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Abstract In this paper, we propose an efficient pipeline
architecture for the DWT 9/7 filter defined in JPEG 2000.
The proposed architecture is composed of column and row
processors to perform the separable 2-D DWT. Based on
the rescheduling DWT algorithm, we derive a new data
flow graph to shorten the critical path. The proposed 1-D
column processor requires less pipeline registers to achieve
about the same critical path compared with other lifting-
based architectures. For the row processor, the data
dependency of each lifting step is reduced to only two
computation nodes and therefore more pipeline registers
can be applied to achieve higher processing speed without
increasing the internal memory size in the 2-D case. That is,
for an N×N image, it only requires 4N internal memory to
perform the row-wise transform. For the memory bit-width

analysis, we use software simulation to reduce the memory
bit-width for various compression ratios. Since a portion of
information from least significant bits of DWT coefficients
would be discarded after EBCOT-tier2 processing, one can
decrease the data width of internal memory to perform
various compression ratios of JPEG 2000 coding, especially
at the low-bit rates. Our simulation results suggest that it is
practically possible to design the energy-aware memory
architecture to further reduce the power consumption in the
future work.

Keywords JPEG 2000 . DWT. Critical path .Memory
bit-width . Energy-aware architecture

1 Introduction

JPEG 2000 is a new still image compression standard,
which adopts Discrete Wavelet Transform (DWT) as the
transform kernel [1]. This is because wavelet transform can
decompose the raw image into different sub-bands with
both spatial and frequency information to achieve high
compression ratios. As for the hardware implementation,
the high throughput, low memory, and efficient power
consumption are the critical issues for many multimedia
applications.

Recently, a less computation lifting-based DWT has
been proposed by Daubenchies and Sweldens [2]. Howev-
er, the long critical path and internal memory size are still
the critical points for the 2-D DWT implementation. In
general, using pipeline architectures can increase the
processing speed of 1-D column processor, but more
pipeline registers also increase the internal memory size of
row processor for 2-D DWT [3–6]. In this paper, we
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explore a new data flow graph (DFG) for the rescheduling
DWT algorithm [4] to shorten the critical path with less
pipeline registers. It only requires 10 registers to achieve
one multiplier and two full-adders delay for the 1-D column
processor (i.e. TM+2T1-bit FA). Moreover, the data depen-
dency of 2-D data path for one lifting step is reduced to
only two computation nodes. Thus, the tradeoff between the
number of pipeline registers and memory size can be eased
[7]. That is, for an N×N image, it only requires internal
memory with 4N size to perform row-wise transform of the
9/7 filter and more pipeline registers can be even applied to
achieve higher processing speed without increasing the
internal memory size. Besides, since the 9/7 filter is
commonly used for the lossy compression, a portion of
compressed data would be discarded after the rate-
distortion optimization (RDO), especially that from the
low bit-planes [8, 9]. For the power issue, the large internal
memory would dominate the power consumption of overall
2-D DWT implementation [10]. Thus, we use software
simulation to evaluate the image quality by reducing the
bit-width of internal memory. From the experimental
results, the data width of internal memory can be properly
decreased to make efficient power consumption for differ-
ent JPEG 2000 compression ratios.

The paper is organized as follows. Section 2 briefly
introduces previous architectures of the lifting-based DWT
for the 9/7 filter. In Section 3, we explore the data flow graph

and propose the one-level 2-D DWT architecture. Then, the
comparisons of 1-D and 2-D architectures are addressed. In
Section 4, the bit-width of internal memory is simulated for
various JPEG 2000 compression ratios to reduce the power
consumption. Finally, a brief summary is given in Section 5.

2 Prior Work for Lifting-Based DWT Implementation

The lifting-based DWT requires less computation and lower
memory compared with the convolution-based DWT [2]. In
general, the pipeline architecture is used to shorten the long
computation path and achieve the high processing speed.
However, the number of pipeline registers for 1-D DWT
would dominate the internal memory size of 2-D architecture.
Thus, it is reasonable to reduce the pipeline registers for the
1-D implementation. In the following, we briefly introduce
several architectures for the lifting-based DWT [3–6].

