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ABSTRACT

We investigated the joint multi-modal operation of the asymmet-
ric character of the fields of view of radar and electro optical (EO)
sensors for multi-target tracking applications. We proposed a joint
multi-modal sensing mode based on using dynamic agility selec-
tion to optimize the tracking performance of multiple maneuver-
ing targets. The proposed method jointly designs waveforms for
radar sensing and resolution switching modes for EO sensing, when
both sensor measurements experience high false alarm rates. Rao-
Blackwellized particle filtering is used to track an unknown number
of targets within an adaptive framework that yields the optimized
joint sensor configuration. We demonstrated the performance of the
proposed adaptive tracking system using numerical simulations.

Index Terms— Multi-modal sensing, multiple target tracking,
Rao-Blackwellized particle filter, waveform-agile sensing.

1. INTRODUCTION

When complementary information from different types of sensors
is appropriately combined, the application-specific performance is
expected to increase when compared to each sensor’s performance
separately. For joint dynamic target tracking (using active radio fre-
quency (RF) radar sensors) and target identification (using passive
EO sensors), the combined sensor capabilities have the potential of
improving the performance over either sensor capability. For exam-
ple, the kinematic features for target tracking from the RF sensor and
the physical features for target identification from the EO sensor can
be combined to increase the joint target tracking performance.
When radar and EO sensors were initially integrated (see, for
example, [1]), the radar was operated in an imaging mode as a syn-
thetic aperture radar or SAR and thus the targets were stationary.
With both the radar and EO sensors providing images, the processing
extracted and fused features from both sensor measurements for im-
age identification. In [2], a multi-mode sensing operation was intro-
duced where non-imaging RF and imaging EO measurements were
used in a land surveillance application to observe a person walking
over a period of time. This type of asymmetric mode sensing re-
sulted in enhanced classification results and reduced number of false
alarms. More recently, RF and EO sensors were also jointly used
in similar multi sensing modalities to track and characterize human
motion based on measuring the walking structure and gait of a per-
son using an imaging approach [3]. Note that other types of sens-
ing modes were also formulated in the literature; for example, for
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coupled tracking using three different measurements: ground mov-
ing target indicator (GMTI), high-range resolution radar (HRRR),
and digital terrain elevation data (DTED) [4]. Asymmetric sensor
modalities also need to be investigated to track multiple targets over
a wide field of view (FOV). Furthermore, to increase the joint sens-
ing performance and exploit the multi-modality formulation, radar
waveform parameters and EO resolution parameters can be indepen-
dently and adaptively configured.

We consider multi-modal sensing measurements from pulsed-
Doppler (PD) radar and EO sensors for tracking multiple targets.
This is an attractive sensor combination [2, 5] as the radar provides
range and range-rate measurements to detect targets with radial ve-
locity and the EO sensor provides azimuth and elevation angles in-
formation to detect stationary targets. When measurements from
both sensors are combined, the probability of false alarm and prob-
ability of miss-detection are expected to decrease. The multi-modal
sensor multi-target tracking problem assumes multiple RF-EO sys-
tems, and it has real-life applications. One such example is many
unmanned aerial vehicles (UAVs) acting together as a swarm to sur-
vey a region and track multiple targets. Each UAV can be equipped
with a joint RF-EO sensor system and work independently to send
multiple target measurements to a ground data processing center.

We solve the tracker of an unknown number of targets using the
Rao-Blackwellized particle filter (RBPF) algorithm [6,7]. The for-
mulation includes probabilistic stochastic process models for target
states, data associations, and target birth/death processes based on
sequential Monte Carlo (MC) sampling techniques. The use of the
RBPF improves the efficiency of the MC sampling as it results in
a largely reduced number of particles and thus in an efficient im-
plementation of the state distribution and measurement likelihood.
We develop a waveform-agile multi-modal (WAMM) method to im-
prove the system tracking performance. This is achieved by adap-
tively selecting waveform and resolution parameters for the radar
and EO sensors, respectively, to minimize the joint tracking error.

The rest of the paper is organized as follows. Sections 2 and
3 provide the state and RF/EO measurement models. The joint
multi-target multi-modal tracking is derived in Section 4 and with
waveform agility in Section 5. Numerical simulations successfully
demonstrate the new approach in Section 6.

2. MULTIPLE TARGET TRACKING MODEL

We use a non-maneuvering model to describe a point target moving
in a three-dimensional (3-D) space. The state vector representing the
position (wk, Yk, zk) and velocity (Zx Ur 2x) Cartesian coordinates
of a point target at time step k is given by

Xk = [Tk Tk Yk Uk 2k 2], (1)
where 7" denotes vector transpose. The state equation is given by

Xk+1 :ka+wk, (2)
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where F = diag{F,,F,,F.}, F, is a 2 X 2 matrix with elements
[Fs]ll = [FS]QQ =1, [Fs]gl = 0, and [F5]12 = Ty, T, is the du-
ration between time steps, Wy, is a modeling error process with co-
variance matrix Q,, = diag{¢z,xQs, ¢y, Q, ¢-,xQ, }, Q,isa2 x 2
matrix with elements [Q 12 = [Q,]o1 = T3/2, [Q.)11 = T3/3,
and [Q,]22 = T4, and ¢z &, ¢y, and g. i are the process noise inten-
sities in the 3-D coordinate axis. For simplicity, we assume that the
target moves in the (z, y) horizontal plane, such that z;, = 25 = 0 in
Equation (1). If needed, the model can be changed to a more sophis-
ticated maneuvering dynamic model (e.g., acceleration or turning
model) to better match the target’s characteristics [8].

If we assume that there are M;, targets present in the FOV of
interest (or alive targets) at time step k, then the state vector repre-
senting the positions and velocities of these targets is given by

X = {Xg)’ . yxiMk)} 3)

where x,(;) can be represented by the single target state formulation
in Equations (1) and (2). Note that the time step My, varies in order
to allow for asynchronous measurements, provided that the measure-
ments maintain their original order of observation.

3. TARGET MEASUREMENT MODEL IN CLUTTER

The RF-EO sensor system considered is assumed to consist of mul-
tiple heterogeneous and spatially distributed RF-EO sensors that can
provide asynchronous measurements. The system can track an un-
known number of targets, while taking into consideration that noise
and clutter can result in imperfect detection of the multiple targets
with false alarm and mis-detection. As a result, we use data asso-
ciation to associate measurements with targets, and we also allow
targets to enter the FOV (birth of a target) and leave the FOV (death
of a target). Due to the imperfect detection assumption, RF or EO
sensor measurements are first matched filtered before thresholding.
For both type of sensors, we need to model measurements as cor-
rect measurements that originated from true targets, or as undesired
measurements that originated from noise or clutter.

3.1. Radar Sensor Measurement Model

Each resolution cell of the RF sensor provides a matched filter out-
put amplitude for detection, and the detected resolution cell also pro-
vides a range-Doppler measurement. We assume that at time step £,
mj, measurements are detected that are denoted by z, = {z }%,.
The jth measurement vector is given by z/ = [pi pi]T, where pi
is the range measurement, and pi is the range-rate measurement. If
the jth measurement originated from the true target, then the mea-
surement zi can be modeled as pi = rr + €}, and pi = 7 + €,
where 7 = [(z1 — @) + (yx — ¥p)* + (2 — 2)°]"/%, i =
(e — xp)/re + Uy — yp)/Tk, and (zp,Yp, 2p) is the sen-
sor location in 3-D coordinates. Also, € ~ N0, ;] is normally
distributed with zero-mean and range measurement noise variance
o2, and €} ~ N0, 07] is normally distributed with zero-mean and
range-rate measurement noise variance oz. The variances are ob-
tained by 02 = v?2/12, 07 = v/2/12 [9], where v, and v; are range
and range-rate resolutions, respectively. As a result, the conditional
probability density of z], that results from the true target is given by

) Jo_ 2 5 g 2
b = aro o - () - 3P

We assume that the false measurements from the false alarms
are uniformly distributed in the validation gate volume Vg . So,
if the jth measurement is a false alarm and a rectangular validation

gate is used (with volume Vggr = (rlg — r,f) X (r,lc] - 7*,%)), then
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the measurement zi can be modeled such that Oézjc follows the density
po(al), pl ~ Ulrg, Y], and p, ~ U, 7F]. Here, U[-] denotes
the uniform distribution, the range pi is uniformly distributed be-
tween the lower bound % and upper bound ¥ of the range valida-
tion gate, and the range-rate is similarly distributed between the cor-
responding bounds 7£ and 7Y . As aresult, the conditional density of
z, that results from false alarms is given by po(z],|xx) = 1/ Ve k-

3.2. EO Sensor Measurements

For the EO sensor, the measurements extracted from the optical im-
age are elevation angle and azimuth angle. We assume that at time
step k, nj, measurements are detected and denoted by y,. = {y3, }721
with yi = [(i)fC wi}T, where gzﬁf; is the elevation angle measurement,
and Ql}i is the azimuth angle measurement. Following similar steps
as for the RF sensor, the conditional density p1 (y7 |x) for measure-
ments resulting from a true target is also a Gaussian density with
the elevation and azimuth angles of the true target given by 0, =
sin~*((zx — 2p)/7x) and g = sin~*((xx — ) /7). For the EO
sensor, og and o, are the standard deviations of the elevation and az-
imuth angle measurements [9]. The conditional density for measure-
ments resulting from false alarms is given by po(y7,|xx) = 1/Vko,k,
where Vgo i is the validation area volume at time step k.

4. JOINT RF-EO MULTI-TARGET TRACKING

The RBPF decomposes a filtering problem that would require MC
sampling into two filtering problems: (a) one that can be solved in
closed form; and (b) a lower dimensionality one than the original that
would require MC sampling but would not be as computationally
intensive as the original one. Also, solving some of the equations
in closed form instead of using MC sampling for all the equations
can be shown to produce estimators with lower variance [6]. Con-
sidering a system with state vector Sy and measurement vector ¢,
at time step k, the state space model can be given by the density
functions p(Sk|Sk—1) and p(¢,|Sk). If we partition the state vec-
tor into Sk = [x7 AZ]7, the state space model can be re-written
as P(Xg X k-1, Me—1, Ak)s P(AkXk—1, Ak—1), and p(Cp[X ks Ak).-
If p(Xg|Xp_1sAk—1,Ax) and p(C|xy, Ax) can be calculated in
closed form, we can apply MC sampling only to Ax, with Ay inde-
pendent of x;_; so that p(Ak|xp_1, Ak—1) = P(Ak|Ak—1). Thus,
we can greatly reduce the particle filtering complexity and lead to
more accurate estimation results.

For the joint RF-EO multi-target tracking, the state formula-
tion of the My, alive targets is given in Equation (3). As we as-
sume that, at each time step, the measurement ¢, has resulted from
only one target (or false alarm or new target birth or target death),
then before the RBPF partition, the target state can be considered as
Sk = [x¥ AF]T, where the vector Ay, represents the events that may
happen during tracking. Assuming that at time k— 1, there are My _
alive targets, there are 2 X (1 +Mp_1) + Mi,l such events that can
happen, and A\, can consist of any of these events with a probability
described by p(Ax|Ak—1). These events include: (a) ¢, is associ-
ated to clutter, and no target dies; (b) ¢, is associated to clutter, and
the jth target dies, j = 1,--- ,My_1; (c) ¢}, is associated to the jth
target, and no target dies, j = 1, - ,Mg_1; (d) ¢}, is associated to
the jth target, and the ith target dies, i,j = 1,--- ,My_1,and i # j;
(e) ¢, is associated to a new target, and no target dies; (f) ¢, is as-
sociated to a new target, and the jth target dies, j = 1,--- ,Mp_1.
Note that we also assume that the prior transfer probability of the
events, p(Ax|Ax—1), is independent of the target states x,,_,. Given
the above notation, the RBPF can be implemented by fixing some



parameters such as false alarm rate, target birth probability and tar-
get death probability. The main constraint of this algorithm is that it
allows only one target birth or death at each time step. A method to
overcome this constraint is discussed in [6].

5. WAVEFORM-AGILE MULTI-MODAL DESIGN

5.1. Posterior Cramér-Rao Lower Bound for Target Tracking

We derived the posterior Cramér-Rao lower bound (PCRLB) for
tracking a single target using the joint RF-EO sensor system [10].
This result can be extended to the multiple target case when the tar-
gets are assumed close together. Let X;, be an unbiased estimate of
the target state x5 using the RF measurements Z;, = {z17 cee ,zk},
EO measurements Vi = {y;,---,¥,}, and an initial state density
p(xo). The covariance matrix of X;, has the lower bound

P, = E{()A(k — Xk)(f(k — Xk)T} > J;17

where the difference (P — J; ') is a positive semi-definite ma-

trix and J ,:1 is the Fisher information matrix whose inverse is the

PCRLB. J;. can be computed recursively as [11]
Jor = Qu + I —F Q. (B +F1Q ' F)TH(Q)'F. (4)
Due to space limitations, the detailed steps of the derivation can be

found in [10]. It can be shown that JI;F'EO = JQF or J};F'EO = JEO,
depending on which type of sensor provides measurements, where

B = R [ (5T el Taersxu))”
2 [V 000)) (Vo P 00)) 7 ) ) e,
V) [ (5700 0l e )

+$ [V 1k (X0) [V xg, 7 (Xk)}T)P(Xk) dx.

EO
Jk -

Here, P and PE°, PEF and PEC, are the probabilities of detection
and false alarm for the RF and EO sensors, respectively, and VgRF and
V;SO are the corresponding validation volume regions. The informa-
tion reduction factor scalars ¢"° and ¢®F represent the loss of infor-
mation obtained from the measurements due to clutter and noise and
thus result in a reduction in tracking performance. The information
reduction factors vary between 0 and 1, depending on Pp, Pra, and
Vg [12]. Specifically, the larger Pp, the smaller Pra, and the smaller
validation region V;, will generate the larger ¢5° and ¢*. Thus, we
expect that improved detection performance will result in improved
tracking performance. We also notice that the measurements covari-
ance, 0’,% R af, crg , and 0727, will also affect the PCRLB; smaller error
in the measurements will yield higher tracking performance.

5.2. Waveform Design and Adaptive Control

Interpreting the PCRLB, we can obtain guidelines for waveform de-
sign for the RF-EO sensor parameter selection to improve track-
ing performance. Our aim using waveform design (for the RF sen-
sor) and parameter selection (for the EO sensor) is to: (a) increase
the probability of detection and decrease the validation regions for
both the RF and EO sensors; and (b) decrease the measurement er-
ror covariance for the joint RF and EO processing. In this case,
the range and range-rate measurement variances, o> = v2/12 and
o? = v2/12, are proportional to range resolution v, and range-
rate resolution vy, respectively. Also, v, = ¢/(2B), where B is
the waveform bandwidth and v+ = (APRF)/(2Nger), where PRF
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is the pulse repetition frequency, A is the carrier frequency wave-
length, and Neer is the length of the FFT used for the PD pro-
cessing. Thus, we can control the range and range-rate resolution
by varying the waveform’s bandwidth, PRF, and carrier frequency.
Similarly, the variance of the EO sensor measurements o and 072]
are proportional to the angle resolutions. Thus, improved EO sensor
resolutions will lead to smaller measurement variances and thus to
improved PCRLB. Note, however, that the range, range-rate and an-
gle resolutions cannot be made arbitrary small as both sensors must
maintain a large enough area for surveillance.

The joint RF-EO multi-target tracking problem can benefit from
adaptive RF waveform design and EO sensor control. Specifically,
multi-target tracking requires the RF sensors to maintain a large
enough surveillance area to include all targets, while the range reso-
lution is required to be small enough to provide accurate range mea-
surements. As we need to consider limitations due to processing
power in the overall system, there should be tradeoffs between the
FOV and range resolution in designing the RF waveform, and simi-
larly, between the FOV and angle resolution in adapting the EO con-
trol. Furthermore, as the RF sensors are distributed, they obtain dif-
ferent range-rate measurements from different aspects of the targets.
The PRF should be low enough to minimize the range-rate measure-
ment error but also high enough to guarantee that all the range-rates
of all the targets are correctly measured. Thus, the tradeoff in the
PRF depends on the motion characteristics of the targets. Note, also,
that the waveform design and adaptive control will generate a re-
duced surveillance area for RF sensors (range and range-rate) and
EO sensors (ground area). This will result in a smaller probability of
false alarm that will further improve the detection performance.

