
A Semantic Similarity Method Based on Information 

Content Exploiting Multiple Ontologies 

David Sánchez1 and Montserrat Batet 

Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili,           

Avda. Països Catalans, 26. 43007 Tarragona (Spain) 

 

Abstract   

The quantification of the semantic similarity between terms is an important research area that configures a 

valuable tool for text understanding. Among the different paradigms used by related works to compute 

semantic similarity, in recent years, information theoretic approaches have shown promising results by 

computing the Information Content (IC) of concepts from the knowledge provided by ontologies. These 

approaches, however, are hampered by the coverage offered by the single input ontology. In this paper, 

we propose extending IC-based similarity measures by considering multiple ontologies in an integrated 

way. Several strategies are proposed according to which ontology the evaluated terms belong. Our 

proposal has been evaluated by means of a widely used benchmark of medical terms and MeSH and 

SNOMED CT as ontologies. Results show an improvement in the similarity assessment accuracy when 

multiple ontologies are considered. 
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1.   Introduction 

The estimation of the semantic similarity between terms contributes to the better understanding 

of textual resources. As a result, it has been applied in many different tasks such as word-sense 

disambiguation (Resnik, 1999), document categorization or clustering (M. Batet, 2011; Cilibrasi 

& Vitányi, 2006; Luo, Chen, & Xiong, 2011), word spelling correction (Budanitsky & Hirst, 

2006), automatic language translation (Cilibrasi & Vitányi, 2006), ontology learning (Sánchez, 

2010; Sánchez & Moreno, 2008a, 2008b; Sánchez, Moreno, & Vasto, 2012), semantic 

annotation (Sánchez, Isern, & Millán, 2011), information extraction (Atkinson, Ferreira, & 

Aravena, 2009; Sánchez & Isern, 2011), information retrieval (Al-Mubaid & Nguyen, 2006; 

Budanitsky & Hirst, 2006) or anonymisation of textual documents (S. Martínez, Sánchez, & 

Valls, 2012; Sergio Martínez, Sánchez, Valls, & Batet, 2012).  
 

Semantic similarity is understood as the degree of taxonomic proximity between terms. 

Similarity measures assess a numerical score that quantifies this proximity as a function of the 

semantic evidence observed in one or several knowledge sources. Usually, those resources 

consist on taxonomies and more general ontologies, which provide a formal and machine-

readable way to express a shared conceptualisation by means of a unified terminology and 

semantic inter-relations from which semantic similarity can be assessed. In the last years, 

general purpose ontologies have been developed (such as WordNet) but also domain-dependant 

one (such as MeSH or SNOMED CT for the biomedical domain).  

 

According to the theoretical principles and the way in which ontologies are analysed to estimate 

similarity, different families of methods can be identified. In a nutshell, edge-counting measures 

base the similarity assessment on the number of taxonomical links of the minimum path 

separating two concepts contained in a given ontology (Leacock & Chodorow, 1998; Li, 

Bandar, & McLean, 2003; Rada, Mili, Bichnell, & Blettner, 1989; Wu & Palmer, 1994). Due to 

their simplicity, these approaches offer a limited accuracy due to ontologies model a large 

amount of taxonomical knowledge that is not considered during the evaluation of the minimum 

path (Montserrat Batet, Sánchez, & Valls, 2011). Feature-based approaches estimate similarity 

according to the weighted sum of the amount of common and non-common features (Sánchez, 

Batet, Isern, & Valls, 2012). By features, authors usually consider taxonomic and non-

taxonomic information modelled in an ontology, in addition to concept descriptions (e.g., 

glosses) retrieved from dictionaries (Petrakis, Varelas, Hliaoutakis, & Raftopoulou, 2006; 

Rodríguez & Egenhofer, 2003; Tversky, 1977). Due to the additional semantic evidences 



considered during the assessment, they potentially improve edge-counting approaches. 

However, they usually rely on non-taxonomic features that are rarely found in ontologies (Ding, 

et al., 2004) and require fine tuning of weighting parameters in order to integrate heterogeneous 

semantic evidences (Petrakis, et al., 2006). 

 

Finally, information content-based approaches, which are the focus of this work, assess the 

similarity between concepts as a function of the Information Content (IC) that both concepts 

have in common in a given ontology. In the past, IC was typically computed from concept 

distribution in tagged textual corpora (Jiang & Conrath, 1997; Lin, 1998; Resnik, 1995). 

However, this introduces a dependency on corpora availability and manual tagging that 

hampered their accuracy and applicability due to data sparseness (Sánchez, Batet, Valls, & 

Gibert, 2010). To overcome this problem, in recent years, several authors have proposed ways 

to infer IC of concepts in an intrinsic manner from the knowledge structure modelled in an 

ontology (Sánchez & Batet, 2011; Sánchez, Batet, & Isern, 2011; Seco, Veale, & Hayes, 2004; 

Zhou, Wang, & Gu, 2008). However, the fact that intrinsic IC-based measures only rely on 

ontological knowledge is also a drawback because they completely depend on the degree of 

coverage and detail of the unique input ontology. This limitation could be overcome computing 

concept’s IC and estimating semantic similarity from multiple ontologies. As stated in (Al-

Mubaid & Nguyen, 2009) the exploitation of multiple ontologies provides additional knowledge 

that can improve the similarity estimation and solve cases in which terms are not represented in 

an individual ontology. This is especially interesting in domains such as the biomedical one, in 

which several big and detailed ontologies are available, offering overlapping and 

complementary knowledge about the same topics.  

 

As it will be discussed in section 2, few works propose similarity methods supporting more than 

one ontology, being all of them framed in the context of edge-counting and feature-based 

paradigms. In this paper we present a method to extend IC-based semantic similarity measures 

when multiple ontologies are available. As far as we know, no similarity methods based on IC 

have been proposed in the past considering more than one input ontology. The method relies on 

a state of the art approach to compute concept’s IC from an ontology in an intrinsic manner (D. 

Sánchez, et al., 2011). On one hand, our method permits estimating the similarity when a term 

or a term pair is missing in a certain ontology but it is found in another one. On the other hand, 

in case of overlapping knowledge (i.e. ontologies covering the same terms), our approach 

increases the accuracy by selecting the most reliable IC and similarity estimation from those 

computed from each individual ontology. The method has been evaluated by means of a widely 

used benchmark of biomedical terms and the above-mentioned biomedical ontologies. Results 

show that intrinsic IC measures are able to improve other similarity computation paradigms. 



Moreover, the exploitation of several complementary and/or overlapping ontologies during the 

similarity assessment was able to improve the accuracy with respect to the mono-ontology 

scenario. 

 

The rest of the paper is organised as follows. Section 2 introduces related works proposing 

methods for semantic similarity assessment from multiple ontologies. Section 3 analyses 

different approaches for computing the IC of a concept, focusing on ontology-based methods. 

Afterwards, classic IC-based similarity measures are presented. Section 4 describes our method 

to exploit multiple ontologies for similarity assessment, detailing the strategies proposed to 

tackle the problem according to which ontology the evaluated terms belong. Section 5 evaluates 

our approach, comparing it to a mono-ontology scenario. The final section contains the 

conclusions and some lines of future research. 

2.   Related work 

Semantic similarity estimation methods supporting multiple ontologies are based on the edge-

counting and feature-based paradigms.  

 

In Rodriguez and Egenhofer (Rodríguez & Egenhofer, 2003), the similarity is computed as the 

weighted sum of similarities between synonym sets, features (e.g., meronyms, attributes, etc.) 

and neighbour concepts (those linked via semantic pointers) of evaluated terms. Petrakis et al., 

(Petrakis, et al., 2006) extended the previous approach relying on the matching between 

synonym sets and concept glosses (i.e., term definitions). They considered that two terms are 

similar if their synonyms and glosses and those of the concepts in their neighbourhood 

(following semantic relations) are lexically similar. In both approaches, when the evaluated term 

pair belongs to different ontologies, authors connect ontologies by a new imaginary root node 

that subsumes the root nodes of each ontology. Then, the similarity is computed from the 

resulting knowledge structure.  

 

A problem of these approaches is the reliance on many ontological features that are rarely found 

in ontologies. In fact, an investigation of the structure of existing ontologies (Ding, et al., 2004) 

has shown that ontologies very occasionally model non-taxonomic knowledge. Another 

problem for Rodriguez and Egenhofer’s approach is its dependency on the weighting 

parameters that balance the contribution of each feature. These parameters should be tuned 

according to the nature of the ontology and the evaluated terms. This hampers the applicability 

as a general purpose solution. Petrakis et al.’s method does not depend on weighting parameters, 



because the maximum similarity provided by each feature alone is taken. Even though this 

adapts the behaviour of the measure to the characteristics of the ontology, the contribution of 

other features is omitted because only the maximum value is considered. 

 

A more elaborated approach is presented in (Sánchez, Solé-Ribalta, Batet, & Serratosa, 2012). 

This work complements the strict matching of subsumers according to their labels with a 

structural similarity function that aims at discovering similar but not necessarily 

terminologically identical subsumers. Since only one subsumer pair is matched, the method can 

only be applied to path-based similarity measures. 

 

With respect to the multi-ontology scenario, the above methods do not consider the case in 

which a term pair is found in several ontologies at the same time. In consequence, they omit the 

problem of selecting the most appropriate assessment and/or to evaluate overlapping sources of 

information.  

 

A more general approach by Al-Mubaid and Nguyen (Al-Mubaid & Nguyen, 2009) propose a 

methodology to exploit biomedical sources (such as SNOMED CT or MeSH) using a similarity 

measure defined in (Al-Mubaid & Nguyen, 2006). This measure combines, in a weighted 

manner, the features path length and common specificity of the compared concepts. Authors 

quantify the common specificity of two concepts by subtracting the depth of their Least 

Common Subsumer (LCS) from the depth of the taxonomic branch to which they belong. In this 

manner, concepts at a lower level of the taxonomy are considered to be more similar those 

located at a higher level. In (Al-Mubaid & Nguyen, 2009) they extended this measure when 

multiple input ontologies are available. In their approach, the user must select a primary 

ontology (the rest are considered as secondary) that acts as the master in cases in which 

concepts belong to several ontologies. The primary ontology is also used as the base to 

normalise similarity values. Different heuristics are proposed according to which ontologies the 

compared concepts belong. If both concepts appear in the primary ontology, the similarity is 

computed exclusively from that source (even if they also appear in a secondary ontology). 

When concepts appear in several secondary ontologies, authors evaluate the degree of 

overlapping with respect to the primary ontology and the degree of taxonomic detail 

(granularity). The secondary ontology with the highest alikeness to the primary one is chosen. 

Finally, if a concept appears in an ontology and the other concept is found in another ontology, 

they “connect” both ontologies by finding “common nodes” (i.e., a subsumers representing the 

same concepts in any of the ontologies).  

 



A problem faced by the authors is the fact that, due to their measure is based on absolute path 

lengths between concepts, the similarity computed for each term pair from a different ontology 

will lead to similarity values that cannot be directly compared. Authors propose a method to 

scale similarity values (both in the case in which the concept pair belongs to a unique secondary 

ontology or when it belongs to different ontologies - both secondary, or one primary and the 

other secondary - which are “connected”) taking as reference the predefined primary ontology. 

Both the path and common specificity features are scaled to the primary ontology according to 

difference in the depth with respect to the primary ontology.  

 

Another disadvantage of this approach is the fact that similarity estimation is based on the 

minimum path length connecting concept pairs. This omits other taxonomic knowledge 

explicitly modelled in the ontology (i.e., other taxonomical paths). Moreover, the multi-

ontology method is hampered by the fact that a primary ontology must be selected a priori to 

scale similarity values. This results in a complex casuistic to be considered during the similarity 

assessment. Finally, the method assumes that, in all cases, the primary ontology will lead to 

better similarity estimations than secondary ones. This constrains the knowledge exploitation in 

cases in which a particular ontology offer a better knowledge representation for the evaluated 

concepts. 

3.   Information content and semantic similarity 

The Information Content (IC) of a concept states the amount of information provided by the 

concept when appearing in a context. In this manner, general and abstract entities present less 

IC when found in a discourse than more concrete and specialised ones. A proper quantification 

of the IC of concepts improves text understanding by enabling assessing the degree of semantic 

generality or concreteness of words referring to these concepts. In fact, as stated in the 

introduction, IC has been applied in the past to the computation of semantic similarity (Resnik, 

1995) according to the amount of common information of a concept pair. 

3.1.   Corpora-based IC calculus methods 

In classical approaches (Jiang & Conrath, 1997; Lin, 1998; Resnik, 1995) IC is computed as the 

inverse of the appearance probability of a concept c in a corpus (1).  

 

)(log)( cpcIC −=          (1) 

 



If the corpus is large and heterogeneous enough to accurately represent concept usage at a social 

scale, p(c) will enable an accurate computation of the IC of c. However, textual ambiguity and 

data sparseness severely hamper p(c) estimation. First, because textual corpora contain words 

rather than concepts, it is necessary to disambiguate concept appearances, identifying word 

senses by means of manual tagging. Secondly, it is unlikely that such large and representative 

required corpora are available, especially for concrete domains such as biomedicine due to the 

sensitivity of clinical data.  

 

It is important to note that to compute coherent values of p(c) from a semantic point of view, 

one must consider all the explicit appearances of c in addition to the appearances of concepts 

that are semantically subsumed by c (i.e., all its taxonomical specialisations and instances) 

(Resnik, 1995). For example, to estimate the IC of the concept ‘neoplasm’, all its explicit 

appearances should be counted along with the appearances of all its specialisations such as 

‘breast cancer’, ‘lung cancer’, etc. Formally, p(c) is calculated as follows: 
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, where W(c) is the set of terms in the corpus whose senses are subsumed by c and N is the total 

number of corpus terms. 

 

As a result, it is necessary to obtain concept specialisations from ontological resources before 

computing term probabilities in a corpus. The background taxonomy must be as complete as 

possible (i.e., it should include most of the specialisations of a specific concept) to provide 

reliable results.  

 

Data sparseness, data availability dependency, and scalability problems due to the need of 

manually tagged corpora required to minimise language ambiguity hamper the applicability of 

these approaches. 

3.2.   Intrinsic IC computation models 

To overcome these problems, in recent years, some authors have proposed computing IC in an 

intrinsic manner by using only the knowledge structure modelled in an ontology (Seco, et al., 

2004). These works assume that the taxonomic structure of ontologies is organised in a 

meaningful way, according to the principles of cognitive saliency (Pirró, 2009): concepts are 

specialised when they must be differentiated from other ones. Concepts located at a higher level 



in the taxonomy with many hyponyms or leaves (i.e., specialisations) under their taxonomic 

branches would have less IC than highly specialised concepts (with many hypernyms or 

subsumers) located on the leaves of the hierarchy.  

 

Compared against corpora-based IC calculus, it is assumed that abstract ontological concepts 

(with a large set of hyponyms) are more likely to appear in a corpus than very specialised ones, 

because the former can be implicitly referred to in a discourse by means of all their subsumed 

concepts. As a result, appearance probabilities are approximated in these approaches in 

accordance with the number of the concept’s hyponyms.  

 

Some measures have been published in recent years proposing intrinsic IC computation models 

based on the structural principles of knowledge discussed above (Seco, et al., 2004; Zhou, et al., 

2008). In a recent work (D. Sánchez, et al., 2011), we improved them by incorporating 

additional semantic evidence extracted from the input ontology into the assessment. We 

proposed estimating p(c) as the ratio between the number of leaves on the taxonomical 

hierarchy under the concept c (as a measure of c’s generality) and the number of taxonomical 

subsumers above c including itself (as a measure of c’s concreteness) (3). It is important to note 

that in case of multiple inheritance all the ancestors are considered. Formally:  

 



















+

+
−≅−=

1

1
|)(|

|)(|

log)(log)(
max_leaves

csubsumers
cleaves

cpcIC
     (3) 

 

The above ratio has been normalised by the least informative concept (i.e., the root of the 

taxonomy), for which the number of leaves is the total amount of leaves in the taxonomy 

(max_leaves) and the number of subsumers including itself is 1. To produce values in the range 

0..1 (i.e., in the same range as the original probability) and avoid log(0) values, 1 is added to the 

numerator and denominator. 

 

As discussed in (D. Sánchez, et al., 2011) this approach represents an improvement to previous 

ones (Seco, et al., 2004; Zhou, et al., 2008) in that it can differentiate concepts with the same 

number of hyponyms/leaves but different degrees of concreteness (expressed by the number of 

subsumers that normalises the numerator). It can also consider the additional knowledge 

modelled by means of multiple inheritance relationships. Finally, it prevents the dependence on 

the granularity and detail of the inner taxonomical structure by relying on taxonomic leaves 

rather than complete sets of hyponyms.  



3.3.   IC-based semantic similarity 

 Accurate quantification of the IC of concepts permits the estimation of their semantic similarity 

as a function of their shared information.  

 

In Resnik’s (Resnik, 1995) seminal work, he proposed evaluating the IC of the Least Common 

Subsumer of the compared concepts (LCS(c1,c2)) as the representative of this shared 

information. The LCS of a pair of terms in a taxonomy/ontology is the most specific common 

ancestor that subsumes them, found in the taxonomy to which they belong. If the two concepts 

are not taxonomically connected and the LCS does not exist, they are considered maximally 

different. Otherwise their semantic similarity is computed as the amount of IC provided by the 

LCS (4).  
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With Resnik’s metric, any pair of concepts with the same LCS will result in exactly the same 

similarity value. To better differentiate concepts, both Lin (Lin, 1998) and Jiang and Conrath 

(Jiang & Conrath, 1997) also consider the IC of the compared terms into the equations.  

Lin measures the similarity as the ratio between the common information between concepts 

(i.e., IC(LCS)) and the information needed to fully describe them (i.e., the IC of each concept 

alone) (5).  
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Jiang and Conrath proposed calculating the concept distance (the opposite of similarity) as the 

difference between the IC of each concept and the IC of their LCS (6).  
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4.   Extending IC-based measures to multiple ontologies 

The availability of several knowledge sources can potentially aid the similarity assessment in 

cases in which a concept or a concept pair is missing in an ontology but found in another, or in 

situations in which ontologies overlap. In this section we present a method to extend IC-based 

similarity measures to take profit from multiple input ontologies.  