The primitive lifting process steps for the 9/7 filter
defined in JPEG2000 [1] are described from Eq. (1) to
Eq. (8). First, the input sequences xi are split into even and
odd parts, s0i and d0i . The two split sequences then perform
two lifting steps respectively and the outputs are denoted as
sni and dni (n=1, 2). Finally, through the scaling factors K2

and K1, we can obtain the low-pass and high-pass wavelet
coefficients si and di.

1. Splitting Step:

d0i ¼ x2iþ1; ð1Þ

s0i ¼ x2i; ð2Þ

2. Two Lifting Steps:

d1i ¼ d0i þ a � s0i þ s0iþ1

� �
; Predictorð Þ ð3Þ

s1i ¼ s0i þ b � d0i�1 þ d1i
� �

; Updaterð Þ ð4Þ

d2i ¼ d1i þ g � s0i þ s1iþ1

� �
; Predictorð Þ ð5Þ

s2i ¼ s1i þ d � d2i�1 þ d2i
� �

; Updaterð Þ ð6Þ

a b

c d

a/b

x 1/b
c/d

x 1/d

1/d

1/b

a Two connected computing units. b Flipping computing units.

a/b

c/d 1/bd

1/b

c Splitting computation nodes and merging the multipliers.

Figure 1 Flipping structure of the computation nodes (i.e. Fig. 7 in [5]).

Architecture Multi-plier Adder Register Critical path Bandwidth

Direct + 4 stages [3] 4 8 16 TM+2TA 2 I/O

Direct + 32 stages 4 8 32 TM 2 I/O

Rescheduling [4] 4 8 19 TM 2 I/O

Flipping + 5 stages [5] 4 8 11 TM 2 I/O

Table 1 Several architectures
for 1-D column processors of
the 9/7 filter (TM: a multiplier
delay, TA: an adder delay).
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3. Scaling Step:

di ¼ K2 � d2i ; ð7Þ

si ¼ K1 � s2i : ð8Þ

For the hardware implementation, the computation of
these lifting steps can be mapped by a direct way [3, 6].
Thus, the delay time is restricted by the predictor or updater
and the critical path can be reduced by using more pipeline
registers. Furthermore, to shorten the critical path with less
pipeline registers, a rescheduling algorithm [4] was pro-
posed to merge the computation of each lifting step such
that the flattened equation can be calculated by one addition
or one multiplication at each operation. The rescheduling
algorithm is described as follows: In the first lifting step,
Eq. (3) is substituted into Eq. (4) to merge the predictor and
updater into one equation.

s1i¼ s0i þ b � d1i�1 þ d1i
� �

¼ s0i þ b � d0i�1 þ a � s0i�1 þ s0i
� �� �þ d0i þ a � s0i þ s0iþ1

� �� �� �
¼ s0i þ b � d0i�1 þ ba � s0i�1 þ ba � s0i

� �
þ b � d0i þ ba � s0i þ ba � s0iþ1

� �
:

ð9Þ
Similarly, in the second lifting step, Eq. (5) is substituted

into Eq. (6) as the first lifting step to get the new equation.

s2i¼ s1i þ d � d2i�1 þ d2i
� �

¼ s1i þ d � d1i�1 þ g � s1i�1 þ s1i
� �� �þ d1i þ g � s1i þ s1iþ1

� �� �� �
¼ s1i þ

d
b
� bd1i�1 þ bg � s1i�1 þ s1i

� �� �þ bd1i þ bg � s1i þ s1iþ1

� �� �� �

¼ s1i þ
d
b
� bd1i�1 þ dg � s1i�1 þ dg � s1i

� �

þ d
b
� bd1i þ dg � s1i þ dg � s1iþ1

� �
:

ð10Þ

Finally, the scaling step is represented as follows:

di ¼ K2

d
� dd2i
� � ð11Þ

si ¼ K1 � s2i : ð12Þ
Based on the rescheduling algorithm, the critical path

can be shortened to one multiplier delay with less pipeline
registers compared with direct mapping architecture. More-
over, the flipping structure [5] eliminates the multipliers on
the path from input node to the computation node to ease
the critical path. As shown in Fig. 1(a), the serious timing
accumulation problem can be released by multiplying the
inverse coefficients shown in Fig. 1(b). Thus, less pipeline
registers are required to achieve the same delay time.
Compared with the data path of primitive structure in
Fig. 1(a) and flipped structure in Fig. 1(c), the flipping
structure releases the critical path of serious timing
accumulation problem and preserves the data dependency
of primitive lifting-based DWT. Table 1 summaries the
three architectures of lifting-based DWT for the 9/7 filter.
Direct mapping architecture requires more pipeline registers
to archive one multiplier delay (TM) for the 1-D column
processor. Flipping structure eases the critical path without
any hardware overhead. Thus, it uses only 11 pipeline
registers to achieve one multiplier delay. Since the memory
size of 2-D architecture is highly related to the 1-D
architecture, it is a crucial issue to shorten the critical path
with less pipeline registers and memory size for the 2-D
DWT design.
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Figure 2 The DFG of the first lifting step of the 1-D 9/7 filter.
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Figure 3 Column-processing element (Column-PE) of the first lifting
step of the 9/7 filter.
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Figure 4 Proposed architecture of the 1-D DWT for the 9/7 filter.
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3 Proposed 2-D DWT Architecture for the 9/7 Filter

To further reduce the critical path with less pipeline
registers, we explore the data flow graph (DFG) of
rescheduling DWT algorithm from Eq. (9) to Eq. (12).
Fig. 2 shows the DFG of the first lifting step described in
Eq. (9). Two input data are entered to the system per clock
cycle, and 2 multipliers and 4 adders are required to
perform one lifting step computation. Reg1 and Reg2
represent the pipeline registers of the proposed architecture
with one multiplier and two adders delay (i.e. TM+2TA).
Figure 3 presents the column-processing element (Column-
PE) for the first lifting step. Moreover, Since Eq. (10) has
the same computation form compared to Eq. (9), the 9/7
filter can be realized by cascading two PEs and two scaling
multipliers, which perform the rescheduling DWT algo-
rithm. The overall architecture of 1-D column processor is
shown in Fig. 4. To optimize the delay time and share the
carry propagation adder (CPA) of each multiplier, several
carry-save-adder (CSA) trees are applied to calculate the
addition in Fig. 3. As shown in Fig. 5, the critical path can
be reduced to TM+2TCSA delay (i.e. TCSA≈T1-bit FA).

Although more pipeline registers can be applied to
achieve higher processing speed, it also increases the
internal memory size of row processor for 2-D DWT [5,
6]. This is because more pipeline stages would prolong the
data dependency of each line transform leading to the larger
memory requirement for 2-D architecture. Based on the
proposed data path, it only requires 2N size memory to
perform the computation of one lifting step for row-wise
transform. This is because the data dependency of each
lifting step is reduced to only two computation nodes. As
shown in Fig. 6, MEM1 and MEM2 are used to save the
temporal results of each row-wise transform. For example
of the i-th row-wise transform, if two new input data, s0i;jþ1ð Þ
and d0i;jþ1ð Þ, are obtained, MEM1 and MEM2 are firstly read
to partially perform the i-th row-wise transform and the
new temporal results are then updated to the next nodes.
The outputs, s1i;jð Þ and bd1i;jð Þ, are used to perform the second
lifting step computation. Similar to the 1-D case, the row-
processing element can be derived by substituting Reg1 and
Reg2 in Fig. 5 to MEM1 and MEM2, as shown in Fig. 7.
Finally, the overall 2-D architecture can be realized by
cascading the column processor, transposing buffer [11],
row processor and scaling multipliers, as shown in Fig. 8. It
uses N/2×N/2 size external memory to store the LL-band
output coefficients.

Table 2 compares several architectures for the 1-D DWT.
Based on the 2 input samples per cycle, 4 multipliers and
8 adders are required to perform two lifting steps. Direct
mapping architecture [3] requires 32 registers to achieve
one multiplier delay time. Based on the rescheduling
algorithm [4], it decreases the number of pipeline registers
to 19. By releasing multiplications of the critical path,
flipping structure [5] uses only 11 pipeline registers to
perform one multiplier delay time. The architecture for
modified algorithm [7] requires 20 registers with one input
sample per cycle. Based on the proposed data path, the
proposed architecture can further decrease the register
number to 10 with one multiplier and two one-bit full-
adder delay time.

Table 3 compares several row processors of one-level
2-D DWT architecture for the 9/7 filter. Based on the direct
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mapping implementation, DSA architecture [6] uses less
pipeline registers with 4TM+8TA delay to achieve 4N size
memory. However, the temporal buffer size would become
large while the critical path is shortened. Flipping structure
[5] eases the critical path without adding pipeline registers.
Thus, it uses 4N size memory to perform TM+5TA delay.
The modified algorithm [7] can achieve one multiplier
delay with 4N size memory with one input sample per
cycle. Since the proposed data path reduces the data
dependency of each lifting step to only two computation
nodes, the proposed architecture only requires 4N size
memory to perform the computation of two lifting steps
with TM+2T1-bit FA delay. Besides, more pipeline registers
can be further applied to shorten the critical path (i.e.
TM+2T1-bit FA) without increasing the internal memory of
4N. Thus, the tradeoff between high speed and low memory
can be solved.

4 Memory-Bit Width Simulations

In this section, we show some simulation results of JPEG
2000 coding with different memory bit-widths in 2-D
DWT. Since the 9/7 filter is commonly used for the lossy
compression of JPEG2000, a portion of compressed data
would be discarded after performing EBCOT Tier-2
process, especially that from low bit-planes. Several
methods have been proposed to reduce the computation of
EBCOT [8, 9]. For high compression ratios, the precision
of DWT can be further reduced to save the power
consumption. As for the 2-D DWT implementation,
different memory architectures would dominate the result

of power consumption [10]. It also implies that controlling
the active memory banks under various compression ratios
is an efficient way to reduce the power consumption [12].
To illustrate the relation between the image quality and
memory bit-width, we perform four levels of DWT and
IDWT with different memory bit-widths on several 512×
512 test images. In the simulation, the fixed-point operation
is applied and realized by the 16-bit adder and 16×12 bit
multiplier; the constant coefficient of each lifting step is
quantized by 12-bit binary representation. Finally, the 16-
bit internal data bus is divided into 11 integer bits and 5
fraction bits [7].

Now, we show the simulation results of transposing and
temporal buffers with different bit-widths. Throughout the
simulation, we choose 40 dB of DWT process as a minimal
PSNR value to perform JPEG 2000 coding. We show, in
Table 4, the PSNR value with variable data width of
transposing buffer. It is found that 12-bit precision of
transposing buffer can approach the quality of 16-bit
precision operation. Therefore, we pick up the transposing
buffer with 16, 12, 11 and 10 bits to perform four levels of
DWT and IDWT with variable data width of temporal
buffer, as shown in Fig. 9. The simulation results imply that
the point with 10 bit-width transposing buffer and 14 bit-
width temporal buffer has the least DWT precision (i.e.
41.85 dB) among the working modes considered here.
Table 5 summarizes the data width of memory for the five
chosen modes.

In Figs. 10 and 11, the JPEG 2000 rate-distortion (R-D)
curves with five DWT precisions are compared with the
software model [13]. The software model is based on the
computation of 32-bit precision and is treated practically as
the maximal precision of all operation modes considered
above. From Fig. 10, the curve of “Trans16_Temp16”
mode is close to the software model. Moreover, “Trans12_
Temp16” and “Trans16_Temp16” modes perform about the
same R-D curve (i.e. less than 0.2 dB). