, which is allocated
uniformly over the source nodes, and by σ2 the variance of
the i.i.d. zero-mean additive white Gaussian noise introduced
by each receiving node. Finally, d

DiR
(l)
k

denotes the effective

fading coefficient seen from relay node R(l)
k to destination

2We intentionally drop this multiplicative constant in order to eliminate its
influence on rates achievable in networks of different length. In practice the
pre-log is not necessarily (L + 1)−1, but typically smaller and independent
of L. It depends on path loss and shadowing effects, which (if strong enough)
allow for injecting new signals into the network more often than every L+1
time slots without posing interference to previously injected signals.
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Fig. 3. Empirical CDFs of order statistics of sum-rates R
(1)
Σ , . . . , R

(12)
Σ and

minimum-rates R
(1)
min, . . . , R

(12)
min for a (n, n

(1)
R , n

(2)
R ) = (3, 4, 4)-network.

node Di. We are particularly interested in the achievable
sum-rate R

(j)
Σ �

∑
i R

(j)
i and in the rate achievable for the

weakest source-destination pair R
(j)
min � mini R

(j)
i (referred

to as minimum-rate). We generate realizations of the fading
coefficients hIJ independently from a circular symmetric
complex Gaussian random variable of zero mean and unit
variance.

In the following we fix P � PS = PR1 = . . . = PRL
=

1000 · (L + 1), where PRl
denotes the sum-transmit power

of stage Rl, and σ2 = 1. This power allocation results in a
destination SNR of about 30 dB for small L, when all relay

nodes share the common gain coefficient
√

(P/n
(l)
R )/(P + 1).

A. Comparison of Solutions

We consider a network with three source-destination pairs
and two relay stages containing four relays each. This network
exhibits twelve different zero-forcing solutions. We conduct
the following experiment: For 1000 channel realizations, we
determine all twelve zero-forcing solutions numerically, and
thereupon evaluate the corresponding rates R

(j)
Σ and R

(j)
min

for all j ∈ {1, . . . , 12}. We obtain empirical cumulative
distribution functions (CDF) of the order statistics of R

(j)
Σ

and R
(j)
min. The respective plots are shown in Fig. 3. The key

conclusion to be drawn from these plots is that both for R
(j)
Σ



and R
(j)
min there are tremendous differences in performance.

The average achievable rate obtained for the best solution is
around five times larger than the one obtained for the worst
solution in terms of minimum-rate and still more than twice
larger in terms of sum-rate. While finding the best zero-forcing
solution based on a brute force search is manageable for the
case at hand with only twelve solutions, such an approach
seems to be hopeless for larger networks where the number
of solutions grows rapidly (cf. Section II-C).

B. Impact of Network Dimensions

There are various references pointing out, that increasing
the length of amplify-and-forward multihop networks reduces
the achievable sum-rate even if the destination signal-to-
noise ratio is kept constant an the pre-log factor is neglected
[9], [10], [11]. These works considered a fully cooperating-
destination cluster (joint MIMO decoding) and relay gain
matrices Gl ∝ I, which is a reasonable choice if global
channel state information is not available in all stages. The
effect such networks suffer from, is an undesired distortion of
the eigenvalue spectrum of the effective fading matrix D. We
raise the question, whether such an effect can be observed in
the setting considered in this paper as well. We find an answer
by inspecting Fig. 4: Here we show empirical CDFs of the
order statistics of the n source-destination pairs under the sum-
rate optimal zero-forcing solution for a network with three
source-destination pairs. We compare networks with L = 1
and n

(1)
R = 7, L = 2 and n

(1)
R = n

(1)
R = 4, as well as

L = 3 and n
(1)
R = n

(2)
R = n

(3)
R = 3. We observe, that

indeed the longest network demonstrates worst performance.
However, surprisingly, the three-hop network is superior over
the two-hop network. This behavior identifies an effect, which
is antipodal to the effect described in the references mentioned
above: increasing the network length increases the number of
zero-forcing solutions. Optimizing over these solutions allows
for compensating the eigenvalue distortion to a certain extend.
Note that other than the networks studied in [10], [11], our
power allocation does not ensure a constant average signal-to-
noise ratio at the destination nodes, since the matrices Gl are
not proportional to the identity matrix in general.

V. CONCLUSIONS

We have generalized the concept of distributed zero-forcing
to networks with an arbitrary number of hops. Interestingly, the
total number of relays required for rendering the network or-
thogonalizable increases only by one per additional hop. Thus,
the required number of relays per stage decreases significantly
at the same time. Moreover, the results obtained on multihop
networks inspired a new approach for orthogonalization of
single-hop interference networks. The multilinear structure of
the equation system to be solved in the process of obtaining
suitable relay gain coefficients poses several difficulties when
compared to two-hop networks: Especially, in the case that
there are more relays in the network than stringently needed
(as treated in the two-hop case in [12]) optimization of the gain
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coefficients under a zero-forcing constraint strikes us as be-
coming a challenging task. Finally, our computer experiments
suggest that the common understanding that increasing the
length of amplify-and-forward networks penalizes achievable
sum-rates is not valid in this generality, when relays can
determine their gain coefficients based on global channel state
information.
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