 

Regarding IC-based similarity estimation, as shown in the previous section, the key point to 

compare a pair of concepts is to retrieve their LCS. According to the ontology to which the 

compared concepts belong, we can distinguish three cases. In the first one, both concepts appear 

in a unique ontology, so that the LCS can be retrieved from that one, and the similarity can be 

computed in the same manner as in the mono-ontology scenario. Other cases in which term 

pairs appear, at the same time, in several ontologies or in which each term belongs to a distinct 

ontology require the definition of specific strategies to solve them. 

4.1.   Computing IC-based similarity from multiple overlapping ontologies 

If both concepts appear in several ontologies, each one modelling the same knowledge in a 

different but overlapping way, several LCSs can be retrieved. In this case, it is necessary to 

decide which LCS is the most suitable to compute inter-concept similarity. Considering the 

implications of the ontology engineering process and the way in which humans assess 

similarity, two hypotheses can be enounced.  

 

First, ontological knowledge modelling is the result of a manual an explicit engineering process 

performed by domain experts. In other words, the fact that a concrete LCS is represented near 

of a pair of concepts (e.g., the LCS of flu and bronchitis is respiratory disease) is the result of a 

decision taken by the human expert stating a high degree of commonalty between concepts’ 

meaning. However, due to the coverage limitations and the bottleneck that characterise manual 

knowledge modelling processes, if a LCS is missing or appears in a very abstract level in the 

hierarchy (e.g., the LCS of flu and bronchitis is condition), one cannot ensure if this is an 

implicit indication of semantic disjunction between the compared concepts or the result of 

partial or incomplete knowledge modelling. Summarising, we hypothesise that the fact that a 

specific LCS (from a taxonomical perspective) is available in an ontology for a pair of concepts 

is more important when computing their similarity than its absence or the presence of a general 

one.  

 

The second hypothesis regards human perception of similarity. As demonstrated in 

psychological studies (Tversky, 1977), humans pay more attention to common than to 

differential features of compared entities.  

 

As a result of these arguments, given a pair of concepts belonging to different ontologies, we 

consider the most specific LCS from those retrieved from the overlapping set of ontologies. In 



terms of IC, this corresponds to the LCS with the maximum IC value (i.e., the maximum 

specificity) (7).  

 

Definition 1. Given a pair of compared concepts c1 and c2 and a set of ontologies O to which 

they belong, the selected LCS is:  
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,where LCSo(c1,c2) is the LCS between c1 and c2 for the ontology Oo∈ . 

  

The selected LCS and its corresponding IC value can be directly applied in conjunction with 

concept’s IC (computed as stated in eq. 3) over the IC-based similarity measures described 

above.  

 

It is important to note that, for a set of concept pairs belonging to several ontologies, similarity 

values for each pair may be assessed from IC values computed from different ontologies. This is 

the result of selecting, for each concept and concept pair’s LCS, the IC assessment that better 

represents concepts’ meaning and that more accurately differentiates them from other modelled 

entities. As a result, the local benefits that each ontology may provide (regarding accurate 

knowledge modelling of a particular concept) are exploited during the similarity estimation. 

This contrast to other approaches (Al-Mubaid & Nguyen, 2009) relying on a primary ontology, 

which prioritise a pre-selected ontology over secondary ones, imposing a hard dependency. The 

fact that all input ontologies are equally considered in our approach also simplifies the multi-

ontology casuistry proposed by related works (Al-Mubaid & Nguyen, 2009). 

4.2.   Computing IC-based similarity from multiple disjoint ontologies 

This is the case in which each concept of the compared pair belongs to a different ontology 

(e.g., 212211 |, ooococ ≠∈∈ ).  

 

As stated in (Rodríguez & Egenhofer, 2003), similarity estimation from different ontologies can 

only be achieved if they share some components. In some related works (Petrakis, et al., 2006; 

Rodríguez & Egenhofer, 2003), the two ontologies are simply connected by creating a new node 

(called anything) which is a direct ancestor of their roots. This avoids the problem of knowledge 

integration but poorly captures possible commonalities between ontologies. As stated in section 

2, other authors (Al-Mubaid & Nguyen, 2009) base their proposal in the differentiation between 

primary and secondary ontologies, connecting them by joining all nodes with the same textual 

label. These nodes are called bridges. Then, the LCS of the pair of concepts in two different 



ontologies is redefined as the LCS of the concept belonging to the primary ontology and each 

bridge node. The path length is then computed via the LCS and the bridge node. Due to the path 

length depends on the granularity and size of a concrete ontology, it is normalised by measuring 

the path between the concept of the primary ontology and the LCS, and the path between the 

concept of the secondary ontology and the LCS scaled with respect to the dimension of the 

primary ontology.  

 

We follow a similar principle to tackle this situation, but considering the two ontologies equally 

important. We retrieve the set of subsumers for each of the compared concepts (each one 

belonging to a different ontology). Then, both sets are compared to find equivalent subsumers. 

Equivalent subsumers are those with the same textual label considering, if available, synonym 

sets (which is the case of MeSH and SNOMED CT, for example). As a result, the two 

ontologies can be “connected” by a set of equivalent and the LCS for the concept pair can be 

retrieved as the least common equivalent subsumer, similarly to the mono-ontology scenario. In 

the worst case, when no terminologically equivalent ancestors are found, we consider the root 

nodes of both ontologies as equivalent and, hence, they will correspond to the LCS.  

 

Definition 2. The LCS between concepts c1 and c2, where 212211 |, ooococ ≠∈∈ , is 

obtained as follows:    

),(___),( 2121 ccSubsumerEquivalentCommonLeastccLCS =    (8) 

 

, where the Least_Common_Equivalent_Subsumer is a function that terminologically compares 

all the subsumers of c1 in o1 and c2 in o2, and selects the most specific common one. 

 

In any case, the IC value of the retrieved LCS (than will be necessarily common to both 

ontologies) will be different when computing it from an ontology than from the other.  

 

Considering the hypotheses discussed in section 4.1 regarding the convenience of selecting the 

maximum IC value in cases of overlapping knowledge, we followed the same strategy.  

 

Definition 3. The IC of the LCS selected for the concepts c1 and c2, 

where 212211 |, ooococ ≠∈∈ , is computed as: 
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This case can be generalised if c1 and/or c2 individually belong to several ontologies (e.g. c1 

belongs to o1 and o3, and c2 belongs to o2 and o4). Following the same strategy, the ontology 

alignment process, the LCS selection and its IC calculus are executed for each combination of 

ontology pairs (e.g. o1 - o2, o1 - o4, o3 - o2 and o3 - o4). Again, the LCS with the maximum IC 

value is taken as the final result.   

 

It is important to note that, on the contrary to related works dealing with the multi-ontology 

scenario by means of absolute similarity values (like path lengths (Al-Mubaid & Nguyen, 

2009)), the comparison of IC values computed from different ontologies is not problematic. 

Given that our IC measure (eq. 3) is a normalised ratio between the degree of generality (i.e., 

number of leaves) and concreteness (i.e., number of subsumers) of the evaluated term, we avoid 

depending on the size, taxonomic detail or granularity of the exploited knowledge structures. In 

other words, it is not necessary to scale resulting values to a common factor (e.g., the size or 

granularity of a primary predefined ontology like in (Al-Mubaid & Nguyen, 2009)). This 

enables a coherent comparison and ranking of IC values computed from heterogeneous 

ontological sources. 

 

5.   Evaluation 

In order to evaluate the benefits that multiple ontologies bring to similarity assessments, we 

have applied IC-based measures introduced in section 3.3 to several mono and multi-ontology 

scenarios using, in this last case, the strategies proposed in section 4.  

 

To enable the multi-ontology setting, we have selected a domain in which several detailed and 

partially overlapping ontologies are available: biomedicine. In this context, SNOMED CT and 

MeSH knowledge sources have been used as background ontologies. They are characterised by 

a high level of detail, classifying concepts in different but overlapping hierarchies. The 

Systematized Nomenclature of Medicine, Clinical Terms (SNOMED CT) (Spackman, 2004) 

covers more than 300,000 concepts organised into 18 overlapping hierarchies. The Medical 

Subject Headings (MeSH) (Nelson, Johnston, & Humphreys, 2001) offers a hierarchy of around 

25,000 medical and biological terms organised in 16 categories aimed to classify medical 

literature.  

 

To provide an objective evaluation in this domain, we have taken a widely used benchmark (Al-

Mubaid & Nguyen, 2009; Al-Mubaid & Nguyen, 2006; Montserrat Batet, et al., 2011; Pedersen, 



Pakhomov, Patwardhan, & Chute, 2007) of medical term pairs whose similarity has been 

assessed by human experts. This benchmark was created by Pedersen et al. (Pedersen, et al., 

2007) in collaboration with experts of the Mayo Clinic and consists of 29 words pairs. The 

similarity between each pair was assessed by 12 medical experts in a scale between 1 and 4. The 

average value of individual ratings is used in our case to compare the accuracy of our approach, 

according to its correlation against averaged human ratings. This permits an objective 

evaluation of similarity measures exploiting different ontologies as knowledge sources and 

using different strategies to assess the similarity. 

5.1.   Evaluation in a mono-ontology scenario 

First, we show the benefits that IC-based measures computed in an intrinsic manner (IC 

computed as in eq. 3) bring with respect to their corpora-based counterparts (IC computed as in 

eq. 1), and with respect to other similarity estimation paradigms (edge-counting and feature-

based). We compiled previously published results reported by related works when evaluating 

corpora-based IC measures (rows 5 to 7 in Table 1) and edge-counting/feature-based measures 

(rows 1 to 4 in Table 1) using Perdersen et al.’s benchmark and SNOMED CT as ontology. 

Reported corpora-based results rely on the semi-structured Mayo Clinical corpus of Medical 

Notes (Pedersen, et al., 2007) to compute term appearance frequencies. These results are 

compared against the same IC-based measures when computing concept’s IC in an intrinsic 

manner as stated in eq. 3 (rows 8 to 10 in Table 1).     

 

 

Table 1. Correlation values obtained for each measure against human ratings of Pedersen et 

al.’s benchmark using SNOMED CT as ontology. 

Measure Type Evaluated in Correlation 

Rada (Rada, et al., 1989) Edge-counting (Pedersen, et al., 2007) 0.48 

Wu and Palmer (Wu & Palmer, 

1994) 

Edge-counting (Al-Mubaid & Nguyen, 2006) 0.30* 

Leacock and Chodorow (Leacock 

& Chodorow, 1998) 

Edge-counting (Pedersen, et al., 2007) 0.47 

Al-Mubaid and Ngyugen (Al-

Mubaid & Nguyen, 2006) 

Features+Edge-

counting 

(Al-Mubaid & Nguyen, 2006) 0.66* 

Resnik (Resnik, 1995) Corpora-based IC (Pedersen, et al., 2007) 0.55 

Lin (Lin, 1998) Corpora-based IC (Pedersen, et al., 2007) 0.69 

Jiang and Conrath (Jiang & 

Conrath, 1997) 

Corpora-based IC (Pedersen, et al., 2007) 0.55 



Resnik (Resnik, 1995) Intrinsic IC (eq. 3) This work 0.741 

Lin (Lin, 1998) Intrinsic IC (eq. 3) This work 0.762 

Jiang and Conrath (Jiang & 

Conrath, 1997) 

Intrinsic IC (eq. 3) This work 0.743 

* Only 9 out of 12 experts’ ratings were considered to maximise inter-human agreement. 

 

Results show that IC measures based on intrinsic IC calculus obtain higher correlation values 

than those based on corpora (0.55-0.69 vs. 0.74-0.76). This fact is very convenient because pure 

ontology-based similarity computation paradigms avoid depending on the availability of 

corpora and manual data pre-processing. On the contrary, intrinsic IC calculus models are 

efficient and easily applicable to any knowledge source represented in an ontological way.  

 

On the contrary to other similarity estimation paradigms based on non-taxonomical knowledge 

(like glosses or meronyms (Petrakis, et al., 2006; Rodríguez & Egenhofer, 2003)) and relying on 

weighting factors to integrate the contributions of different semantic features (like in (Al-

Mubaid & Nguyen, 2009)), intrinsic IC models only require taxonomical knowledge (which is 

common to any ontology, and the most structure-building component (Ding, et al., 2004; Rada, 

et al., 1989)). Moreover, their accuracy is higher in all cases (0.66 vs 0.74-76). 

 

Compared against measures relying only on the minimum path length between concepts (which 

are also based on taxonomical knowledge), the differences are even higher. Edge-counting 

measures offer very limited accuracy (0.3-0.48). This shows that the minimum path between 

concepts poorly captures the semantics explicitly modelled in taxonomies. In fact, in complex 

ontologies such as SNOMED CT, several paths exist between concepts due to multiple 

taxonomical inheritance, a fact that is ignored by edge-counting measures.  

5.2.   Evaluation in a multi-ontology scenario 

Regarding the multi-ontology scenario we configured two batteries of tests using the three IC-

based measures and computing IC as in eq. 3.  

 

In the first one, all the 29 words pairs of the benchmark were compared using SNOMED CT 

and MeSH individually and both at the same time (applying the strategies proposed in section 

4). Note that all these term pairs are contained in SNOMED CT, whereas only 25 of them are 

found in MeSH. As a result, when evaluating term pairs over MeSH there will be some 

situations in which a term is missing in this ontology but found in SNOMED CT. The multi-

ontology approach proposed in this paper will solve these cases as proposed in section 4. To 

introduce a proper penalisation in the correlation when missing word pairs appear in a mono-



ontology scenario (enabling a fair comparison against the multi-ontology setting), the similarity 

value of a missing word pair is replaced in the mono-ontology scenario by minimal similarity 

value. Correlations for this test are shown in Table 2.  

Table 2. Correlation values obtained for intrinsic IC-based measures against human ratings of 

Pedersen et al.’s benchmark (29 word pairs) in mono and multi-ontology scenarios. 

