Speeding Up the Convergence of Online Heuristic Search
and

Scaling Up Offline Heuristic Search

A Thesis
Presented to
The Academic Faculty

by

David A. Furcy

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
December 2004

Speeding Up the Convergence of Online Heuristic Search
and

Scaling Up Offline Heuristic Search

Approved by:

Robert Holte

Sven Koenig, Advisor (University of Alberta)

Ron Ferguson Ashwin Ram

Ashok Goel

Date Approved: 11/19/2004

ACKNOWLEDGEMENT

I would like to thank my advisor, Sven Koenig, for his help with this research. I thank my committee
members for their time and guidance. In particular, it has been a great pleasure to collaborate with
Rob Holte. I am grateful to him, Jonathan Schaeffer and everybody at the University of Alberta for
their warm welcome during my stay in Edmonton. I also enjoyed our joint work with Ariel Felner.

Over the years, I have benefited from the help of many people. Rich Korf was always willing
to share his source code and he provided me with Thorpe’s thesis, while Stefan Edelkamp was
the one who first introduced me to Thorpe’s work. Vadim Bulitko and I talked a lot about real-
time search, and he was kind enough to read drafts of some of these chapters. Rong Zhou and
Matthew McNaughton helped me get acquainted with the MSA domain. I have also had fruitful
discussions with several search experts including Blai Bonet, Hector Geftner, Eric Hansen, Istvan
Hernadvolgyi, and Wheeler Ruml. At Georgia Tech, I enjoyed the company and help of Jim Davies,
Maxim Likhachev, Yaxin Liu, Patrawadee Prasangsit, and Alex Stoychev.

Last but not least, I am immensely grateful for the love and support of my wife, Elizabeth, and
for little Abigail, who kept me awake during the last two weeks of writing and energized me for the

last stretch.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT

LISTOF TABLES

LISTOF FIGURES

SUMMARY

CHAPTER1

1.1
1.2

1.3
1.4
1.5

OVERVIEW OF THE DISSERTATION

Introduction e

The shortest-path problem,

1.2.1

Problem statement e

Structure of the dissertation

Overview of our contributions to real-time search

Overview of our contributions to offlinesearch

1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6

CHAPTERII

2.1
2.2
2.3
24
2.5
2.6

2.7

Our contributions to greedy best-firstsearch
Our contributions tobeam search
Summary of empirical results Lo
Algorithm selection o
ABULB: Anytime variantsof BULB

Application of ABULB to the multiple sequence alignment problem . . .

SPEEDING UP THE CONVERGENCE OF REAL-TIME SEARCH .

Introduction e

Definitions and assumptions oL

Learning Real-Time A* (LRTA*)

Motivation for our new action-selectionrule

Breaking ties in favor of smaller f-values

FALCONS: Selecting actions that minimize f-values

2.6.1
2.6.2

FALCONS: A naiveapproach
FALCONS: The final version

Experimental results

271

Domains and heuristics e

v

~N L A

10
11
12
13
15
16
17

2.7.2 Performance measuresot e e e e e 33

273 Empirical setup 35
274 Results. 36
2.8 Relatedwork 39
29 Future work L e 41
2.10 Contributions e 42
CHAPTERIII SCALING UP WA* WITH COMMITMENT AND DIVERSITY ... 43
3.1 Introduction e 43
3.2 The WA*algorithm 44
3.3 The KWA* algorithm: Introducing diversity in WA* 46
3.4 The MSC-WA* algorithm: Introducing commitment in WA* 48
3.5 The MSC-KWA* algorithm: Combining diversity and commitment 51
3.5.1 Comparing the behaviors of KWA* and MSC-WA* 52
352 The MSC-KWA*algorithm 55
3.6 Empirical evaluation 57
3.6.1 The N-Puzzledomain. 57
3.6.2 The 4-peg Towers of Hanoi domain 59
3.6.3 The Rubik’s Cubedomain 61
3.6.4 Empirical setup 62
3.6.5 Empirical results in the N-Puzzle domain 64
3.6.5.1 Empirical evaluation of WA* in the N-Puzzle 64
3.6.5.2 Empirical evaluation of KWA* in the N-Puzzle 66
3.6.5.3 Empirical evaluation of MSC-WA* in the N-Puzzle 71
3.6.5.4 Empirical evaluation of MSC-KWA* in the N-Puzzle 75

3.6.5.5 Empirical comparison of WA*, KWA*, MSC-WA*, and MSC-
KWA*inthe N-Puzzle 80
3.6.6 Empirical results in the 4-peg Towers of Hanoi domain 80
3.6.7 Empirical results in the Rubik’s Cube domain 82
37 Relatedwork L 83
3.7.1 Multi-state commitment applied to RTA*search 84
3.7.1.1 The RTA*algorithm 84

3.7.1.2 The MSC-RTA*algorithm 85

3772 Beamsearch L 87
3.8 Futurework 88
3.8.1 Domain-dependent behaviors of MSC-KWA* 88
3.8.2 MSC-KWA*versusbeamsearch 89
3.8.2.1 Preliminary study of MSC-KWA* with 1 < K < (C'in the N-
Puzzle 89
3.8.3 Introducing diversity in MSC-RTA* 92
3.8.3.1 The MSC-KRTA* algorithm 92
39 Conclusions 95
CHAPTERIV LIMITED DISCREPANCY BEAMSEARCH 97
4.1 Introduction 97
42 Beamsearch L 99
4.2.1 Thebeam search algorithm 100
4.2.2 Motivation for backtracking beamsearch 104
4.3 Backtrackingbeamsearch oL oL oo 106
4.3.1 The depth-first beam search (DB) algorithm 106
4.3.2 Limited discrepancy search 110
4.3.2.1 Original limited discrepancy search 110
4.3.2.2 Generalized limited discrepancy search 113
4.3.3 Beam search using limited discrepancy backtracking (BULB) 116
4.3.4 Properties of the BULB algorithm 118
4.3.4.1 BULB is a memory-bounded algorithm 118
4.3.4.2 BULB generalizes both limited discrepancy search and breadth-
firstsearch 118
4.3.43 BULB s acomplete algorithm 119
4.3.44 BULB eliminates all cycles and some transpositions 120
44 Empirical evaluationo 121
4.4.1 Empirical evaluation in the N-Puzzle domain 121
4.4.1.1 Evaluation of beam search in the N-Puzzle 121
4.4.1.2 Evaluation of BULB inthe N-Puzzle 123
4.4.1.3 Comparison with variants of multi-state commitment search . . 124

Vi

4.4.1.4 BULB scales up to even larger puzzles 124

4.4.2 Empirical evaluation in the Towers of Hanoi domain. 127

4.4.3 Empirical evaluation in the Rubik’s Cube domain 130

45 Relatedwork oL 133
451 Bandsearch 133

4.5.2 Diversitybeamsearch oL o 136

4.5.3 Complete anytime beamsearch 136

4.5.4 Variants of discrepancy search 137

4.5.5 Divide-and-conquer beamsearch 0oL 139

4.6 Futurework 140
477 Conclusion e 141
CHAPTERYV ANYTIME HEURISTICSEARCH 143
5.1 Introduction 143
5.2 ITSA*: Application of local search to the shortest-path problem 144
521 Motivation 145

5.2.2 A neighborhood structure based on path proximity 147

523 ThelITSA*algorithm 149

5.24 Empirical evaluation of ITSA* 150

5.3 ABULB: Anytime BULB 153
5.3.1 BULB + ITSA*: Local optimization of BULB’s solutions 153

5.3.2 ABULB 1.0: Continuous execution of BULB with a constant B value . . 156

5.3.3 ABULB 2.0: Restart of BULB with varying B values 158

5.34 ABULB + ITSA*: Local optimization of ABULB’s solutions 160

5.3.5 Empirical evaluationof ABULB 161

54 Relatedwork 166
54.1 Anytime heuristicsearch 166

542 Localsearch 168

5.5 Conclusion 168
CHAPTER VI THE MULTIPLE SEQUENCE ALIGNMENT PROBLEM 171
6.1 Introduction e 171
6.2 Sequence alignment 172

vii

6.3 Evaluating alignments 173

6.4 Pairwise sequence alignment 175

6.5 Multiple sequence alignment (MSA) 178

6.6 The MSA problem as a shortest-path problem 181

6.7 Solving the MSA problem with search algorithms 182

6.7.1 An admissible heuristic function for the MSA problem 184

6.7.2 Solving the MSA problem with existing variants of A* 187

6.8 Solving the MSA problem with ABULB 189

6.8.1 Adapting ABULB to the MSA problem 189

6.8.2 Empirical evaluation 0oL 191

6.8.2.1 Empiricalsetup 191

6.8.2.2 Empiricalresults 192

6.9 Conclusion L 196

CHAPTER VII CONCLUSIONS AND FUTURE WORK IN OFFLINE SEARCH. . . 198

7.1 Our contributions to offlinesearch 198

7.1.1 Our contributions to one-shot search 198

7.1.2 Our contributions to anytime search 200

7.2 Lessons learned and future work oL oL oL 201

7.2.1 Generalization of MSC-KWA* and beam search 201

7.2.2 Application of neighborhood search to the shortest-path problem 202

7.2.3 Domain-specific extensions L. 204

APPENDIX A — FORMAL PROOFS FORFALCONS 206
APPENDIX B — EMPIRICAL EVALUATION OF VARIANTS OF WA* IN THE N-

PUZZLE 222

REFERENCES e 247

viii

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7

Table 8
Table 9
Table 10

Table 11

Table 12
Table 13

Table 14

Table 15

Table 16

Table 17
Table 18
Table 19

Table 20

Table 21

Table 22

LIST OF TABLES

Speedup of FALCONS over LRTA* 9
Scaling behavior in our three benchmark domains 14
Travel cost to convergence with different tie-breaking rules 27
Travel cost to convergence with different action-selectionrules 32
Trials to convergence with different action-selectionrules 36
Travel cost of the first trial with different action-selection rules 37

Travel cost to convergence with different action-selection rules, and with or with-

out gupdates for FALCONS 38
Comparison of WA*, KWA*, and MSC-WA* in the N-Puzzle 54
Performance of WA* in the 35-Puzzle with varying W 67

Performance of KWA* in the 48-Puzzle when solving at least two thirds of the
INSLANCES . . . v v vt e e e e e e e 74

Performance of MSC-WA* in the 48-Puzzle when solving at least two thirds of
the inStances L. 75

Comparison of WA*, KWA*, MSC-WA*, and MSC-KWA* in the N-Puzzle .. 81

Best performance of all algorithms in the Towers of Hanoi domain (mem-
ory=1millionnodes) 81

Performance of MSC-KWA* in the Towers of Hanoi domain when solving all
instances (memory = 1 millionnodes) 82

Best performance of all algorithms in the Rubik’s Cube domain (memory = 2
millionnodes) e 83

Performance of MSC-KWA* with varying C and K in the 48-Puzzle when solv-

ing all instances with an average solution cost of less than 10,000 90
Performance of beam search in the 48-Puzzle 105
A taxonomy of beam search methods 118

Performance of beam search in the Towers of Hanoi domain (memory = 1 million
NOdeS) e e e e e e e e 128

Performance of beam search in the Rubik’s Cube domain (memory = 1 million
NOdES) e e 131

Performance of BULB in the Rubik’s Cube domain averaged over 1,000 random
instances (memory = 1 millionnodes) 131

Performance of one-step ITSA* on paths found by BULB in the 48-Puzzle (with
6 million nodes inmemory) Lo e 150

ix

Table 23

Table 24

Table 25

Table 26

Performance of one-step ITSA* on paths found by BULB in the Rubik’s Cube
(with 3 million nodes inmemory), 151

Performance of multi-step ITSA* on paths found by BULB in the 48-Puzzle (with
6 million nodes iIN MEMOrY) v v v vttt e 152

Performance of multi-step ITSA* on paths found by BULB in the Rubik’s Cube
(with 3 million nodes inmemory) 152

Versions of Anytime BULB (ABULB) 161

Figure 1
Figure 2
Figure 3
Figure 4

Figure 5
Figure 6
Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27

LIST OF FIGURES

A taxonomy of heuristic search algorithms (with our contributions inred) 6
Lineage of our new offline heuristic search algorithms 10
The LRTA* algorithm 21
Two action-selection rules for real-time search. Curves represent iso-contours for

a) cost-to-goal estimates and b) f-values. 24
The TB-LRTA* algorithm 26
Naive FALCONS (initial, non-functional version) 28
Naive FALCONS cycles forever (Each circle represents a state with its g-value/h-

value) e 28
Naive FALCONS converges to a sub-optimal path (Each circle represents a state

with its g-value/h-value) 29
The FALCONS algorithm (final version) 29
Roadmap for thisresearch 44
The WA* algorithm 45
The KWA* algorithm 48
The MSC-WA* algorithm 50
Performance comparison: WA*, KWA*, and MSC-WA* in the N-Puzzle 53
The MSC-KWA* algorithm 56
The 15-Puzzle 57
The 4-peg Towersof Hanoi 59
The Rubik’s Cube 61
Performance of WA* in the N-Puzzle with varying W 65
Performance of KWA* in the 35-Puzzle with varying W 69
Performance of KWA* in the 35-Puzzle with varying K 70
Performance of MSC-WA* in the 35-Puzzle with varying W 72
Performance of MSC-WA¥* in the 35-Puzzle with varyingC' 73
Solution cost versus W for MSC-KWA* (K = (') in the 35-Puzzle 77
Memory usage versus W for MSC-KWA* (K = C) in the 35-Puzzle 77
Solution cost versus K for MSC-KWA* (K = C) in the 35-Puzzle 78
Memory usage versus K for MSC-KWA* (K = (') in the 35-Puzzle 78

X1

Figure 28

Figure 29

Figure 30
Figure 31
Figure 32
Figure 33
Figure 34

Figure 35

Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50

Figure 51
Figure 52
Figure 53

Figure 54

Memory usage versus solution cost for MSC-KWA* (K = () in the 35-Puzzle

withvarying W 0 0L 78
Performance comparison: WA*, KWA*, MSC-WA*, and MSC-KWA* in the N-

Puzzle 79
The RTA* algorithm 84
The MSC-RTA* algorithm 86
Proposed evolution of RTA*, 91
The MSC-KRTA* algorithm 93
Performance comparison: WA*, KWA*, MSC-WA*, MSC-KWA*, MSC-RTA*,

and MSC-KRTA*inthe N-Puzzle 94
Performance comparison: MSC-KWA*, MSC-RTA*, and MSC-KRTA* in the

48-Puzzle 95
Roadmap forthisresearch 99
Levels of search strategies 100
From breadth-first search to beam search to depth-first beam search 101
The beam search algorithm 103
The depth-first beam search (DB) algorithm 108

Behavior of original limited discrepancy search (LDS) on a balanced, binary tree 111

The original limited discrepancy search (LDS) algorithm (for balanced binary trees) 112

The limited discrepancy search algorithm for general graphs (GLDS) 114
Behavior of GLDS on an irregulartree 115
The BULB algorithm: Beam search using limited discrepancy backtracking . . 117
From beam search to BULBsearch 119
Cycles and transpositions oL oo 120
Performance of beam search in the N-Puzzle with varying B. 122
Performance of BULB in the 48-Puzzle with varying B 125

Comparing the performance of beam search and BULB with that of MSC-KWA*
and MSC-KRTA* in the 48-Puzzle with varying B 126

Performance of BULB in the 63-Puzzle with varying B (memory =4 million nodes) 126
Performance of BULB in the 80-Puzzle with varying B (memory = 3 million nodes)127

Performance of BULB in the Towers of Hanoi domain with varying B (memory
=1millionnodes) 129

Performance of beam search and BULB in the Rubik’s Cube with varying B
(memory = 1 millionnodes) 132

Xii

Figure 55

Figure 56

Figure 57
Figure 58
Figure 59

Figure 60

Figure 61

Figure 62
Figure 63
Figure 64
Figure 65
Figure 66

Figure 67
Figure 68
Figure 69

Figure 70

Figure 71
Figure 72
Figure 73
Figure 74
Figure 75
Figure 76
Figure 77
Figure 78
Figure 79
Figure 80

Figure 81

Approximation algorithms explore the search space in a less regular way than

admissible algorithms. Lo oL o 145
Solutions found (unbroken line) and missed (dashed line) by WA* with f =

g+5bXxhinagridworldproblem.o 146
Iterative tunneling defines the neighborhood of apath. 148
Building a performance profile oL oL 154
Performance of ITSA* on solutions produced by BULB in the 48-Puzzle (with 6

millionnodesand B=5) 155
An average point lies above the averagecurve 156

Performance of ITSA* on solutions produced by BULB in the Rubik’s Cube

domain (with 1 million nodesand B=70) 157
Behaviorof ABULB 1.0 158
Behavior of ABULB2.0 159
ABULB + ITSA*: A neighborhood search in the space of solution paths 160

ABULB 1.0 versus ABULB 2.0 in the 48-Puzzle (with 6 million nodes and B=5) 162

ABULB 1.0 versus ABULB 2.0 in the Rubik’s Cube domain (with 1 million
nodesand B=70) e 163

Combining ITSA* with ABULB 1 in the 48-Puzzle (with 6 million nodes and B=5)164
Combining ITSA* with ABULB 2 in the 48-Puzzle (with 6 million nodes and B=5)164
Combining ITSA* with ABULB 1 in the Rubik’s Cube domain (with 1 million

nodesand B=70) e 165
Combining ITSA* with ABULB 2 in the Rubik’s Cube domain (with 1 million

nodesand B=70) 165
Three pairwise alignments (taken from [33]) 172
The PAM250 substitution matrix 174
One step in the alignment of two sequences 176
The Needleman-Wunsch dynamic programming algorithm 177
Computing the optimal alignment of the two sequences in Figure 73a 178
Search tree for the 2-dimensional MSA problem in Figure 73a 179
State space for the 2-dimensional MSA problem in Figure 73a 180
A 3-dimensional MSA problem, 180
Solving the MSA problem with search algorithms 183
Computing the h-values for the MSA problem 185

Search space and corresponding search tree for an MSA problem withn =1 =2 190

xiii

Figure 82 MSA problems with 8 proteins 193

Figure 83 MSA problems with9 proteins 194
Figure 84 MSA problems with 10 proteins 194
Figure 85 MSA problems with 11 proteins 195
Figure 86 MSA problems with 12 proteins, 195
Figure 87 MSA problems with 13 proteins 196
Figure 8 The FALCONS algorithm 207
Figure 89 Performance of KWA* in the 8-Puzzle with varying W 223
Figure 90 Performance of KWA* in the 8-Puzzle with varying K 224
Figure 91 Performance of KWA* in the 15-Puzzle with varying W 225
Figure 92 Performance of KWA* in the 15-Puzzle with varying X' 226
Figure 93 Performance of KWA* in the 24-Puzzle with varying W 227
Figure 94 Performance of KWA* in the 24-Puzzle with varying K 228
Figure 95 Performance of MSC-WA* in the 8-Puzzle with varying W 230
Figure 96 Performance of MSC-WA¥* in the 8-Puzzle with varying C' 231
Figure 97 Performance of MSC-WA* in the 15-Puzzle with varying W 232
Figure 98 Performance of MSC-WA¥* in the 15-Puzzle with varyingC' 233
Figure 99 Performance of MSC-WA* in the 24-Puzzle with varying W 234
Figure 100 Performance of MSC-WA* in the 24-Puzzle with varyingC' 235
Figure 101 Performance of MSC-KWA* in the 8-Puzzle with varyingW 237
Figure 102 Performance of MSC-KWA* in the 8-Puzzle with varying K 238
Figure 103 Performance of MSC-KWA* in the 15-Puzzle with varying W 239
Figure 104 Performance of MSC-KWA¥* in the 15-Puzzle with varying K 240
Figure 105 Performance of MSC-KWA* in the 24-Puzzle with varying W 241
Figure 106 Performance of MSC-KWA¥* in the 24-Puzzle with varying K 242
Figure 107 Performance of MSC-KWA* in the 35-Puzzle with varying W 243
Figure 108 Performance of MSC-KWA* in the 35-Puzzle with varying K 244
Figure 109 Performance of MSC-KWA* in the 48-Puzzle with varying W 245
Figure 110 Performance of MSC-KWA¥* in the 48-Puzzle with varying K 246

X1V

SUMMARY

Heuristic search algorithms are popular Artificial Intelligence methods for solving the
shortest-path problem. This research contributes new heuristic search algorithms that are either
faster or scale up to larger problems than existing algorithms. Our contributions apply to both
online and offline tasks.

For online tasks, existing real-time heuristic search algorithms learn better informed heuristic
values and sometimes eventually converge to a shortest path by repeatedly executing the action
leading to a successor state with a minimum cost-to-goal estimate. In contrast, we claim that real-
time heuristic search converges faster to a shortest path when it always selects an action leading
to a state with a minimum f-value (i.e., a minimum estimate of the cost of a shortest path from
start to goal via the state), just like in the offline A* search algorithm. We support this claim by
implementing this new non-trivial action-selection rule in FALCONS and by showing empirically
that FALCONS significantly reduces the number of actions to convergence of a state-of-the-art real-
time search algorithm.

For offline tasks, we scale up two best-first search approaches. First, a greedy variant of A*
called WA* is known 1) to consume less memory to find solutions of equal cost when it is diversified
(i.e., when it performs expansions in parallel), as in KWA*; and 2) to solve larger problems when
it is committed (i.e., when it chooses the state to expand next among a fixed-size subset of the
set of generated but unexpanded states), as in MSC-WA*. We claim that WA* solves even larger
problems when it is enhanced with both diversity and commitment. We support this claim with
our MSC-KWA* algorithm. Second, it is known that breadth-first search solves larger problems
when it prunes unpromising states, resulting in the beam search algorithm. We claim that beam
search quickly solves even larger problems when it is enhanced with backtracking based on limited
discrepancy search. We support this claim with our BULB algorithm. We demonstrate the improved
scaling of MSC-KWA* and BULB empirically in three standard benchmark domains. Finally, we

apply anytime variants of BULB to the multiple sequence alignment problem in biology.

XV

CHAPTER1

OVERVIEW OF THE DISSERTATION

1.1 Introduction

The most popular methods for solving the shortest-path problem in Artificial Intelligence (Al) are
heuristic search algorithms. In particular, best-first search algorithms always expand next a node
with the smallest f-value, where the f-value of a node estimates the cost of a shortest path from the
start to a goal via the node. In breadth-first (or uniform-cost) search [29], the f-value is equal to the
g-value of the node, which is the cost of the shortest path found so far from the start to the node.
In the A* algorithm [59], the f-value is the sum of the g-value and the h-value of the node, which
is an estimate of the cost of a shortest path from the node to the goal. A* and breadth-first search
are offline search algorithms since they find a complete path to the goal before they terminate. In
contrast, online (and more specifically real-time) search algorithms interleave searching for a partial
path from the current node and traversing this path in the environment. Such algorithms are useful
for tasks that have tight time constraints on each action execution. We now discuss in turn our
hypotheses pertaining to real-time and offline heuristic search.

Real-time search. Existing real-time heuristic search methods, such as LRTA* [98], repeatedly
select and execute the action leading to a successor with minimum h-value. Before each execution,
they also update the h-value of the current node so that they learn better informed h-values over
time. When the goal is reached (we say that the current trial is over), the agent is reset to the
start (and the next trial begins). Their learning component enables real-time search methods to
eventually converge to a shortest path. However, we claim that minimizing h-values is not the best

action-selection rule for fast convergence. We propose the following hypothesis:

Hypothesis 1 (Real-time search hypothesis) Real-time heuristic search converges faster to a
shortest path when it selects actions leading to nodes with a minimum estimated cost of a short-

est path going from the start through the node and to the goal.

In Chapter 2, we will support this hypothesis with FALCONS, a new real-time search algorithm
that converges to a shortest path with significantly fewer actions and trials than LRTA*. We will
show that the correct design of our action-selection rule in FALCONS is not trivial. Nevertheless,
Appendix A will prove that FALCONS shares the same theoretical properties as LRTA*. We will
show empirically that FALCONS converges with fewer actions and trials than LRTA* in all of our
thirteen different empirical conditions (corresponding to six standard benchmark domains with two
or more heuristic functions per domain). Convergence with fewer actions and trials means that the
overall learning time is shorter since both the total time spent executing actions and the total pre-
trial setup time are smaller. This speedup is important in domains from real-time control. The main
limitations of FALCONS are that 1) the duration of the first trial is sometimes larger because more
exploration is performed at the beginning, 2) FALCONS may not perform well in directed domains
because its action-selection rule is based exclusively on the f-value of the successor node and does
not take into account the edge cost to reach it, and 3) FALCONS only applies to deterministic
domains.

Offline search. The main drawback of both breadth-first search and A* is that they store all
generated nodes in memory. Therefore, they quickly run out of memory on large graphs. To remedy
this problem and scale up heuristic search to larger problems, one common approach is to sacrifice
solution quality (breadth-first search and A* are admissible algorithms, that is, they always find a
shortest path, provided they have enough memory). One typically reduces memory consumption by
making the search greedy (but still storing all generated nodes) or by pruning some nodes (that is,
not storing some of the generated nodes). We summarize in turn our contributions to each class of
approaches.

First, it is known that WA* makes A* search greedy by weighing the h-value more than the
g-value when adding them up to compute each f-value. WA* can solve larger problems than A*
[132, 52]. It is also known that WA* with diversity (that is, the parallel expansion of several nodes
at each iteration, like in KWA* [37]) uses less memory than WA* to find solutions of equal cost.
Furthermore, it is known that WA* with commitment (that is, the focus on a sub-set of the candidate
nodes for expansion, like in MSC-WA* [88]) scales up to larger problems than WA*. We propose

the following hypothesis:

Hypothesis 2 (Offline search hypothesis #1) WA* solves larger problems when it is enhanced

with both diversity and commitment.

In Chapter 3, we will support this hypothesis with MSC-KWA*, a new offline search algorithm
that can solve larger problems than WA*, KWA* and MSC-WA* in three benchmark domains. In
our empirical setup, MSC-KWA* is the only considered variant of WA* that can solve all of our
random instances in the 48-Puzzle and the 4-peg Towers of Hanoi domain. Furthermore, MSC-
KWA* solves the largest percentage of random instances in the Rubik’s Cube domain. However,
MSC-KWA* shares with WA*, MSC-WA* and KWA* the limitation that it is not memory-bounded.
For example, none of these algorithms can solve all of our random instances in the Rubik’s Cube.
Another limitation of MSC-KWA¥* is that it takes three parameters as inputs. While the best value
of the W parameter is often very close to one, finding the best values for the C' and K parameters
currently requires trial and error and typically leads to different values for C' and K. In general, the
behavior of MSC-KWA* is quite sensitive to the values chosen for C' and K.

Second, it is known that beam search scales up breadth-first search by limiting the number of
nodes at each level of the search to a constant, maximum value and by pruning additional nodes

[7, 170]. We propose the following hypothesis:

Hypothesis 3 (Offline search hypothesis #2) Beam search quickly solves larger problems when it

is enhanced with backtracking based on limited discrepancy search.

In Chapter 4, we will support this hypothesis with BULB, a new offline search algorithm that
can solve larger problems than beam search while keeping its runtime reasonably small. In our
empirical setup, BULB can solve all of our random instances in the 48-Puzzle, 63-Puzzle, 80-
Puzzle, Rubik’s Cube and Towers of Hanoi domains in a matter of seconds or minutes and finds
solutions that are reasonably close to optimal since their cost is always within an order of magnitude
of the optimal cost and in most cases they are approximately within a factor two of optimal. The
main drawback of BULB is the need to determine the value of its beam width parameter B that
gives the best performance in terms of solution cost and runtime. Too small a value may lead to
incompleteness since the search tree is narrow and all of its leaves may have been visited already

(thus ending the search without a goal). Too large a value reduces the solution cost but may slow

BULB down significantly and may even lead to incompleteness if the maximum searchable depth
becomes smaller than the depth of the shallowest goal. In our empirical setup, the best trade-off
between solution cost and runtime is obtained for relatively large values of B (on the order of a few
thousands). Therefore, the main limitation of BULB is that its behavior is sensitive to the value of
B.

In Chapter 5, we will discuss different ways of transforming BULB into an anytime algorithm
called ABULB. In Chapter 6, we will apply ABULB to the multiple sequence alignment problem
in biology.

This chapter is organized as follows. Section 1.2 motivates and defines the shortest-path prob-
lem. Section 1.3 describes the structure of the dissertation. Finally, Sections 1.4 and 1.5 summarize

our research on real-time and offline heuristic search, respectively.

1.2 The shortest-path problem

Many real-world tasks are equivalent to finding a shortest path in a graph, including robot navigation
tasks, network routing in transportation tasks, symbolic planning tasks, and sequence alignment
tasks in biology. Because of its practical relevance, the shortest-path problem has been of interest
to computer scientists in general and Al researchers in particular.

Even though there exist algorithms that solve this problem in time that is at most quadratic in
the number of nodes in the graph [29], this low-polynomial complexity is misleading because the
number of nodes is often exponential in the solution length (that is, the number of edges in the
solution path). Many real-world tasks (including planning tasks and sequence alignment tasks) do
translate into exponentially large graphs. Since it is often not possible to find optimal solutions in
a reasonable amount of time and without running out of memory, different ways of trading off the
solution cost, runtime and memory consumption have been studied. Usually, memory is the most
limiting factor and it gets filled up rather quickly. Memory-bounded algorithms have been intro-
duced to address this limitation [96, 143, 177]. However, the price to pay for being able to control
the memory consumption is a large runtime overhead due to node re-generations. Such algorithms
may take days or weeks to terminate [101, 105], which is not acceptable in many practical situa-

tions. Long runtimes remain problematic for inadmissible algorithms as well [99]. In Chapters 3

through 7, we will address the issues of 1) how to scale up offline search to larger problems and 2)
how to trade off solution cost and runtime in memory-bounded offline search.
We now formally define the shortest-path problem. The reader weary of formalism can safely

skip the following sub-section.
1.2.1 Problem statement

A graph G = (S, E) is defined by a finite set S of nodes' and a finite set E of directed edges
e = (n1,n92) between pairs of nodes n1, no € S. Let succ(n) C S denote the set of successors
of any node n € S, that is, the set of nodes n' € S such that (n,n') € E. A path in G from
node m to node n is a sequence {ng = m, ny, ..., n, = n} of nodes in S such that Vi € [1..p]:
n; € succ(n;—1). Thus a path is also a sequence of edges {(ng,n1), (n1,n2),...,(Np—1,np) }. If
each edge e € F is associated with a cost ¢(e), then the cost of any path {n;}i—o,...p is equal to
> by c(ni—1,mi).

This research is concerned with the single-source, single-destination shortest-path problem,

which is defined as follows. Given:
e agraph G = (S, E),
e a cost function ¢ defined on E such that Ve € E: 0 < ¢(e) < oo, and

e two distinguished nodes s4q,+ and sgoq; in S,

find a shortest (or minimum-cost) path from s 4474 t0 Sgoq1 in G.

1.3 Structure of the dissertation

This dissertation contains two parts, one each for real-time search and offline search. This high-
level decomposition, as well as the internal structure of the second part, mirror the taxonomy of
tasks (and associated methods) that we now describe. This taxonomy of heuristic search algorithms

is built upon the task constraints under which the problem may be solved (see Figure 1).