A direct optimization of Equation (4) would lead to a WAMM
design scheme. However, due to the computational complexity in-
volved, inferences on a waveform design scheme were instead de-
rived from the PCRLB. Specifically, at time step k, we obtain the
target state estimate ;, using the RBPF and then use this estimate
to predict the possible states at the next time step and the correspond-
ing distributions using the target state models. Using the future target
states, we then select sensor parameters. Specifically, we can select
the waveform bandwidth to maintain a reasonably large range gate
for all targets in the FOV while providing fine range resolution to
reduce the measurement variance. For a waveform bandwidth be-
tween 5-150 MHz, a range resolution of 1 to 30 m can be obtained
with a 100 m minimum (3 km maximum) range gate (in range bin
100). We can select the EO image resolution to maintain a reason-
ably large surveillance area while providing fine enough tracking
resolution. For a 1,000-pixel 1-D EO image, the resolution varied
between 10™° and 10~ rad, resulting in a 10 m minimum (1 km
maximum) surveillance area. We can also select a high enough PRF
to estimate the largest Doppler frequency, while providing fine res-
olution for slow-moving targets. For a 64 length FFT, the velocity
resolution varied between 0.5 and 5 m/s, resulting in a 32 m/s mini-
mum (320 m/s maximum) Doppler surveillance region.

6. NUMERICAL RESULTS AND DISCUSSION

We demonstrate the joint RF-EO multi-target tracking scenario in
Fig. 1 in 2-D for simplicity. In our simulations, we used 4 RF-EO
sensors to provide measurements to the data processing center alter-
natively, i.e., the RF sensors provide range and range-rate measure-
ments at odd time instants and the EO sensors provide angle mea-
surements at even time instants. At the first, 50th, 100th, and 150th
time steps, target 1 2, 3, and 4 appear in the FOV, respectively. The
targets are tracked using range measurements (dotted arcs), range-
rate measurements (lines), and angle measurements (dotted lines).



The target tracking trajectories from a single simulation are shown in
Fig. 2. As we can see, the trajectory begins with random selected po-
sitions (denoted by circles) and then follow the true trajectory. Note
the false trajectory that originated due to false alarm measurements.
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Fig. 1. Joint RF-EO multi-target tracking trajectory with 4 targets
appearing at different points in the 2-D space: Target 1 (green circle)
is (560,-631) m, Target 2 (blue circle) is at (114,240) m, Target 3
(black circle) is at (384,-327) m, and Target 4 (yellow circle) is at
(-420,-11) m. The four RF-EO modes (blue triangles)are located at
(1, 1) km, (-1, 1) km, (1, -1) km, and (-1, -1) km.
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Fig. 2. Estimated tracking trajectories.

Fig. 3 shows the tracking mean-squared error (MSE) of the po-
sition estimate of the first target position using different numbers of
RF-EO sensors, with and without waveform agility. As we can see,
waveform agility substantially improves tracking performance for
the single RF-EO sensor tracking case. The WAMM performance
improvement is not as dramatic if a large number of RF-EO sensors
is used as more measurement information is then available.

7. CONCLUSION

We investigated the joint multi-modal RF-EO multi-target tracking
using adaptive waveform design and control. The Rao-Blackwellized
particle filter was used to tracking an unknown number of targets
while incorporating agility to the multi-modal tracking system to
improve the overall tracking performance. The inference-based
waveform design and adaptive control was successfully demon-
strated using simulations. We are currently working towards finding
a sub-optimal design solution based on the PCRLB.
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Fig. 3. MSE for multi-target tracking with an increasing number of
RF-EO sensors. The MSE is demonstrated for one target only.
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