Measure Ontologies Correlation 

Resnik SNOMED CT 0.741 

Resnik MeSH 0.699 

Resnik SNOMED CT+MeSH 0.754 

Lin SNOMED CT 0.762 

Lin MeSH 0.705 

Lin SNOMED CT+MeSH 0.762 

Jiang and Conrath SNOMED CT 0.743 

Jiang and Conrath MeSH 0.671 

Jiang and Conrath SNOMED CT+MeSH 0.744 

 

In all cases, we can see that the combination of several ontologies leaded to an equal or even 

higher correlation against human experts than when using ontologies individually. It is 

interesting to observe that correlations obtained from MeSH are lower with respect to those 

obtained from SNOMED CT. This can be motivated by the lower taxonomical detail offered by 

MeSH (containing around 25,000 terms) with respect to the much larger structure provided by 

SNOMED CT (with more than 300,000 entities). Due to the coarser granularity of MeSH’s 

taxonomic structure, concepts tend to be less differentiated (by means of their taxonomical 

ancestors and hyponyms) than in SNOMED CT. Even though, when combining both ontologies, 

we observe in some cases a slight increase in the correlation with respect to SNOMED CT (e.g. 

0.75 vs. 0.74 for Resnik measure). This suggests that, even though SNOMED CT offers, in 

general, more taxonomical detail and better differentiated concepts, MeSH can also contribute 

in punctual situations, providing better semantic similarity assessments. The strategies proposed 

in section 4.1 contribute to identify these situations, selecting the best assessment from those 

individually computed from each ontology. The increase in correlation of the multi-ontology 

scenario with respect to MeSH is more noticeable (0.67-0.7 vs. 0.74-76). This is motivated both 

by the resolving of missing values (4 word pairs in the case of MeSH) and thanks to the 

selection of the most accurate assessment (provided in most cases by SNOMED CT) when 

overlapping knowledge is available.   

 

Missing terms affected the similarity (and the correlation) obtained from MeSH in the above 

test. The second battery of experiments omits word pairs missing in MeSH ontology. As a 



result, only 25 word pairs have been evaluated for both MeSH and SNOMED CT. In this 

manner, our method will always face the situation described in section 4.1, in which it should 

select the best LCS from those computed/extracted from overlapping ontologies. In this manner, 

the contribution of the proposed strategies can be better quantified. Correlation values for this 

configuration are shown in Table 3. 

Table 1. Correlation values obtained for intrinsic IC-based measures against human ratings of 

Pedersen et al.’s benchmark without considering missing terms (25 word pairs) in mono and 

multi-ontology scenarios.  

Measure Ontologies Correlation 

Resnik SNOMED CT 0.736 

Resnik MeSH 0.700 

Resnik SNOMED CT+MeSH 0.750 

Lin SNOMED CT 0.758 

Lin MeSH 0.707 

Lin SNOMED CT+MeSH 0.758 

Jiang and Conrath SNOMED CT 0.742 

Jiang and Conrath MeSH 0.706 

Jiang and Conrath SNOMED CT+MeSH 0.760 

 

As a result of removing missing terms from the test, correlation values obtained from MeSH 

tended to increase (e.g. 0.67 vs. 0.71 for Jiang and Conrath measure). Due to this test focuses 

only on overlapping knowledge, the increase in the accuracy with respect to the mono-ontology 

setting tends to be more noticeable for some measures (e.g. 0.74 vs. 0.76 for the Jiang and 

Conrath measures). These results support the suitability of the proposed strategies and the 

assumption that a higher IC (computed in an intrinsic manner from an ontology) better captures 

concepts’ semantic for similarity assessments. 

6.   Conclusions  

The fact that multiple input ontologies are available permits: i) to compute the similarity of 

concepts missing in one ontology but present in another, and ii) to select the most accurate 

estimation from those computed from different ontologies in case of overlapping knowledge 

(i.e., concepts belonging to several ontologies at the same time). The former case improves the 

recall of the similarity estimation and avoids depending on the coverage of an individual source, 

a serious limitation of previous ontology-based approaches (Al-Mubaid & Nguyen, 2009). The 

latter exploits the punctual benefits offered by each individual ontology regarding the 

knowledge representation adequacy in cases in which overlapping knowledge is available. In 



this paper, several strategies are proposed to enable these advantages, extending the IC-based 

similarity estimation to the multi-ontology scenario.  

 

The evaluation, based on a widely used benchmark and several standard biomedical ontologies, 

sustained the hypotheses of our approach. In all cases, the accuracy resulting from the multi-

ontology scenario equalled or even increased the best accuracy observed in a mono-ontology 

setting.   

 

As future work, we plan to apply our method to other domains and ontologies. The discovery of 

an equivalent LCS between different ontologies can also be improved by complementing the 

strict terminological matching with an analysis of the structural resemblance of different 

ontologies. 
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