'In Al search, nodes are often identified with states. A state is a particular configuration of the objects in the represen-
tation of the domain. A node is an object manipulated by the search algorithm. Nodes are similar to states since a node

heuristic search algorithms

online algorithms offline algorithms

one—shot algorithms anytime algorithms

""non—-memory—bounded" ""memory—bounded" ""non-| y—bounded" " y—bounded"'
algorithms algorithms algorithms algorithms

LRTA* A* IDA* ATA* DFBnB

RBFS ARA*

SMAG*
WA* beam search
ITSA*
(FALCONS) (MSC-KWA¥) BULB
ABULB
(Chapter 2) (Chapter 3) (Chapter 4) (Chapter 5)

Figure 1: A taxonomy of heuristic search algorithms (with our contributions in red)

First, the taxonomy distinguishes between online and offline tasks (or algorithms). For the for-
mer tasks, the agent interleaves searching and acting in the environment. For the latter tasks, the
agent performs a complete search to the goal and then executes the sequence of actions correspond-
ing to the edges in the solution path.

Second, the taxonomy distinguishes between one-shot and anytime tasks. For the former tasks,
only one solution is produced, namely when the algorithm terminates. For the latter tasks, the
algorithm outputs several solutions of increasing quality (that is, of decreasing costs).

Third, the taxonomy distinguishes between tasks for which the available memory can be con-
sidered unlimited and tasks for which memory has tight constraints. Of course, internal computer
memory is always limited. But as memory becomes cheaper and thus larger, this limit may be higher

than the maximum amount of memory consumed by the algorithm. A common example in this class

contains a state description (as well as additional information needed during search, such as g-values, h-values, etc.). In
this dissertation, we use the words state and node interchangeably.

of tasks is robot-navigation in gridworld-like domains, in which the environment is typically repre-
sented as a grid that fits in memory. In contrast, many hard shortest-path problems have huge search
spaces (or associated graphs). Common examples include combinatorial puzzles (such as the N-
Puzzle, the Rubik’s Cube, the Towers of Hanoi puzzle, etc.) and the multiple sequence alignment
problem. Ensuring completeness in such problems requires that the algorithm be memory-bounded.

In Figure 1, ellipses represent classes of algorithms. Solid lines represent sub-class relations.
Dashed lines represent membership relations. Each leaf of the tree is a representative algorithm
(or a list of representative algorithms). Red (boxed) algorithms are the new algorithms introduced
in this dissertation (and the corresponding chapters). In the case of offline, one-shot algorithms, a
double horizontal line separates admissible algorithms (on top) from inadmissible ones.

Following this chapter, the dissertation is split onto two parts. Chapter 2 and Appendix A will
discuss our research on real-time search. All remaining chapters (including Appendix B) discuss
our research on offline search. This second part is itself split into two sub-parts. Chapters 3 and 4
will introduce two new one-shot heuristic search algorithms. Chapters 5 and 6 will introduce a new
family of anytime heuristic search algorithms and will describe their application to the multiple
sequence alignment problem in biology, respectively. Finally, Chapter 7 will summarize our contri-
butions and elaborate on some directions for future work on offline search. The mapping between

chapters and tasks (and associated algorithms) is depicted at the bottom of Figure 1.

1.4 Overview of our contributions to real-time search

Real-time search methods, such as LRTA* [98], interleave planning (via local search around the
current node) and execution of partial paths [79]. Even when task constraints require that actions
be chosen in constant time, these methods guarantee that the goal will be reached. Furthermore,
they learn better informed h-values during successive trials and eventually converge to a shortest
path. This learning capability is quite useful for real-world tasks, including project scheduling
[154] and routing for ad-hoc networks [149]. Recently, researchers have attempted to speed up the
convergence of LRTA* while maintaining its advantage over traditional search methods, that is,
without increasing its lookahead (or the depth of the local search around the current node, typically

equal to one). Shimbo and Ishida, for example, achieved a significant speedup by sacrificing the

optimality of the resulting path [83, 79]. We, on the other hand, show how to achieve a significant
speedup without sacrificing the optimality of the resulting path. This will be our goal in Chapter 2.

We claim that convergence to a shortest path can be sped up by consistently maintaining the
focus of the search upon its long-term objective, namely that of finding a shortest path from the
start to a goal, as opposed to the short-term objective of reaching a goal as fast as possible from the
current node. We thus advocate a radically different way of focusing the search. If the objective is
fast convergence to a shortest path, then the search should be focused around what is believed to
be a shortest path. In Section 2.4, we will make this intuitive search strategy operational and will
motivate 1) the need for a new action-selection rule and 2) our choice of the action-selection rule
that leads to nodes with minimum f-values.

To summarize our contributions, we propose a new search strategy that selects actions leading
to a node believed to be close to a shortest path from the start to a goal. The question becomes how
to estimate the distance from a node to a shortest path, the answer to which is not obvious because
1) a shortest path is what we are looking for, and 2) real-time search methods do not store any path
in memory. We propose to estimate the distance from a node to a shortest path using f-values. Since
f-values are smallest on a shortest path and larger for nodes off a shortest path, our new action-
selection rule chooses an action leading to a node with minimum f-value. Our main contribution in
Chapter 2 will be to extend the applicability of A*’s search strategy (namely, guiding the search with
smallest f-values) to the real-time search setting. This extension is not trivial for two reasons. First,
real-time search methods do not have f-values available, only h-values. We will solve this problem
in Section 2.4. Second, the convergence of real-time search methods is facilitated by the fact that
they always update the h-value of the current node based on the h-value of the successor node they
move to next. If the h-value of this successor node is misinformed, they immediately have a chance
to learn a better one since this successor node becomes the current node at the next iteration. This
property does not hold with our action-selection rule because a successor node with the smallest
f-value may not have the smallest h-value. We will discuss this problem in Section 2.6.1 and will
solve it in Section 2.6.2. We call the resulting algorithm FALCONS.

Appendix A contains the formal proofs that FALCONS is guaranteed to reach a goal during each

trial and eventually to converge to a shortest path. Our empirical study reported in Section 2.7 will

Table 1: Speedup of FALCONS over LRTA*

Domain Heuristic | Number of actions | Number of trials
to convergence to convergence

8-Puzzle M 60% 73%

T 20% 44%

Z 10% 47%

Gridworld N 41% 52%

Z 14% 38%

Permute-7 A 5% 18%

Z 3% 36%

Arrow F 15% 23%

Z 6% 38%

Towers of D 18% 49%

Hanoi Z 17% 53%

Words L 30% 44%

Z 4% 30%

demonstrate that FALCONS converges faster than LRTA*, a state-of-the-art real-time search algo-
rithm [98]. In thirteen different experimental conditions (each characterized by a standard bench-
mark domain and a heuristic function), FALCONS needs fewer actions than LRTA* to converge to
a shortest path. The corresponding speedups are listed in the second column of Table 1. In addition,
while our goal was to reduce the number of actions to convergence, FALCONS also reduces the
number of trials to convergence, as shown in the third column of the table. This is a nice property
because in domains from real-time control, the setup for each trial may be expensive and thus it is
important to keep the number of trials small. Finally, [153] has shown that FALCONS also reduces
the memory consumption of LRTA*. Because it focuses the search around what it believes to be a
shortest path, FALCONS ends up visiting (and thus storing) fewer nodes.

In conclusion, FALCONS improves on a state-of-the-art real-time search algorithm in terms of
both speed of convergence and memory consumption. Vadim Bulitko at the University of Alberta
is in the process of extending FALCONS (for example with a larger lookahead [16]), while Shan et
al. [149] are planning to apply FALCONS to constraint-based routing in ad-hoc networks, having
already applied LRTA* to this task. More generally, we believe that our new action-selection rule is
quite relevant to the reinforcement-learning community, since the vast majority of existing methods

in this area use h-based action-selection rules when exploiting heuristic information. Our results

offline best—first search algorithms
A* [Hart et al. 1968] breadth—first search [Dijkstra 1959]

WA?* [Pohl 1970]
MSC-WA* KWA*
[Kitamura et al. 1998] [Felner et al. 2003]
MSC-KWA#*
[Chapter 3]

beam search [Bisiani 1987]

BULB
[Chapter 4]

ABULB
[Chapter 5]

Figure 2: Lineage of our new offline heuristic search algorithms

suggest that significantly faster learning could result from an f-based exploitation rule.

1.5 Overview of our contributions to offline search

In the case of offline search, our primary goal is to scale up existing algorithms so that they can solve
larger problems (that is, problems with larger underlying graphs) without running out of memory.
When comparing algorithms that scale up to problems of similar sizes, our secondary goal is to
find low-cost solutions in a reasonable amount of time (on the order of minutes, as opposed to
days or weeks). We will build on two existing approaches for scaling up best-first search to larger
problems while sacrificing solution optimality, namely greedy variants (such as WA* [132]) and
pruning variants (such as beam search [7]) of best-first search. Our main contribution in each case
is a new algorithm. Chapter 3 will describe MSC-KWA*, which scales up to larger problems than
existing variants of WA*. Chapter 4 will describe BULB, which scales up to larger problems than
an existing variant of beam search. Figure 2 shows the lineage of our new algorithms.

This section provides a high-level summary of our contributions to offline search. A more

detailed and more technical summary will be given in Chapter 7.

10

1.5.1 Our contributions to greedy best-first search

WA* is a variant of A* in which the f-value of each node 7 is calculated as f(n) = g(n) + Wh(n),
where W is a real number larger than or equal to 1 [132]. A* is the special case of WA* when
W = 1. When W > 1, WA* puts more weight on the h-value than it does on the g-value. The
search is said to be greedy because, by minimizing f-values, WA* favors nodes that are (believed to
be) close to the goal (since small h-values lead to small f-values). On the one hand, increasing W
makes the search more greedy, which reduces the number of nodes WA* generates. This reduction
speeds up the search and also enables WA* to solve larger problems than A*. On the other hand,
increasing W increases the cost of the solution found by WA*, which is not admissible anymore.
[24] shows that the cost of the solution returned by WA* exceeds the optimal cost by a multiplicative
factor equal to W in the worst case. In practice, the solution cost returned by WA* is much lower
than this upper bound (see, for example, [99] as well as our experimental results in Chapter 3).
In the past few years, the scaling behavior of WA* has been improved in two ways, namely with
diversity or commitment.

First, diversifying the search means expanding K > 1 nodes in parallel at each iteration, re-
sulting in the KWA* algorithm [37]. By expanding only one node at a time, WA* may visit large
goal-free regions of the graph as a result of putting a large weight on misleading heuristic values.
By expanding in parallel the most promising K nodes, KWA* is more likely to expand a node with
a well-informed h-value. In effect, KWA* introduces a breadth-first search component into WA*.
The right level of diversity (controlled by K') can significantly reduce the number of node genera-
tions needed to find solutions of a given cost [37]. With too much diversity, KWA* degenerates into
breadth-first search (when K = o).

Second, committing the search means focusing it on a sub-set of the candidate nodes for ex-
pansion, resulting in the MSC-WA* algorithm [88]. MSC-WA* controls the level of commitment
with a parameter C, namely the maximum number of nodes that are considered for expansion at
each iteration. When C' = oo, MSC-WA* reduces to WA* since then, all generated but unexpanded
nodes are considered for expansion at each iteration. When C has a finite value (larger than or equal

to one), only the C nodes with the lowest f-values are considered for expansion. Any additional

11

nodes are moved to a reserve list. These nodes are not pruned since the full reserve list is stored in
memory. Instead, this list is used to replenish the set of nodes under consideration every time its
size becomes smaller than C'. Keeping C small serves to focus the search on a limited number of
nodes. If the heuristic values are well informed, this can cut down the exponential explosion of the
search. In effect, MSC-WA* introduces a depth-first search component into WA*. The right level
of commitment (controlled by C') can reduce the number of node generations significantly [88].

In Chapter 3, we will show empirically that increased levels of commitment and diversity are
orthogonal and complementary ways of improving on WA*. We will also show empirically that
they can, in combination, scale up WA* to even larger problems. We call MSC-KWA* our new
algorithm resulting from the combination of MSC-WA* and KWA*. Furthermore, we will discuss
the similarities between MSC-KWA* and beam search. Note that Appendix B contains all of the
graphs detailing the performance of WA*, KWA*, MSC-WA*, and KWA* in the N-Puzzle domain.

The data in these graphs will only be summarized in Chapter 3 due to space considerations.
1.5.2 Our contributions to beam search

Beam search is a variant of best-first search that prunes some generated nodes (pruned nodes are
not stored in memory, in contrast to nodes in the reserve list maintained by MSC-WA* and MSC-
KWA*) [7, 170, 144]. Pruning nodes from the set under consideration for expansion focuses the
search on a restricted number of possible paths, thereby cutting down on the exponential explosion
of the search. However, pruning nodes is more radical than keeping them in reserve because the only
way to bring these nodes back under consideration is to find another path to them during the search.
Beam search is not complete because all paths to the goal may become cut off due to pruning. The
same reasoning applied to optimal paths explains why beam search is not admissible.

In Chapter 4, we will focus on a standard variant of beam search based on breadth-first search
[7, 43, 170, 151, 180]. In this case, beam search expands in parallel all nodes under consideration
(starting with the set containing only the start node), orders the set of all their successor nodes by
increasing h-values (all nodes under consideration at each iteration have the same g-value), and only
keeps the best B nodes to make up the set of nodes under consideration at the next iteration. B is

called the beam width. Since all discarded nodes are purged from memory, the memory consumption

12

of beam search is proportional to B times the depth of the search (that is, the number of iterations
or levels of the search). By keeping a maximum of B nodes at each level, beam search makes the
memory consumption linear in the solution length. Since beam search stops as soon as the goal is
generated, the length of (or the number of edges in) the solution path is equal to the depth of the
search.

There are three situations in which beam search may terminate without a goal. First, if B is
too small, the beam may become empty before finding a goal. This can happen because beam
search never re-visits a node and all successor nodes may have been visited earlier. Solutions to
this problem include increasing the value of B or finding a better heuristic function. Second, the
shallowest goal may be so far away from the start that beam search with a given B value runs out
of memory before reaching it (i.e., the total memory needed for all nodes in the beam down to the
goal is larger than the available memory). The solution to this problem requires decreasing the value
of B. Third, in the intermediate case, beam search may run out of memory at a given depth (say,
d) because the heuristic function leads it astray. If there is a goal at level d (or closer to the start),
solutions to this problem include finding a better heuristic function or a memory-purging strategy
that continues searching “against” the heuristic values to find out where they are misleading.

In Chapter 4, we will follow this latter strategy. Our goal will be to scale up beam search to
larger problems by dealing with the cases in which the goal is reachable with the current value of B
but the heuristic function used to order the nodes at each level is misleading. Our main contribution
in Chapter 4 will be to apply existing backtracking strategies to beam search. By backtracking on
its pruning decisions, beam search can solve larger problems. In order to keep the search reasonably
fast, we will need a smart backtracking strategy. We will show that backtracking based on limited

discrepancy search [61] combines nicely with beam search to yield a new algorithm called BULB.
1.5.3 Summary of empirical results

We will test all of our offline search algorithms on (a sub-set of) the same standard benchmark
domains, namely the N-Puzzle with values of N ranging from 8 through 80, the 4-peg Towers of
Hanoi domain, and the Rubik’s Cube domain. Our domains (and corresponding heuristic functions)

will be described in Sections 3.6.1 through 3.6.3, respectively.

13

Table 2: Scaling behavior in our three benchmark domains

Domain | Heuristic Memory WA* | MSC-WA* | KWA* | MSC-KWA* || beam | BULB
1 0° nodes) search

8-Puzzle MD 6 v v v v v v
15-Puzzle MD 6 v v v v v v
24-Puzzle MD 6 v v v v v v
35-Puzzle MD 6 v v v v v
48-Puzzle MD 6 v v v
63-Puzzle MD 4 v
80-Puzzle MD 3 v

RSELKC s Korf’s 1 v v

Towers 13-disk

of Hanoi PDB ! v v

Table 2 contains a preview of our results that demonstrates to which extent we have achieved
our primary goal of scaling up offline search to larger problems in these domains. The first three
columns define an empirical condition as the combination of a domain, a heuristic function and the
available memory (measured as the number of storable nodes in millions). The remaining columns
list the tested algorithms. A check mark in a cell means that the algorithm in the corresponding
column solves the full set of random instances in the empirical condition defined by the row.

First, the table shows that MSC-KWA* scales up to larger problems than either KWA* or MSC-
WA* can handle since it can solve all of our random instances of the 48-Puzzle and of the Towers of
Hanoi domain. Even though MSC-KWA* does not solve all of our random instances of the Rubik’s
Cube domain, neither do the other variants of WA* (this can be inferred from Table 15 where the
available memory is twice the one listed here), but MSC-KWA* solves the highest percentage of
instances (see Table 15).

Second, the table shows that BULB is the only tested algorithm that solves all random instances
in our three benchmark domains. In addition, the table shows that beam search, which BULB
extends, is also a strong contender. Nevertheless, beam search does not solve all of our random
instances of the Towers of Hanoi domain, whereas BULB does. Furthermore, what the table does
not show is that, when both beam search and BULB scale up to problems of the same size, BULB
always finds solutions with lower costs than beam search and it does so in a reasonable amount
of time. In the 48-Puzzle, beam search reaches its best average solution cost at about 11,700 in a

fraction of a second (see Table 17 when B = 5), while BULB can reduce the average solution cost

14

by an order of magnitude down to below 1,000 and it does so with an average runtime of 10 seconds
(see Figure 49 when B = 2,000). In the Rubik’s Cube domain, beam search reaches its best
average solution cost at about 55 in about 10 seconds (see Table 20 when B = 7,000), while BULB
can cut the average solution cost nearly in half down to about 30 and it does so with an average
runtime of 40 seconds (see Figure 54 when B = 20, 000). This is a significant decrease in solution
cost given the already low solution cost exhibited by beam search. Indeed, the median and worst
solution costs in this domain are estimated to be 18 and 20, respectively [101]. In fact, the solution
obtained by BULB in a matter of minutes (namely, about 23 when B = 50,000) is significantly
lower than that obtained by a recent, powerful Rubik’s Cube solver based on macro-operators, even
though this solver uses both a larger number of pattern databases to build the macro-operators and
a post-processing step on solution paths [63]. Therefore, we believe that BULB is a state-of-the-art
solver in this domain (in terms of the trade-off between solution cost and runtime) even though it is

a pure-search, domain-independent algorithm that uses neither pre- nor post-processing.
1.5.4 Algorithm selection

With respect to our goal of scaling up offline search to larger problems, BULB presents several
advantages over MSC-KWA*. First, Table 2 shows that BULB scales better than MSC-KWA*
across domains. (In contrast, neither beam search nor MSC-KWA* clearly scales better than the
other algorithm across domains. However, when both algorithms solve all of our random instances
of the 48-Puzzle, MSC-KWA* yields a better average solution cost of about 4,000 (see Table 16)
against about 12,000 for beam search (see Table 17).)

Second, BULB is easier than MSC-KWA* to apply in practice since it only takes one parameter
(namely B) against three for MSC-KWA* (namely, W, C, and K). Indeed, Chapter 3 will show
that obtaining the best scaling behavior of MSC-KWA* requires the fine tuning of its C' and K
parameters (W is typically kept close to one for the best scaling). Nevertheless, choosing an appro-
priate value of B to give as input to BULB (and ABULB) remains a challenge and this difficulty
constitutes the main limitation of BULB.

Third, a crucial difference between BULB and MSC-KWA* is that BULB is a memory-bounded

algorithm while MSC-KWA* is not. Through B, the user can control how deep BULB searches

15

without ever running out of memory. Like for all variants of WA*, such control is not possible in
the case of MSC-KWA¥*.

Fourth, because it is memory-bounded, BULB lends itself nicely to anytime extensions, as
described in the next sub-section.

For all these reasons, and despite the fact that MSC-KWA* is easier to implement than BULB,
we believe that BULB is the algorithm of choice among the ones we have tested when it comes to
scaling offline search to larger problems. It remains future work to find a way to determine or learn
the best B value a priori based, for example, on the domain description and the heuristic function.

In this work, the value of B is determined by trial and error.
1.5.5 ABULB: Anytime variants of BULB

In Chapter 5, we will present a new family of anytime heuristic search algorithms generically called
ABULB (for Anytime BULB). ABULB is a local (or neighborhood) search algorithm in the space of
solution paths. ABULB uses BULB to find both an initial solution and restarting solutions. ABULB
can also take advantage of ITSA* for local path optimization.

ITSA* is a new local path optimization algorithm. ITSA* imposes a neighborhood structure on
the space of solution paths based on our definition of distance between paths. ITSA* interleaves the
construction and the searching of the neighborhood using breadth-first and A* search, respectively.
Successive iterations return paths with non-increasing costs. ITSA* is thus an anytime algorithm
in its own right. ITSA* performs gradient descent on the surface whose connectivity and elevation
result from the neighborhood structure and the solution cost, respectively. Each time ITSA* reaches
a (possibly local) minimum on the surface, ABULB generates a new restarting solution of higher
quality.

Our empirical study will show that, while ITSA* reduces the solution cost over time when used
as an anytime algorithm in the 48-Puzzle and the Rubik’s Cube domain, an even larger reduction
in solution cost is achieved by continuing BULB’s execution with the same beam width when it
finds a solution (ABULB 1.0) or by restarting it with a larger, automatically computed beam width
(ABULB 2.0). Furthermore, combining ITSA* with either variant of ABULB yields an even larger

reduction in solution cost in the 48-Puzzle.

16

1.5.6 Application of ABULB to the multiple sequence alignment problem

In Chapter 6, we will use the Multiple Sequence Alignment (MSA) problem in molecular biology
as an additional benchmark domain for ABULB. We will explain how the MSA problem of maxi-
mizing the similarity score of an alignment of n biological sequences reduces to the shortest-path
problem of minimizing the cost of a path between two opposite corners of an n-dimensional hyper-
cube. We will also discuss the minor modifications needed for the application of ABULB to this
domain.

Our empirical results will show that, on our MSA test problems, both ABULB 1.0 and AB-
ULB 2.0 scale up to larger problems than Anytime A*, another anytime heuristic search algorithm
based on WA*. Our results will also show that ABULB 2.0 reduces the solution cost more quickly

than ABULB 1.0.

17

CHAPTER I1I

SPEEDING UP THE CONVERGENCE OF REAL-TIME SEARCH*

2.1 Introduction

Real-time (heuristic) search methods interleave planning (via local searches) and plan execution,
and allow for fine-grained control over how much planning to perform between plan executions.
They have successfully been applied to a variety of planning problems, including traditional search
problems [98], moving-target search problems [81], STRIPS-type planning problems [119, 14],
project scheduling with resource constraints or PSRC problems [154], robot navigation and local-
ization problems with initial pose uncertainty [94], robot exploration problems [90], ad-hoc network
routing problems [149], totally observable Markov decision process problems [6], and partially ob-
servable Markov decision process problems [53]. Learning-Real Time A* (LRTA*) is probably the
most popular real-time search method [98]. It converges to a shortest path when it solves the same
planning task repeatedly. Unlike traditional search methods, such as A* [128], it can not only act
in real time (which is important, for example, for real-time control) but also amortize learning over
several planning episodes. This allows it to find a sub-optimal path fast and then improve the path
until it follows a shortest path. Thus, the sum of planning and plan-execution time is always small,
yet LRTA* follows a shortest path in the long run.

Recently, researchers have attempted to speed up the convergence of LRTA* while maintaining
its advantages over traditional search methods, that is, without increasing its lookahead. Ishida,
for example, achieved a significant speedup by sacrificing the optimality of the resulting path [83,
79]. We, on the other hand, show how to achieve a significant speedup without sacrificing the
optimality of the resulting path. FALCONS (FAst Learning and CONverging Search), our novel
real-time search method, looks similar to LRTA* but selects successors very differently. LRTA*

always greedily minimizes the estimated cost to go (in A* terminology: the sum of the cost of

*This chapter first appeared as [49].

18

moving to a successor and its h-value). FALCONS, on the other hand, always greedily minimizes
the estimated cost of a shortest path from the start to a goal via the successor it moves to (in A*
terminology: the f-value of the successor). This allows FALCONS to focus the search more sharply
on the neighborhood of an optimal path. We use our experiments with FALCONS to support our
hypothesis that real-time heuristic search converges faster to a shortest path when it selects actions
leading to states with a minimum estimated cost of a shortest path going from the start through
the state and to the goal. Our results on standard search domains from the artificial intelligence
literature show that FALCONS indeed converges typically about twenty percent faster and in some
cases even sixty percent faster than LRTA* in terms of travel cost. It also converges typically about
forty percent faster and in some cases even seventy percent faster than LRTA* in terms of trials,
even though it looks at the same states as LRTA* when it selects successors and even though it is
not more knowledge-intensive to implement.

In addition to its relevance to the real-time search community, this research also sends an im-
portant message to reinforcement-learning researchers. Indeed, they are typically interested in fast
convergence to an optimal behavior and use methods that, just like LRTA*, interleave planning
(via local searches) and plan execution and converge to optimal behaviors when they solve the
same planning task repeatedly [6, 85, 161]. Furthermore, during exploitation, all commonly-used
reinforcement-learning methods, again just like LRTA*, always greedily move to minimize the
expected estimated cost to go [165]. Our results therefore suggest that it might be possible to de-
sign reinforcement-learning methods that converge substantially faster to optimal behaviors than
state-of-the-art reinforcement-learning methods, by using information to guide exploration and ex-
ploitation that is more directly related to the learning objective.

This chapter is structured as follows. Section 2.2 defines terminology and spells out our assump-
tions. Section 2.3 introduces LRTA*. Section 2.4 provides motivation for our new action-selection
rule. Section 2.5 shows how we can significantly reduce the number of actions until convergence by
breaking ties among successor states with equal cost-to-goal estimates in favor of one with minimal
f-value. Section 2.6 demonstrates that FALCONS, our proposed algorithm, achieves an even larger
reduction in the number of actions until convergence, by selecting as the next state one with minimal

f-value and by making the cost-to-goal estimates a secondary criterion used only for breaking ties.

19

Section 2.7 provides empirical evidence for this reduction in several domains. Sections 2.8 & 2.9

discuss related and future work, respectively. Finally, Section 2.10 summarizes our contributions.

2.2 Definitions and assumptions

Definitions. Throughout this chapter, we use the following notation and definitions. S denotes
the finite state space; Sgiqr¢ € S denotes the start state; and sgoq € S denotes the goal state. !
succ(s) C S denotes the set of successors of state s, and pred(s) C S denotes the set of its
predecessors. c¢(s,s’) > 0 denotes the cost of moving from state s to successor s’ € succ(s).
The goal distance gd(s) of state s is the cost of a shortest path from state s to the goal, and the
start distance sd(s) of state s is the cost of a shortest path from the start to state s. Each state s
has a g-value and an h-value associated with it, two concepts known from A* search [128]. We
use the notation g(s)/h(s) to denote these values. The h-value of state s denotes an estimate of
its true goal distance h*(s) := gd(s). Similarly, the g-value of state s denotes an estimate of its
true start distance ¢*(s) := sd(s). Finally, the f-value of state s denotes an estimate of the cost
f*(s) := g*(s) + h*(s) of a shortest path from the start to the goal through state s. H-values are
called admissible iff 0 < h(s) < gd(s) for all states s, that is, if they do not overestimate the goal
distances. They are called consistent iff h(sg40q1) = 0 and 0 < h(s) < ¢(s,s’) + h(s') for all
states s with s 7# Sgoq and 8" € suce(s), that is, if they satisfy the triangle inequality. It is known
that zero-initialized h-values are consistent, and that consistent h-values are admissible [131]. The
definition of admissibility can be extended in a straightforward way to the g- and f-values, and the
definition of consistency can be extended to the g-values [50].

Assumptions. In this chapter, we assume that the given heuristic values are admissible. Almost
all commonly-used heuristic values have this property, including straight-line distances for maps
or Manhattan distances for sliding-tile puzzles. If h(s,s’) denotes h(s) with respect to goal s’,
then we initialize the g- and h-values as follows: h(s) = h(s, sgoq1) and g(s) = h(sstart, s) for all
states s. We also assume that the domain is safely explorable, that is, the goal distances of all states

are finite, which guarantees that the task remains solvable by real-time search methods since they

"'We assume that there is only one goal throughout this chapter (with the exception of Figure 8) to keep the notation
simple. All of our results continue to hold in domains with multiple goals.

20

—

- $ 1= Sstart
2. 8= arg mins”Esucc(s) (C(Sa 3”) + h(su))

Break ties arbitrarily
3. h(s) = if (s = sgoar) then h(s)T

else max(h(s), mins”Esucc(s) (C(Sa 3”) + h(sn)))

4. If (s = s40q1) then stop successfully
s =4
6. Go to Line 2

b

Figure 3: The LRTA* algorithm

cannot accidentally reach a state with infinite goal distance.

2.3 Learning Real-Time A* (LRTA*)

In this section, we describe Learning Real-Time A* (LRTA*) [98], probably the most popular real-
time search method. LRTA* (with lookahead one) is shown in Figure 3. Each state s has an h-value
associated with it. LRTA* first decides which successor to move to (action-selection rule, Step 2). It
looks at the successors of the current state and always greedily minimizes the estimated cost-to-goal,
that is, the sum of the cost of moving to a successor and the estimated goal distance of that successor
(that is, its h-value). Then, LRTA* updates the h-value of its current state to better approximate its
goal distance (value-update rule, Step 3). Finally, it moves to the selected successor (Step 5) and
iterates the procedure (Step 6). LRTA* terminates successfully when it reaches the goal (Step 4).
A more comprehensive introduction to LRTA* and other real-time search methods can be found in
[79].

The following properties of LRTA* are known: First, its h-values never decrease and remain
admissible. Second, LRTA* terminates [98]. We call a trial any execution of LRTA* that begins at
the start and ends in the goal. Third, if LRTA* is reset to the start whenever it reaches the goal and
maintains its h-values from one trial to the next, then it eventually follows a shortest path from the
start to the goal [98]. We call a run any sequence of trials from the first one until convergence is
detected. We say that LRTA* “breaks ties systematically” if it breaks ties for each state according
to an arbitrary ordering on its successors that is selected at the beginning of each run. If LRTA*
breaks ties systematically, then it must have converged when it did not change any h-value during

a trial. We use this property to detect convergence. Another advantage of systematic tie-breaking

21

is discussed in Section 2.7.3. Our approach differs slightly from that of Korf [98] whose version
of LRTA* breaks ties non-systematically and thus finds all shortest paths from the start to the goal.
We are satisfied with finding only one shortest path. To represent the state of the art, we use LRTA*
that “breaks ties randomly,” meaning that ties are broken systematically according to orderings on

the successors that are randomized before each run.

2.4 Motivation for our new action-selection rule

The premise of this work is that convergence to an optimal solution path can be sped up by con-
sistently maintaining the focus of the search upon its long-term objective, namely an optimal path
from the start to a goal, as opposed to the short-term objective of reaching a goal as fast as possi-
ble from the current state. We thus advocate a radically different way of focusing the search. In
this section, we make this intuitive search strategy operational and motivate 1) the need for a new
action-selection rule and 2) our choice of the action-selection rule that minimizes f-values.
Because it is agent-centered, real-time search is limited to local search around the current state
of the agent [91]. In particular, this means that the agent can only expand states in its neighborhood.
In fact, in the standard approach to real-time search with lookahead one, which we adopt in this
chapter, the agent can only expand the current state. The obvious implication is that the agent must
first move to a state in order to expand it. In other words, changing the search strategy requires
changing the action-selection strategy of the agent. This is different from standard best-first search
in which any state in the OPEN list could be expanded next, since its merit only depends on its
evaluation function, not on its proximity in the search space to the previously expanded state.?
Having motivated our need for a new action-selection rule, we now motivate our specific
proposal for an f-based rule. First note that, even though it remembers heuristic values for all
visited states (in a hash table, say), real-time search does not save the search tree in memory. Doing
so may speed up state re-expansions, but at the expense of memory usage. This would only be

beneficial if expansions are time-consuming and space is not a problem. For the same reason,

This test could be eliminated by moving Step 4 before Step 2 so that the h-value of sgoq: is never modified. How-
ever, we prefer the current (equivalent) formulation since it makes the value-update rule for the h-values completely
symmetrical with the value-update rule for the g-values to be introduced in FALCONS.

2A recent version of A* called PHA* also takes into account the cost of physically moving from one state to another
in the OPEN list [39].

22

real-time search only maintains point-to-point heuristic information, namely estimates of the
shortest distance from each visited state to the goal, but it does not explicitly maintain previously
found solution paths from the start to the goal. Therefore, we would like to focus the search, if not
on an explicit solution path, at least on an area of the search space believed to contain an optimal

solution. The research question thus becomes

How to estimate, for each state, how far it is from an optimal path?

The answer is not trivial because 1) such heuristic information needs to estimate the distance
from each state to a path (not another state), and 2) no solution path is explicitly identified. We
solve this problem in the following way. Recall that the f-value f(s) of a state s in A* estimates the
cost f*(s) of a minimum-cost path from the start to the goal constrained to go through s. The main
insight of our approach is to use the property that the f*-values of all states on any minimum-cost
path from the start to the goal are all equal to the cost C* of any minimum-cost path, while the
f*-values of all other states are all strictly larger than C'* (otherwise, these states would be on some
shortest path, by definition of f*) [59]. Since f-values estimate f*-values, and if we assume that
each state has associated with it an f-value, we propose to select actions so as to always minimize
f-values. This way, if the f-values are perfectly informed, the agent will follow directly a minimum-
cost path from the start to the goal (provided that ties among states with equal f-values are broken
in favor of states with smaller h-values, that is, in the direction of the goal state). Otherwise, since
heuristic values are continuously updated, the agent will gather more informed heuristic information
and will thus be able to switch its focus to another area of the search space that looks more likely
to contain an optimal solution. In short, we will use lowest f-values to focus the search toward
previously identified regions likely to contain an optimal solution.

Figure 4 graphically represents our new action-selection rule in comparison to that used by
LRTA¥*. In this figure, we have assumed that the only optimal solution is the straight line between
the start and goal states. Note that the agent has strayed off of the optimal path, as typically happens
when heuristic information is not perfect. In this case, minimizing cost-to-goal estimates, as LRTA*

does, may waste search effort in areas that do not seem likely to contain an optimal path (because,

23

Actual Path

a) Action—Selection Rule of LRTA*

Current

Actual Path
Minimize

Optimal Solution Path

b) Proposed Action—Selection Rule

Figure 4: Two action-selection rules for real-time search. Curves represent iso-contours for a)
cost-to-goal estimates and b) f-values.

24

despite having low cost-to-goal estimates, they also have high f-values). This is because the optimal
path from the current state to the goal may have little overlap with an optimal path from the start
state to the goal. In such cases, greedily aiming for the goal may not serve the long-term objective
of finding an optimal path. By embedding this learning objective directly into the action-selection
strategy, we expect to focus the search onto a narrower region of the search space. This reduced
number of visited states will likely be accompanied by a reduction in the total number of actions
until convergence (including repeated visits to some states).

In the next section, we show that keeping the action-selection rule of LRTA* but breaking ties
in favor of states with smaller f-values already reduces the number of actions needed to converge. In
the following section, we demonstrate that directly selecting actions that minimize f-values reduces

this number even more.

2.5 Breaking ties in favor of smaller f-values

LRTA* terminates and eventually follows a shortest path no matter how its action-selection rule
breaks ties among successors. In this section, we demonstrate, for the first time, that the tie-breaking
criterion crucially influences the convergence speed of LRTA*. We present an experimental study
that shows that LRTA* converges significantly faster to a shortest path when it breaks ties towards
successors with smallest f-values rather than, say, randomly or towards successors with largest f-
values. Recall that, in the A* search method, f(s) is equal to the sum of g*(s) and h(s), for all states
s. To implement our new tie-breaking criterion, LRTA* does not have the g*-values available but
can approximate them with g-values. It can update the g-values in a way similar to how it updates
the h-values, except that it uses the predecessors instead of the successors. Note that the g-values
in our real-time search algorithms do not have the same semantics as the g-values in offline search.
Here, a g-value is an underestimate of the cost of a minimum-cost path from the start to the state, not
the cost of the best path found so far. Figure 5 shows TB-LRTA* (Tie-Breaking LRTA*), our real-
time search method that maintains g- and h-values and breaks ties towards successors with smallest
f-values, where f(s) := g(s) + h(s) for all states s. Remaining ties can be broken arbitrarily
(but systematically). We compared TB-LRTA* against versions of LRTA* that break ties randomly

or towards successors with largest f-values. We performed experiments in thirteen combinations

25

L. s = Sstart
2. 8" = arg mingre gyee(s) (c(s, 8") + h(s"))
Break ties in favor of a successor s” with a smallest f-value, where f(s”) := g(s") + h(s")

Break remaining ties arbitrarily (but systematically)
3. g(s) := if (s = Sstart) then g(s)
else max(g(s), mins”Epred(s)(g(SH) + 6(3”7 3)))
if (s = sg0a1) then h(s)
else max(h(s), mins”Esucc(s) (C(S, 3”) + h(sn)))
4. If (s = 840q1) then stop successfully

h(s) :

s =45
6. Go to Line 2

b

Figure 5: The TB-LRTA* algorithm

of standard search domains from the artificial intelligence literature and heuristic values, averaged
over at least one thousand runs each. Section 2.7 contains information on the domains, heuristic
values, and experimental setup, including how we tested for statistical significance. Table 3 shows
that in all cases but one (Permute-7 with the zero (Z) heuristic)® breaking ties towards successors
with smallest f-values (statistically) significantly sped up the convergence of LRTA* in terms of

travel cost (action executions).

2.6 FALCONS: Selecting actions that minimize f-values

In this section, we show that turning f-value minimization into the primary action-selection criterion
is not trivial. The obvious, naive approach leads to non-termination or convergence to a non-optimal

path. We then show how to solve these problems in our final version of FALCONS.
2.6.1 FALCONS: A naive approach

We just showed that TB-LRTA* converges significantly faster than LRTA* because it breaks ties
towards successors with smallest f-values. We thus expect real-time search methods that imple-
ment this principle more consequently and always move to successors with smallest f-values to
converge even faster. Figure 6 shows Naive FALCONS (FAst Learning and CONverging Search),
our real-time search method that maintains g- and h-values, always moves to successors with small-

est f-values, and breaks ties to minimize the estimated cost-to-goal. Remaining ties can be broken

3This exception will disappear in our results with FALCONS.

26

Table 3: Travel cost to convergence with different tie-breaking rules

domain and LRTA* that breaks ties ...
heuristic towards randomly towards a smallest

values a largest f-value f-value (TB-LRTA*)
8-Puzzle M 64,746.47 45,979.19 18,332.39
T 911,934.40 881,315.71 848,814.91

Z 2,200,071.25 | 2,167,621.63 2,141,219.97

Gridworld N 116.50 97.32 82.08
Z 1,817.57 1,675.87 1,562.46

Permute-7 A 302.58 298.42 288.62
Z 16,346.56 16,853.69 16,996.51

Arrow F 1,755.42 1,621.26 1,518.27
Z 7,136.93 7,161.71 7,024.11

Tower of D 145,246.55 130,113.43 116,257.30
Hanoi Z 156,349.86 140,361.39 125,332.52
Words L 988.15 813.66 652.95
Z 16,207.19 16,137.67 15,929.81

arbitrarily (but systematically). To understand why ties are broken to minimize the estimated cost-
to-goal, consider g- and h-values that are perfectly informed. In this case, all states on a shortest
path have the same (smallest) f-values and breaking ties to minimize the estimated cost-to-goal en-
sures that Naive FALCONS moves towards the goal. (All real-time search methods discussed in
this chapter have the property that they follow a shortest path right away if the g- and h-values are
perfectly informed.) To summarize, Naive FALCONS is identical to TB-LRTA* but switches the
primary and secondary action-selection criteria. Unfortunately, we show in the remainder of this
section that Naive FALCONS does not necessarily terminate nor converge to a shortest path. In
both cases, this is due to Naive FALCONS being unable to increase misleading f-values of states
that it visits, because they depend on misleading g- or h-values of states that it does not visit and
thus cannot increase.

Naive FALCONS can cycle forever. Figure 7 shows an example of a domain where Naive
FALCONS does not terminate for g- and h-values that are admissible but inconsistent. Naive FAL-
CONS follows the cyclic path sg, s1, s2, S3, S2, S3, - - - without modifying the g- or h-values of any
state. For example during the first trial, Naive FALCONS updates g(s2) to one (based on g(s7)) and

h(s2) to one (based on h(sg)), and thus does not modify them. g(s7) and h(sg) are both zero and

27

—

.8 =

!

Sstart

s' = argmingr gy ee(s) f(8"), where f(s") == g(s") + h(s")

Break ties in favor of a successor s” with the smallest value of ¢(s, s”) 4+ h(s")
Break remaining ties arbitrarily (but systematically)

3. g(s) := if (s = Sstart) then g(s)
else max(g(s), mins”Epred(s)(g(SH) + 0(3”7 3)))
h(s) := if (s = S4oq1) then h(s)
else max(h(s), mins”Esucc(s) (C(S’ 3”) + h(sn)))
4. If (s = 840q1) then stop successfully
5.8 =5
6. Go to Line 2
Figure 6: Naive FALCONS (initial, non-functional version)
S¢ S4 85 = Sg0al
80 = Sstart S1 S2 83
S7 Sg

Figure 7: Naive FALCONS cycles forever (Each circle represents a state with its g-value/h-value)

thus strictly underestimate the true start and goal distances of their respective states. Unfortunately,
the successor of state so with the smallest f-value is state s3. Thus, Naive FALCONS moves to state
s and never increases the misleading g(s7) and h(sg) values. Similarly, when Naive FALCONS is
in state s3 it moves back to state s9, and thus cycles forever.

Naive FALCONS can converge to sub-optimal paths. Figure 8 shows an example of a do-
main where Naive FALCONS terminates but converges to a sub-optimal path even though the g-
and h-values are consistent. Naive FALCONS converges to the sub-optimal path sg, s1, s2, 83, and
s4. The successor of state so with the smallest f-value is state s3. f(s3) is two and thus clearly un-

derestimates f*(s3). Even though Naive FALCONS moves to state s3, it never increases its f-value

28

80 = Sstart 85 = Soall

86 84 = Sgoal2

)=

Figure 8: Naive FALCONS converges to a sub-optimal path (Each circle represents a state with its
g-value/h-value)

L. s = Sstart
2. 8" = argmingre gyee(s) f(s"), where f(s") := max(g(s") + h(s"), h(sstart))
Break ties in favor of a successor s” with the smallest value of ¢(s, s”) + h(s")
Break remaining ties arbitrarily (but systematically)
3. g(s) = if (s = Sstart) then g(s)
else max(g(s),
mins”Epred(s) (9(3”) + 0(3”7 3))’
MaXgr e syce(s) (9(5”) - C(S’ 5”)))
h(s) = if (s = s40q1) then h(s)
else max(h(s),
mins”Esucc(s)(()+h‘())’
ma'xs"Epred(s)(h(Sl) ())
4. If (s = s40q1) then stop successfully
s =4
6. Go to Line 2

b

Figure 9: The FALCONS algorithm (final version)

because it updates its g-value to one (based on g(sg)) and h(s3) to one (based on h(s4)), and thus
does not modify them. Naive FALCONS then moves to state s4. Thus, the trial ends and Naive
FALCONS has followed a sub-optimal path. Since no g- or h-values changed during the trial, Naive

FALCONS has converged to a sub-optimal path.
2.6.2 FALCONS: The final version

In the previous section, we showed that Naive FALCONS does not necessarily terminate nor con-
verge to a shortest path. Figure 9 shows the final (improved) version of FALCONS that solves both

problems. Appendix A contains proofs that the following theorems hold under our assumptions.

Theorem 1 Each trial of FALCONS terminates.

29

Theorem 2 FALCONS eventually converges to a path from the start to the goal if it is reset to the

start whenever it reaches the goal and maintains its g- and h-values from one trial to the next one.

Theorem 3 The path from the start to the goal that FALCONS eventually converges to is a shortest

path.

We now give some intuitions behind the new value-update and action-selection rules and show
that they solve the problems of Naive FALCONS for the examples introduced in the previous sec-
tion.

FALCONS terminates. The new value-update rules of FALCONS cause it to terminate. We
first derive the new value-update rule for the h-values. It provides more informed but still admissible
estimates of the h-values than the old value-update rule, by making better use of information in the
neighborhood of the current state. The new value-update rule makes the h-values locally consistent
and is similar to the pathmax equation used in conjunction with A* [121]. If the h-values are
consistent, then there is no difference between the old and new value-update rules. To motivate the
new value-update rule, assume that the h-values are admissible and FALCONS is currently in some
state s with 8 # 840q;. The old value-update rule used two lower bounds on the goal distance of state
s, namely h(s) and minge gyee(s)(c(s, 8") + h(s")). The new value-update rule adds a third lower
bound, namely max g cpreq(s) (h(s") — (", 5)). To understand the third lower bound, note that the
goal distance of any predecessor s” of state s is at least h(s") since the h-values are admissible.
This implies that the goal distance of state s is at least h(s”) — ¢(s”, s). Since this is true for all
predecessors of state s, the goal distance of state s is at least max g cppeq(s) (h(s") — (8", 5)). The
maximum of the three lower bounds then is an admissible estimate of the goal distance of state s
and thus becomes its new h-value. This explains the new value-update rule for the h-values. The
new value-update rule for the g-values can be derived in a similar way.

As an example, we show that Naive FALCONS with the new value-update rules now terminates
in the domain from Figure 7. When Naive FALCONS is in state so during the first trial, it increases
both g(s2) and h(s2) to two and then moves to state s3. The successor of state s3 with the smallest
f-value is state s4, and no longer state so, because f(s2) was increased to four. Thus, Naive FAL-

CONS now moves to state s4 and breaks the cycle. Unfortunately, the new value-update rules are

30

not sufficient to guarantee that Naive FALCONS converges to a shortest path. The domain from
Figure 8 still provides a counterexample.

FALCONS converges to a shortest path. The new action-selection rule of FALCONS causes
it to converge to a shortest path by using more informed but still admissible estimates of the f*-
values. In the following, we assume that the g- and h-values are admissible and we present two
lower bounds on f*(s). First, f*(s) is at least g(s) + h(s), since the g- and h-values are admissible.
Second, f*(s) is at least as large as the cost of a shortest path from the start to the goal, a lower
bound of which is h(ssert), since the h-values are admissible. The maximum of the two lower
bounds is an admissible estimate of f*(s) and thus becomes the new f-value of s. This explains
the new calculation of the f-values performed by the action-selection rule. The other parts of the
action-selection rule remain unchanged. The new f-value of state s, unfortunately, cannot be used
to update its g- or h-values, because it is unknown by how much to update the g-value and by how
much to update the h-value.

As an example, we show that FALCONS now converges to a shortest path in the domain from
Figure 8. When FALCONS reaches state s in the first trial, f(s3) is now three. All three successors
of state so have the same f-value and FALCONS breaks ties in favor of the one with the smallest
h-value, namely state s5. Thus, the trial ends and FALCONS has followed a shortest path. Since no

g- or h-values changed, FALCONS has converged to a shortest path.

2.7 Experimental results

In this section, we present our empirical evaluation of FALCONS, which we compared to LRTA*
that breaks ties randomly and TB-LRTA*. We describe, in turn, our domains and heuristic functions,

our performance measures, our empirical setup, and finally our results.
2.7.1 Domains and heuristics

For our empirical study, we used the following domains from the artificial intelligence literature.
The 8-Puzzle domain [98] consists of eight tiles (numbered one through eight) in a 3x3 grid,
leaving one position blank. A move is performed by sliding one of the tiles adjacent to the blank into

the blank position. Since tiles are not allowed to move diagonally, the number of possible moves in

31

Table 4: Travel cost to convergence with different action-selection rules

domain and LRTA*
heuristic that breaks TB-LRTA* FALCONS
values tie randomly

8-Puzzle M 45,979.19 (100%) 18,332.39 18,332.39 (39.87%)
T 881,315.71 (100%) 848,814.91 709,416.75 (80.50%)
Z | 2,167,621.63 (100%) | 2,141,219.97 | 1,955,762.18 (90.23%)
Gridworld N 97.32 (100%) 82.08 57.40 (58.98%)
Z 1,675.87 (100%) 1,562.46 1,440.02 (85.93%)
Permute-7 A 298.42 (100%) 288.62 284.95 (95.49%)
Z 16,853.69 (100%) 16,996.51 16,334.67 (96.92%)
Arrow F 1,621.26 (100%) 1,518.27 1,372.62 (84.66%)
Z 7,161.71 (100%) 7,024.11 6,763.49 (94.44%)
Towerof D 130,113.43 (100%) 116,257.30 107,058.94 (82.28%)
Hanoi Z 140,361.39 (100%) 125,332.52 116,389.79 (82.92%)
Words L 813.66 (100%) 652.95 569.71 (70.02%)
Z 16,137.67 (100%) 15,929.81 15,530.42 (96.24%)

each configuration is at most four: up, right, down or left. The goal state is the configuration with
the blank in the center and the tiles positioned in increasing order, starting at the upper left corner
and proceeding in a clockwise fashion. We used 1000 randomly selected start states among those
from which the goal is reachable. In this domain, we experimented with the Manhattan distance
(the sum, for all tiles, of their horizontal and vertical distances from their respective goal positions),
abbreviated M, and the “Tiles Out Of Order” heuristic (the number of misplaced tiles), abbreviated
T.

For the Gridworld domain [79], we used a set of 20x20 grids in which 35 percent of the 202
grid cells were randomly selected as untraversable obstacles. For each grid, the start and goal
positions were chosen randomly, while making sure that the goal was reachable from the start. Since
we allowed moves to any of the traversable neighboring locations (including diagonal moves), we
modified the Manhattan distance heuristic to be the sum, over all tiles, of the maximum of the tile’s
horizontal and vertical distances to its goal position. This heuristic was abbreviated N.

In the Permute-7 domain [68], a state is a permutation of the integers 1 through 7. Therefore,
the state space has 7! = 5040 states. There are 6 operators. Each operator Opy (k = 2,...,7) is

applicable in all states and reverses the order of the first £ integers in the state it is executed in. For

32

example, the execution of Opy, in state 7654321 leads to state 4567321. The goal state is 1234567.
The adjacency heuristic (abbreviated A) computes for each state s the number of pairs of adjacent
digits in the goal state that are not adjacent in s. For instance, A(7321645) = 3 since exactly three
pairs are adjacent in the goal but not in s, namely (3, 4), (5,6) and (6, 7). We experimented with all
5040 states as start state.

We also used a version of the Tower of Hanoi domain [68] with 7 disks and 3 pegs. In the goal
state, all disks are on the same peg, say peg number three. We experimented with 1000 randomly
chosen start states. The D heuristic simply counts the number of disks that are not on the goal peg.

The Words domain [70] is a connected graph whose 4493 nodes are S-letter English words
that are pairwise connected if they differ in exactly one letter. The goal state is the word “goals”.
We experimented with 1000 randomly chosen start states. The L heuristic computes the number of
positions (between 1 and 5) for which the letter is different from the letter at the same position in
the goal state.

In the Arrow domain [95], a state is an ordered list of 12 arrows. Each arrow can either point
up or down. There are 11 operators that can each invert a pair of adjacent arrows. The goal state
has all arrows pointing up. We experimented with 1000 randomly chosen start states among those
from which the goal is reachable. The F heuristic returns the largest integer that is not larger than
the number of arrows that need to be flipped divided by two.

In addition to the above domain-dependent heuristic values, we also experimented in all domains
with the constant function Zero (Z). Note that all of our domains share the following two properties:
(1) they are undirected, which means that for every action leading from state s to state s’ with cost c,
there is a reverse action from s’ to s with cost ¢, and (2) they have uniform costs, which means that

all action costs are one. Finally, all of these domains and heuristic functions satisfy our assumptions.
2.7.2 Performance measures

So far, we have motivated our new action-selection rule in terms of an expected reduction in the
runtime to convergence. In this section, we discuss this and other relevant performance measures.
Number of actions until convergence. The number of expansions is a common way of mea-

suring the performance of heuristic search algorithms in general [131, 96, 105]. Since real-time

33

heuristic search with lookahead one only expands the states it visits, the number of expansions is
equal to the number of actions it executes. The number of actions until convergence (also referred
to as “travel cost to convergence”) is therefore our primary performance measure in this chapter.
The reason this performance measure is used in lieu of the runtime itself is because the latter is
typically sensitive to both the implementation and the architecture of the machine on which it is
run. In contrast, the number of actions depends only on the algorithm itself and thus makes it easier
for different research teams to compare and reproduce empirical results. Nevertheless, since the
time needed for each action selection is bounded by a constant (in domains with a finite maximum
branching factor), the total runtime of real-time search algorithms is equal to the product of this
constant and of our primary performance measure. A decrease in the latter must be weighed against
any increase of the constant itself.

Number of trials until convergence. Since a real-time search agent is reset into the start state
whenever it reaches the goal, its behavior is episodic. We have called each episode a trial. So far,
we have implicitly assumed that the total time until convergence is equal to the sum of the times
spent in all trials. This assumes that the inter-trial time is negligible. However, there are domains
(for example, when a robot is learning to juggle) in which resetting the agent into its initial state is
time-consuming. In such domains, reducing the number of trials may significantly reduce the total
learning time in practice. In other cases, such as robot simulations, inter-trial time is negligible. To
take this factor into account in a domain-independent way, we propose to use the number of trials
until convergence as another performance measure.

Number of actions in the first trial. In the learning behavior of real-time search agents, there
is a possible trade-off between how many times they reach the goal (that is, the number of trials)
and how much effort they spend reaching the goal (that is, the effort per trial). It is possible that
additional exploration of the state space within a trial will reduce the total number of trials needed
to converge. This is a trade-off between short-term (getting to the goal as fast as possible) and long-
term (converging to an optimal solution) objectives. We therefore propose to measure the effort
spent in the first trial as an indication of how much exploration is performed at the beginning of

learning. Our last performance measure will thus be the number of actions in the first trial.

34

2.7.3 Empirical setup

In order for FALCONS to converge to a unique path, the secondary tie-breaking criterion must
be systematic (systematic tie-breaking was defined in Section 2.3). We enforced systematicity by
(1) choosing an arbitrary ordering for the successors of each state and (2) breaking remaining ties
according to that ordering. The ordering was selected randomly at the beginning of a run and did
not change during the run.

An experiment refers to a sequence of n runs of an algorithm in one domain with a given set
of heuristic values. To attain statistical significance, we averaged our results over n = 1000 runs,
except in the Permute-7 domain for which each experiment consisted of 7! = 5040 runs, one for
each possible start state. In general, the n runs of an experiment only differed from the other runs in
the same experiment in two respects: (1) the start state, and (2) the random ordering selected at the
beginning of each run to be used for systematic tie-breaking. In addition, in the Gridworld domain,
each run used a different grid and goal state.

There are two advantages to using systematic tie-breaking. First, it ensures that FALCONS will
converge to a unique path. If tie-breaking is not systematic, then FALCONS may not converge to
a unique path. Instead, it may converge to a set of shortest paths and randomly switch between
them after the heuristic values have converged, just like LRTA* [98]. Systematic tie-breaking thus
facilitated the detection of convergence, which happens when no heuristic value changes in the
course of a run.

Second, systematic tie-breaking allowed us to carefully control our experimental conditions. In
particular, we compared pairs of experiments that only differed in the algorithm tested (for exam-
ple, FALCONS versus LRTA*). We only compared pairs of experiments in the same domain and
with the same heuristic values. In addition, we used the same (random) ordering of successor states
for systematic tie-breaking in all pairs of runs to be compared. In other words, when comparing
algorithm 1 with algorithm 2, run 1 of both experiments used the same ordering, run 2 of both
experiments used the same ordering (but different from that of run 1), etc. Furthermore, each pair
of corresponding runs used the same start state (and the same grid and goal state in the Gridworld

domain). Now, assume that we wanted to compare the travel cost to convergence of FALCONS in a

35

Table 5: Trials to convergence with different action-selection rules

domain and LRTA*
heuristic that breaks TB-LRTA* FALCONS
values tie randomly

8-Puzzle M 214.37 (100%) 58.30 | 58.30 (27.20%)
T | 1,428.57 (100%) 1,214.63 | 797.26 (55.81%)
Z | 1,428.59 (100%) 1,227.74 | 756.47 (52.95%)
Gridworld N 6.06 (100%) 5.01 290 (47.85%)
Z 32.02 (100%) 26.30 | 19.77 (61.74%)
Permute-7 A 26.91 (100%) 25.55 | 2210 (82.13%)
Z 117.82 (100%) 92.63 | 75.22 (63.84%)
Arrow F 114.94 (100%) 110.60 | 89.01 (77.44%)
Z 171.50 (100%) 135.13 | 105.92 (61.76%)
Tower of D 214.47 (100%) 177.96 | 109.13 (50.88%)
Hanoi Z 216.77 (100%) 166.55 | 101.44 (46.80%)
Words L 32.82 (100%) 2272 | 18.40 (56.06%)
Z 71.86 (100%) 55.77 | 50.10 (69.72%)

particular domain and with a particular set of heuristic values (experiment 1) with that of LRTA* in
the same domain and with the same set of heuristic values (experiment 2). Our experimental setup
guaranteed that the only difference between run ¢ (¢ = 1, ..., n) of experiment 1 and run ¢ of exper-
iment 2 was the algorithm tested, whereas each run was made under different conditions (namely,
start state and ordering of successor states) from all of the other runs in the same experiment. This

setup enabled us to test our results for statistical significance using the paired-samples Z test.
2.7.4 Results

Tables 4, 5, and 6 report the travel cost (action executions) until convergence, the number of trials
until convergence, and the travel cost of the first trial, respectively.

Table 4 shows that, in all cases, FALCONS converged to a shortest path with a smaller travel
cost (action executions) than LRTA* that breaks ties randomly and, in all cases but one, faster than
TB-LRTA*. The percentages in the last column compare the travel cost of FALCONS with that of
LRTA*. FALCONS converged 18.57 percent faster over all thirteen cases and in one case even 60.13
percent faster. All the comparisons stated above are significant at the five-percent confidence level.

The heuristic values for each domain are listed in order of their decreasing informedness (sum of

36

Table 6: Travel cost of the first trial with different action-selection rules

domain and LRTA*
heuristic that breaks TB-LRTA* FALCONS
values tie randomly

8-Puzzle M 311.18 (100%) 452.84 452.84 (145.52%)
T 1,342.75 (100%) 970.87 | 1,057.86 (78.78%)
Z | 81,570.22 (100%) 81,585.44 | 81,526.34 (99.95%)
Gridworld N 12.15 (100%) 12.70 20.92 (172.18%)
Z 182.37 (100%) 182.55 183.13 (100.42%)
Permute-7 A 8.14 (100%) 7.75 8.13 (99.88%)
Z | 2,637.86 (100%) 2,639.13 | 2,639.13 (100.05%)
Arrow F 15.85 (100%) 16.62 33.61 (212.05%)
Z 1,016.33 (100%) 1,016.83 1,016.83 (100.05%)
Towerof D | 4,457.86 (100%) 3,654.80 | 3,91046 (87.72%)
Hanoi Z | 483949 (100%) 4,803.81 | 4,801.84 (99.22%)
Words L 24.27 (100%) 27.79 37.80 (155.75%)
Z | 2,899.73 (100%) 2,900.36 | 2,900.68 (100.03%)

the heuristic values over all states). For example, the (completely uninformed) zero (Z) heuristic is
listed last. Table 4 then, shows that the speedup of FALCONS over LRTA* was positively correlated
with the informedness of the heuristic values. This suggests that FALCONS makes better use of the
given heuristic values. Notice that it cannot be the case that FALCONS converges more quickly
than LRTA* because it looks at different (or more) states than LRTA* when selecting successor
states. FALCONS looks at both the predecessors and successors of the current state while LRTA*
looks only at the successors, but all of our domains are undirected and thus every predecessor is
also a successor. This implies that FALCONS and LRTA* look at exactly the same states.

Table 5 shows that, in all cases, FALCONS converged to a shortest path with a smaller number
of trials than LRTA* that breaks ties randomly and, in all cases but one, faster than TB-LRTA*.
FALCONS converged 41.94 percent faster over all thirteen cases and in some cases even 72.80
percent faster.

To summarize, Table 4 and Table 5 show that FALCONS converges faster than LRTA* and even
TB-LRTA*, both in terms of travel cost and trials.

We originally expected that FALCONS would increase the travel cost during the first trial, since

the action-selection rule of LRTA* (minimize the cost-to-goal) has experimentally been shown to

37

Table 7: Travel cost to convergence with different action-selection rules, and with or without g

updates for FALCONS

domain and FALCONS

heuristic LRTA* FALCONS without

values g updates
8-Puzzle ~ M | 45979.19 (100%) | 18,332.39 (39.87%) | 19,222.08 (41.81%)
T | 881,315.71 (100%) | 709,416.75 (80.50%) | 817,078.12 (92.71%)

Gridworld N	97.32 (100%)	57.40 (58.98%)	58.82 (60.44%)
Permute-7 A	29842 (100%)	284.95 (9549%)	263.00 (88.13%)
Arrow F	162126 (100%)	1,372.62 (84.66%)	1,533.11 (94.56%)
T.ofHanoi D	130,113.43 (100%)	107,058.94 (82.28%)	128,987.97 (99.14%)
Words L	813.66 (100%)	569.71 (70.02%)	547.35 (67.27%)

result in a small travel cost during the first trial under various conditions. Table 6 shows that, in
four of the thirteen cases, the travel cost of FALCONS during the first trial was larger than that of
LRTA¥*; in seven cases it was approximately the same (99 percent to 101 percent); and in two cases
it was lower. The travel cost of FALCONS during the first trial was 19.35 percent larger than that of
LRTA* over the thirteen cases. Overall, there is no systematic relationship between the travel cost
of FALCONS and LRTA* during the first trial, and the sum of planning and plan-execution times is
always small for FALCONS, just like for LRTA*.

So far, our main performance measure has been the travel cost to convergence. One may com-
plain that the speedup exhibited by FALCONS over LRTA* comes at an extra computational cost,
namely an extra value update per action execution. To decrease the total computational cost (value
updates), FALCONS would have to cut the travel cost to convergence at least in half. However, it re-
duces the travel cost by only 18.57 percent. We also compared FALCONS with a variant of LRTA*
that performs two value updates per action execution. This can be done in various ways. Among the
ones we tried, our best results were obtained with a variant of LRTA* that first updates h(s’) (where
s’ is the successor of the current state s with the smallest c(s, s’) + h(s")), then updates h(s), and
finally selects the successor s” of s with the smallest c(s, s”) + h(s"), which may be different from
s'. Empirically, this algorithm had a smaller travel cost to convergence than FALCONS.

However, we can modify FALCONS so that it never updates the g-values, resulting in one

value-update per action execution, just like LRTA*. Table 7 reports experimental results that clearly

38

show that FALCONS without g updates had a smaller travel cost to convergence than LRTA* (with
lookahead one). The speedup was 22.28 percent on average, and up to 58.19 percent. Additional
results show that the number of trials to convergence for FALCONS without g updates was 25.97
percent less than for LRTA* on average (and up to 68.71 percent less), and that FALCONS executed
an average of 57.51 percent more actions than LRTA* in the first trial.> These results are important
for two reasons. First, they support the claim that the action-selection rule of FALCONS speeds up
convergence by making better use of the available heuristic knowledge and is able to decrease both
the travel cost and computational cost to convergence. Second, they suggest that FALCONS may
benefit from an enhanced action-selection rule that focuses the search even more sharply around an
optimal path by speeding up the learning of more accurate g-values, while still making efficient use

of the initial heuristic knowledge.

2.8 Related work

[79] presents an overview of real-time heuristic search algorithms and their application to moving-
target search [81, 76, 82, 152] and bidirectional search [77, 78]. Multi-agent extensions of real-time
search have also been discussed [89, 87, 171, 80]. We now focus on single-agent real-time search
approaches that are more closely related to LRTA* and FALCONS.

HLRTA* [164] is representative of a class of methods (such as ELRTA* [164] and SLRTA*
[34]) that speed up the convergence of LRTA* by using a different value-update rule.* This is in
contrast to FALCONS that uses a different action-selection rule. Both improvements to LRTA*
are orthogonal and guarantee the optimality of the final (that is, converged) solution. In [51, 46],
we present the first thorough empirical evaluation of HLRTA* and show that it and FALCONS
have complementary strengths that can be combined. We call the resulting real-time search method
eFALCONS (for Even FAster Learning and CONverging Search) and show that it converges with

fewer actions to a minimum-cost plan than LRTA*, HLRTA*, and FALCONS, even though it looks

3In domains with uniform costs, with consistent h-values, and with zero-initialized g-values, FALCONS without g
updates reduces to LRTA*. Thus, Table 7 does not show results for completely uninformed heuristic values and our
averages do not include them.

We thank Stefan Edelkamp for introducing us to HLRTA and Richard Korf for making Thorpe’s thesis about
HLRTA* available to us.

39

at the same states when it selects successors on undirected graphs and is not more knowledge-
intensive to implement. However, the main drawback of eFALCONS is that its runtime overhead
per state expansion is larger than that of its component algorithms since it maintains more heuristic
values per state. This overhead is typically larger than the runtime savings due to the reduction in
the number of actions to convergence.

d-search is another variant of LRTA* that uses a pruning mechanism to control its exploration
[153]. This mechanism is orthogonal to the aforementioned improvements on LRTA*. Shimbo et al.
show that FALCONS converges faster than d-search in the 8-Puzzle and gridworld domains.> Fur-
thermore, their experiments demonstrate that FALCONS significantly reduces space requirements
over LRTA*. This is important since it provides empirical evidence that the speedup exhibited by
FALCONS is accompanied by a sharper focus of the search around the optimal solution it converges
to. [153] also introduces another variant of LRTA* called e-search that speeds up its convergence
while sacrificing the optimality of the converged solution by putting more weight on the h-values
when computing the estimated cost to the goal. Again, this variation is orthogonal to the aforemen-
tioned ones.

Finally, there exists a class of real-time search algorithms that add a backtracking mechanism
to LRTA* in order to speed up convergence by propagating value updates backward. This class
includes SLA* [155], SLA*T [156], and y-Trap [17]. SLA* and ~y-Trap use essentially the same
backtracking strategy but were developed independently. SLA*T, which extends SLA* with an ad-
ditional parameter to control the amount of backtracking and thus the amount of exploration (and
the rate of learning), was applied to project scheduling problems with resource constraints (PSRC).
The idea of backtracking is orthogonal to the action-selection rule used by FALCONS. However,
all the backtracking algorithms make the extra assumption that all actions in the domain are re-
versible (that is, the graph is undirected). In contrast, FALCONS is applicable to both undirected

and directed graphs.

SNevertheless, d-search does converge faster than LRTA*, even though the motivation for it was different (§-search
was designed to distribute and control the learning across trials).

40

2.9 Future work

We envision at least two directions for future work in real-time search.
First, the family of real-time search algorithms has grown quite large. There is a need for an
exhaustive empirical comparison of these algorithms. Due to the different assumptions they make,

this empirical study will require a wide variety of benchmark domains®

in order to discover a map-
ping between classes of domains (based, for example, on structural features of their associated state
spaces) and the classes of algorithms that are most efficient on them. Not only is the efficiency of
real-time search algorithms expected to be domain-dependent, there are numerous ways to measure
performance (such as the number of actions to convergence or per trial, the number of trials to con-
vergence, the solution quality as a function of learning or after convergence, the rate of learning,
the trade-off between exploration and exploitation, etc.). Furthermore, most of the foregoing en-
hancements to LRTA* are orthogonal, including changes to the value-update rule, changes to the
action-selection rule, the increased weight on the h-values, the addition of pruning rules, the use of
a larger and even variable lookahead [17], etc.). The number of algorithms resulting from possible
combinations is extremely large. Yet, it would be useful to know which combinations work best
together and for what tasks. [16] has started such an investigation.

Second, a particularly interesting extension of FALCONS is its application to domains from
real-time control. These domains require real-time action selection and convergence to optimal
behaviors but, at the same time, the setup for each trial is expensive and thus it is important to
keep the number of trials small. For learning how to balance poles or juggle devil-sticks [146],
for example, the pole needs to be picked up and brought into the initial position before every trial.
Domains from real-time control are typically directed and sometimes probabilistic, and we have
not yet applied FALCONS to domains with these properties. Of course, FALCONS can be applied
without modification to directed domains since all of our theoretical results continue to hold. The
main difficulty of applying FALCONS to probabilistic domains is to adapt the notion of f-values to
such domains. When the effects of actions are probabilistic, the agent learns a policy that only has

a probability (typically smaller than one) of visiting some states. In this context, it is not obvious

®Note that all the domains used in our evaluation of FALCONS happen to be undirected.

41

how to even define the concept of a minimum path cost through a state (such as an f-value) when

the policy is not guaranteed to visit the state.

2.10 Contributions

Our research on real-time heuristic search has yielded the following contributions:

e We have extended the scope of applicability of A*’s principle for ordering state expansions
to the real-time search setting. We have shown that, by making real-time search less greedy
(namely, by moving towards states with minimum f-values instead of h-values), we can sig-
nificantly reduce its number of actions to convergence in several domains. Furthermore, this
reduction in runtime can be accompanied by a reduction in the number of visited states, and

therefore in the space requirements of real-time search, as results in [153] indicate.

e We designed a new action-selection rule for online, dynamic programming methods. We
have shown how to implement it in the case of deterministic task domains. This rule has
great potential relevance to the reinforcement-learning community, since the vast majority of
existing methods in this area use the greedy action-selection rule when exploiting heuristic
information. Our results suggest that significantly faster learning could result from a less

greedy exploitation rule.

e We successfully implemented FALCONS, a new algorithm for real-time heuristic search.
FALCONS exhibits significantly higher performance than state-of-the-art real-time heuristic
search methods. More precisely, FALCONS reduces both the number of actions and the
number of trials it takes to converge. We resolved non-trivial problems in order to guarantee

that FALCONS terminates and converges to a shortest path.

42

CHAPTER 111

SCALING UP WA* WITH COMMITMENT AND DIVERSITY"

3.1 Introduction

Adding greediness is a standard way of scaling up A* search to larger problems while sacrificing
solution quality. Weighted A* (or WA*) embodies this trade-off by varying the weight it puts on
the heuristic values. Recently, two improved versions of WA* have been proposed to speed it up
and scale it up to even larger domains. These recent variants of WA* were developed independently
and have never been compared. In this chapter, we first compare them empirically in three bench-
mark domains. Then, we demonstrate the additional benefit of combining them, since the resulting
algorithm scales up to larger problems. Finally, we observe the strong similarity between our new
algorithm and an existing algorithm called beam search. This fuller understanding of the behavior
of beam search enables us to propose possible variations on the standard beam search algorithm.

The starting point of this work is the existence of two separate lines of research that have pro-
duced two distinct variants of WA*. First, K-Best-First Search (KBFS) introduces diversity in WA*
(resulting in the KWA* algorithm [37]) in order to avoid focusing too much search effort in areas
of the search space where the heuristic function is misleading. Second, Multi-State Commitment
search introduces commitment in WA* (resulting in the MSC-WA* algorithm [88]) in order to give
it a stronger depth-first component. While WA* only scales up to the 24-Puzzle in our empirical
setup, each of these algorithms scales up to the 35-Puzzle.

Following an empirical comparison of these three algorithms, we proceed to show that the ideas
of commitment and diversity can be combined and applied to WA* (see Figure 10). The resulting
algorithm, which we call MSC-KWA*, scales up to the 48-Puzzle, while neither MSC-WA* nor
KWA* does in our empirical setup. These and similar empirical results with our two other bench-

mark domains support our hypothesis that WA* solves larger problems when it is enhanced with

*This chapter first appeared as [48].

43

A*
[Hart et al. 1968]

Add greediness

WA*
[Pohl 1970]

Add diversity Add commitment

KWA?#*
[Felner et al. 2003]

MSC-WA*
[Kitamura et al. 1998]

Add commitment Add diversity

Figure 10: Roadmap for this research

both diversity and commitment.

This chapter is structured as follows. Sections 3.2, 3.3, and 3.4 present the WA*, KWA* and
MSC-WA* algorithms, respectively. Section 3.5 motivates and describes the new MSC-KWA*
algorithm that results from adding both diversity and commitment to WA*. Section 3.6 reports on
our empirical evaluation of all four algorithms in three benchmark domains. Sections 3.7 and 3.8
discuss related and future work, respectively. Finally, Section 3.9 concludes by summarizing our

contributions.

3.2 The WA* algorithm

A* [59, 60] is a best-first search algorithm since it always expands next a most promising state in
the current list of candidates. This list, called OPEN, contains all the generated states that have
not yet been expanded. The promise of an open state is represented by an estimate of the cost of a
shortest path from the start via the open state to a goal state. This estimate, called the f-value of the

state, is the sum of the cost of the shortest path found so far from the start to the state (its g-value)

44

1. procedure WA* (s 4q4r¢, heuristic(.), wqy, wy): solution cost

2. g(sstart) = 0; h(Sstart) := heuristic(sstart); OPEN := {Sstars }; CLOSED := ()
3. while (OPEN # () do

4. state := argmingcoprn { wy X g(s) +wp X h(s) }

5. OPEN := OPEN\{state}

6. CLOSED := CLOSED U {state}

7. g = g(state) +1

8. for each successor s of state do

9. if (s =540q:) then return g

10. if(s ¢ OPENUCLOSED)theng(s) := g;h(s) := heuristic(s);OPEN := OPENU{s}
11. elseif (g < g(s)) then

12. if (s € OPEN) then OPEN := OPEN\{s} else CLOSED := CLOSED\{s}
13. g(s) := g; OPEN := OPEN U {s}
14. end for

15. end while
16. return co

Figure 11: The WA* algorithm

and the cost of the remaining path from the state to a goal (its h-value). Since a path from an open
state to a goal is not yet known, its h-value is computed using a heuristic function. If this function
is admissible (that is, no h-value overestimates the true cost of a shortest path to a goal), then A* is
complete, it returns an optimal solution, and it is optimally efficient among all admissible best-first
search algorithms [131].

Its exponential space- and time-complexity prevents A* from solving large problems. One way
to scale up A* is to make the search more greedy by putting a larger weight on A than on g when
adding them up to compute the f-value of each state [132, 52]. WA* uses this new definition of

the f-value of a state s: f(s) = wy X g(s) + wp x h(s), wp, > wy > 0. Equivalently, W is

wh
wg+hp

(1—=W)g(s) + W x h(s). When W = 0.5 (equivalently wy = wy, > 0), WA* reduces to A*.

defined as the relative weight on the h-value, thatis W = f(s) can then be re-written as

When W > 0.5 (equivalently wj > wg), WA* is more greedy than A*. Increasing W increases
the cost of the solution found by WA* (which is not admissible anymore) but it also speeds up WA*
by reducing the number of states it generates. [24] shows that, in the worst case, the cost of the
solution returned by WA* exceeds the optimal cost by a factor equal to wj, /w,. In practice, the
solution cost returned by WA* is much lower than this upper bound (see, for example, [99], as well

as our experimental results reported below).

45

Figure 11 contains the pseudo-code for our implementation of WA*, which embodies the fol-
lowing assumptions: 1) there is a single goal state denoted s 444;, and 2) each operator (or action) has
a uniform cost of, say, one. These assumptions, while not essential to the behavior of WA*, make
the pseudo-code more concise.! WA* takes as input the start state (and implicitly the domain op-
erators), a heuristic function (which associates an h-value with each state), and the weights applied
to the g- and h-values in the f-value computations (or, equivalently, a single parameter W). The
OPEN list is initialized with the start state (Line 2). Each generated state is stored in memory with
its g- and h-value. The former is computed as states are generated during the search (Lines 2&7),
while the latter is computed using the given heuristic function (Lines 2&10). The CLOSED list,
also initialized on Line 2, contains the set of expanded states. The main loop (Lines 3-15) is exe-
cuted until the OPEN list is empty, in which case there exists no solution path (Line 16), or until
the goal is generated for the first time (Line 9). During each iteration, the best state is selected in
OPEN (Line 4). It is moved from OPEN to CLOSED (Lines 5&6), since it is about to be expanded
(Lines 8-14). If a successor is newly generated, it is inserted into OPEN (Line 10). Otherwise, it
must be in either OPEN or CLOSED. In both cases, if the newly found path is shorter than the best
one found so far (Line 11), the successor is removed from its current location (Line 12) and inserted
into OPEN with its new, reduced g-value (Line 13). Otherwise, the successor is discarded.

The two extensions of WA* described in Sections 3.3 & 3.4 are alternatives to the following
two characteristics of WA*. First, WA* expands only one state per iteration. In contrast, KWA*
expands K (K > 1) states per iteration. Second, WA* keeps (in OPEN) all generated states as
potential candidates for expansion. In contrast, MSC-WA* reduces the size of the set of candidates
for expansion to a small constant. The next two sections describe these two variants of WA¥*,

respectively.

3.3 The KWA* algorithm: Introducing diversity in WA*

WA* is a greedy version of A*. This has two implications. First, like A*, WA* is a best-first

search algorithm that always expands next the most promising node, namely an open node with the

!'The pseudo-code also omits the management of back-pointers that enable the recovery of the solution path when the
search terminates at the goal state.

46

smallest f-value. Second, since it is greedy, WA* puts more weight on the h-value than A* does, and
the more so, the closer to 1 the value of W. As a result, WA* is likely to get trapped in regions of
the search space in which the h-values are misleading (namely, too low). This problem is common
among greedy search algorithms, which are attracted to local minima.

K-best-first search (KBFS) is an answer to this problem: it reduces the greediness of the search
by re-introducing a breadth-first component into best-first search [37]. The idea is to expand K
nodes (K > 1) at each iteration of the main loop, instead of just one as in standard best-first search.
Applied to WA*, this idea results in the KWA* algorithm.

Figure 12 contains the pseudo-code for KWA*. The only difference with WA* is that Lines 4-6
in Figure 11, in which a single most promising node is selected for expansion, are replaced with
Lines 4-10 in Figure 12, in which K most promising nodes are selected for expansion. Later (see
Lines 11-21 in Figure 12), these nodes are expanded in parallel so that the set of all their successors
is added to OPEN before the next iteration begins. This is the crucial point in order to avoid focusing
the search greedily (and often wastefully) around a local minimum.

To illustrate this point, let us consider the following example. Assume the start state has two
successors with f-values equal to 10 and 20, respectively. Note that, since we are interested in cases
with W > 1, the f-values are not monotonically increasing when going down the tree. Further
assume that the goal is only reachable via the second successor. Therefore, choosing the first suc-
cessor to expand next is a mistake for WA*. If the first successor is the root of a large sub-tree
whose states also have misleading h- and thus f-values, WA* keeps exploring this sub-tree until all
f-values in the OPEN list become larger than or equal to 20. This happens because WA* focuses
the search on a single successor of the start state. In contrast, when expanding the K best nodes in
OPEN (for K = 2, say), KWA* expands the start state in the first iteration. At this point, the OPEN
list contains the two successors of the start state. KWA* expands them both in the second iteration.
All their successors are added to the OPEN list. Two of them are then selected for expansion. The
difference now is that there is a chance that one of them (or both) is in the ‘good’ sub-tree, namely
the one rooted at the second successor of the start state. This is a way of adding diversity to the
search, as opposed to focusing on a single sub-tree. Of course, this diversity may be advantageous

at various levels in the search tree, not just at the start state. Generally speaking, the larger K, the

47

1. procedure KWA*(s 447, heuristic(.), wgy, wy, K): solution cost
2. g(sstart) = 0; h(Sstars) := heuristic(Sstars); OPEN := {Sstars }; CLOSED := ()
3. while (OPEN #) do
4. SET =
5, while ((OPEN # () and (|SET| < K)) do
6. state := arg mingcoprn {wy X g(s) +wp x h(s)}
7. SET := SET U {state}
8. OPEN := OPEN\({state}
9. CLOSED = CLOSED U {state}
10. end while
11. for each state in SET do
12. g = g(state) +1
13. for each successor s of state do
14. if (5 = $40q1) then return g
15. if (s ¢ OPEN U CLOSED) then
16. 9(s) == g; h(s) = heuristic(s); OPEN := OPEN U {s}
17. elseif (g < g(s)) then
18. if (s € OPEN) then OPEN := OPEN\{s} else CLOSED := CLOSED\{s}
19. g(s) := g; OPEN := OPEN U {s}
20. end for
21. end for
22. end while
23. return oo

Figure 12: The KWA* algorithm

larger the probability that a node on the optimal path will be selected during the next iteration. In
the extreme case, when K = oo, KWA* reduces to breadth-first search since then all nodes at a
given level in the search tree are expanded in parallel. The probability of one of them being on an
optimal path is equal to 1. The price to pay for this increased diversity is the risk of generating much
more nodes at each iteration than is necessary, as is clear in the extreme case when KWA* reduces

to uninformed search.

3.4 The MSC-WA* algorithm: Introducing commitment in WA*

As a greedy version of A*, WA* puts more weight on the h-value than A* does. Therefore, WA*
with W > 0.5 expands early on some nodes with low h-values even when their g-value is high
enough for A* to delay their expansion. As a result, WA* search exhibits a stronger depth-first
characteristic than A* search. This enables WA* to solve larger problems than is possible with WA*
(at the expense of solution quality). For example, because its memory consumption is reduced,
WA* can solve any random instances of the 15-Puzzle, while A* often runs out of memory. To

summarize, WA* increases greediness in order to scale up A*.

48

Another way to scale up A* with a depth-first component, is to focus the search on a sub-set
of nodes in the OPEN list. This is the idea behind Multi-State Commitment (MSC) search [88].
Applied to WA*, this idea results in the MSC-WA* algorithm.

WA* keeps in OPEN the end points (that is, nodes) of all paths currently under construction.
So WA* does not commit to any region of the search space: based on the lowest f-value, WA* can
expand next any node in OPEN, even if it is very distant (in the search space) from the most recently
expanded node. WA* can jump around the state space indiscriminately among open nodes. This
is beneficial since it allows WA* 1) to stop exploring a promising region of the search space when
later expansions reveal that its h-values are misleading and 2) to restart exploration from a different
node in OPEN. Unfortunately, this “insurance” against mistakes comes at the cost of growing a
wide search front. In this sense, WA* does not make any commitment: any node in OPEN can be
expanded next if its f-value warrants it. In short, lack of commitment leads to a wide search front,
which in turn results in large memory requirements and thus poor scaling (as demonstrated by the
performance of WA* in the 35-Puzzle, see Table 9).

To address this problem, [88] introduces the notion of commitment, according to which only
a sub-set of the OPEN nodes are currently active and stored in the COMMIT list. Only one of
them can be expanded next. The other nodes in OPEN are on the RESERVE list. They are used to
refill the COMMIT list when it becomes smaller than its predefined size C. Decreasing C' means
sharpening the focus of the search to a smaller sub-set of the open nodes. In turn, this introduces a
stronger depth-first search component in order to scale up the search to larger problems. Applied to
WA* this idea results in MSC-WA*.

The first difference with WA* is that the OPEN list is split into the COMMIT and RESERVE
lists. While the former plays the role of a smaller OPEN list, the latter is used as storage for
generated nodes that are not currently committed to but that the search may return to later on. This
is useful because of the second difference with WA*, namely the fact that MSC-WA* never re-
expands a node, even if a shorter path to it is later found (the designers of MSC-WA* made that
design choice because they were more interested in finding solutions quickly than in the solution
cost [88]). As a result, the COMMIT list may not be filled to capacity or may even become empty.

Figure 13 contains the pseudo-code for MSC-WA*. The algorithm takes one more parameter

49

1. procedure MSC-WA*(s 5474, heuristic(.), wg, wy, C): solution cost

2. g(Sstart) = 0; h(Sstart) := heuristic(Ssiart); COMMIT := {Ssiart };
3. RESERVE = (; CLOSED = ()
4. while (COMMIT # () do
5. state = arg minge commrr { wg X g(s) + wy, % h(s) }
6. COMMIT = COMMIT\{state}
7. CLOSED := CLOSED U {state}
8. for each successor s of state do
9. if (s = 5494;) then return g
10. if (s ¢ COMMIT U RESERVE U CLOSED) then
11. g(s) = g(state) + 1; h(s) := heuristic(s); COMMIT := COMMIT U {s}
12. end for
13. while (| COMMIT| > C') do
14. state := arg maxsc commir { wg X g(s) +wp, X h(s) }
15. COMMIT = COMMIT\{state}
16. RESERVE := RESERVE U {state)
17. end while
18. while ((|(COMMIT| < C) and (|RESERVE| > 0)) do
19. state = arg minge prservE { Wq X 9(s) + wp, X h(s) }
20. RESERVE := RESERVE\{state}
21. COMMIT = COMMIT U {state}

22. end while
23. end while
24. return oo

Figure 13: The MSC-WA* algorithm

50

than WA*, namely the size C of the COMMIT list. The COMMIT list is initialized to the start
state, while the RESERVE and CLOSED lists are initially empty (Lines 2&3). Then the main loop
(Lines 4-23) is executed until COMMIT is empty (in which case there is no solution, Line 24) or
until the goal is generated for the first time (Line 9). At each iteration, the best node in COMMIT
is selected for expansion and moved to the CLOSED list (Lines 5-7). Every newly generated node
is added to the COMMIT list (Lines 10-11). If the COMMIT list is too large, the least promising
nodes are moved to the RESERVE list (Lines 13-17). but if the COMMIT list not full, the most
promising nodes in the RESERVE (if any) are used to fill it up (Lines 18-22).

To illustrate the behavior of MSC-WA?*, we now consider two extreme cases. When C' = 1,
MSC-WA* performs a greedy search. Starting with the start node, the current node is repeatedly
removed from COMMIT (which is now empty) and expanded. All its successors are added into
COMMIT. All but the most promising ones are immediately moved to the RESERVE. At the end of
each iteration, the COMMIT list only contains the best successor of the current node. This depth-
first search stops when the goal is reached or when a dead-end is reached (either because there exists
a dead-end in the search space or because no new state is reachable from the current one). In the
latter case, the search is restarted from the best state in the RESERVE.

When C' = oo, the COMMIT list never fills up and the RESERVE list remains empty. As a
result, COMMIT behaves like the original OPEN list. In this case, MSC-WA* reduces to a version
of WA* that never re-expands a node. When C ranges from 2 to infinity, MSC-WA* becomes less
and less focused and resembles more and more best-first search with no commitment. MSC-WA*
grows a search tree in which at most C' leaves are active at any time. Some children of the just-
expanded node may be preferred over nodes in the RESERVE with smaller f-values. This sharper
focus explains how MSC-WA* is able to scale up greedy best-first search to larger domains than

WA?* can handle.

3.5 The MSC-KWA* algorithm: Combining diversity and commitment

In this section, we first contrast the effects of diversity and commitment on the performance of
best-first search. Since these ideas are orthogonal, we then show how to combine them into a new

algorithm (MSC-KWA¥*) that scales up to larger problems than is possible with diversity (KWA*)

51

or commitment (MSC-WA*) alone.

3.5.1 Comparing the behaviors of KWA* and MSC-WA*

When assessing the behavior of our heuristic search algorithms, we use four standard performance
measures, namely memory consumption, solution cost, search effort, and runtime. Since our pri-
mary objective is to scale up best-first search to larger domains, and since the memory usage is the
main obstacle in this respect, the memory consumption is our primary focus. When the available
memory is enough for an algorithm to terminate successfully on all instances, the solution cost is
our secondary performance measure. This preference (over search effort and runtime) is justified

by the facts that:

e The search effort (that is, the number of generated nodes) is strongly correlated with the
memory consumption, as our empirical results have demonstrated for all the algorithms under

consideration.

e The runtime is on the order of seconds since the memory typically available on current PC’s

is quickly filled up by best-first search algorithms such as variants of WA*.2

In summary, our comparison focuses primarily on the functional relationship between the memory
consumption and the solution cost.

In this sub-section, we use a preview of our empirical results in the IN-puzzle to compare the
behaviors of KWA* and MSC-WA*. Since each of the KWA* and MSC-WA* algorithms has two
parameters (namely, W and either K or C'), our full empirical results are structured as two sets of
memory-cost functions parameterized on each parameter (see Section 3.6). Here in contrast, we
abstract away the influence of these parameters and use graphs that associate with each solution
cost the minimum memory consumption over all settings of the parameters. We thus obtain a single
curve per algorithm. In essence, we consider an idealized situation in which an oracle tells us the
parameter settings that minimize the memory consumption for a given solution cost. The resulting
curves are shown in Figure 14 for the N-Puzzle with N = 8, 15, 24, 35.

We observe the following trends:

*In this chapter, we do not consider memory-bounded algorithms (e.g., [96, 19, 143, 86, 177]) because, even though
they do not run out of memory, they exhibit unacceptably large runtimes due to their node-regeneration overhead.

52

Number of Stored Nodes (log scale)

Number of Stored Nodes (log scale)

v
KWA* —— 'a‘ KWA* ——
MSC-WA* Y 1e+06 | MSC-WA* — |
o
0
2
H
T 100000 F E
1000 | , Z
-
]
H
o
) ,
7] /
w 10000 a
o -
M
i
2z
Il Il Il Il Il Il Il Il 1000 Il
10 20 30 40 50 60 70 80 90 100 100
Solution Cost Solution Cost (log scale)
a) 8-Puzzle b) 15-Puzzle
T
N KWA* ——
KWA* —— '; MSC-WA* ——
MSC-WA* 19
n
o
0
1e+06 E 2
n
]
el
<]
4
kel
i
4 1e+06 |- B
el
[
W
100000 1 o
H
i
z
Il Il
100 1000 1000
Solution Cost (log scale) Solution Cost (log scale)
¢) 24-Puzzle d) 35-Puzzle

Figure 14: Performance comparison: WA*, KWA*, and MSC-WA* in the N-Puzzle

e The larger the domain, the more KWA* reduces the memory consumption (for a given solu-
tion cost) over WA*. While there is no significant improvement in the 8-Puzzle, the reduction
is significant in the 15-Puzzle and even larger (about an order of magnitude) in the 24-Puzzle.
Because of this effect, KWA* is able to find shorter solutions than WA* in both the 15- and
24-Puzzle within the available memory. In other words, KWA* enlarges the range of reach-
able solution costs toward the small end (that is, toward the left in the figures) while reducing
the memory consumption (that is, a shift toward the bottom in the figures). Because of its

reduced memory consumption, KWA*, unlike WA*, is able to solve the 35-Puzzle.

e While MSC-WA* does not improve over the memory consumption of WA* (over the range of

solution costs obtainable by WA*), its main advantage, from our perspective, is that it enlarges

53

this range toward the large end (that is, toward the right in the figures) while reducing its
memory consumption (that is, toward the bottom in the figures). Unfortunately, the magnitude
of this effect seems to decrease as [N increases. Nevertheless, MSC-WA* can solve the 35-

Puzzle, which WA* cannot.

e As a result, KWA* and MSC-WA* improve over WA* in two different ways. Because of
its stronger breadth-first search component, KWA* improves solution quality so that it moves
(and extends) the WA* curve toward the left. Because of its stronger depth-first search compo-
nent, MSC-WA* improves its memory consumption so that it extends the WA* curve toward

the bottom (and the right).

Table 8: Comparison of WA*, KWA*, and MSC-WA* in the N-Puzzle

N | Per. WA* KWA® MSC-WA*
Measure || Value | W |Best| Value | W | K |Best| Value | W | C |Best
Min Cost || 21.85|050| v | 21.85]050] 2 | v | 22.01]0.50] 800
Min Sto. 452 10.86 464 0.86| 2 202080 2 | v

8 [MinGen. | 514]0.86 519(099| 4 206080 2 | v
Min Time
Min Cost || 63.510.67 53.8510.67 50K | v || 56.29]0.60 | 80K
Min Sto. || 6,050 | 0.99 6,028 [0.99 | 8 4113(095| 20 | v

15 "Min Gen. || 6,972]0.99 6,704 [0.99 | 8 4191095 20 | v
Min Time || 0.003 | 0.99 0.003 099 5 0002099 6 | v
Min Cost || 165.16 | 0.75 113.56 | 0.99 [20K | v || 164.56 [0.75 | 90K
Min Sto. || 44,097 [0.99 32.5671099] 5 | v | 36,907]0.99 | 300

24 'Vfin Gen. || 56,070 | 0.99 43,578 (099 | 4 37,832[0.99 | 300 | v
Min Time || 0.027 | 0.99 0021099 4 | v || 0.021[099 50K | v
Min Cost 236,50 |0.99] 7K | v || 472.10]0.90 | 3K
Min Sto. 417,67510.95] 20 | v |[456,777]0.99 | 90

35 "Min Gen, 652,100 [0.95 | 500 467586099 90 | v
Min Time 0.377 [0.95 | 500 0.297[0.99] 90 | v
Min Cost
Min Sto.

48 Min Gen.

Min Time

Table 8 provides a different view of the empirical comparison of WA*, KWA*, and MSC-
WA* — one that moves from curves to single points, and one that encompasses all four of our
performance measures. Each row (one for each size N of the puzzle and each performance measure)

reports the minimum value obtained by each algorithm for this performance measure. Each row also

54

reports, for each algorithm, one parameter setting with which the algorithm reaches the minimum
value of this performance measure. Finally, a check mark indicates that the algorithm is within one
percent of the minimum value reported in the row. A check mark thus means that this algorithm is
the best according to the performance measure and for this puzzle size. Empty cells indicate that
the algorithm does not solve all instances of this NV-Puzzle (except for the 8-Puzzle, in which case
runtimes are not reported because they are insignificant).

First, both KWA* and MSC-WA* improve on WA* since only they can solve all instances of
the 35-Puzzle. Second, because of its breadth-first search component, KWA* is always the best
algorithm according to solution quality. Third, because of its depth-first (greedy) component, MSC-
WA* is always the best algorithm according to the search effort (number of generated nodes) and
the runtime. Fourth, both KWA* and MSC-WA* beat WA* according to the memory consumption
(number of stored nodes). However, no algorithm consistently beats the other in this dimension.

Finally, none of the algorithms is able to solve all instances of the 48-Puzzle in our empirical setup.
3.5.2 The MSC-KWA*¥* algorithm

Our preview of results in the N-Puzzle suggests that KWA* and MSC-WA* have distinct advantages
over WA*, It is natural to wonder whether these advantages can be cumulated by combining the
concepts of diversity and commitment in order to scale up to even larger domains, such as the
48-Puzzle. We now turn to this question.

By forcing the search to commit to a sub-set of the OPEN list (namely the COMMIT list),
MSC-WA* uses COMMIT in the role of OPEN (while RESERVE is only used to refill COMMIT
when necessary). As a result, MSC-WA* is more focused than WA* and is thus as likely (or even
more) to be led by misleading heuristic values into goal-free regions of the search space. One way
to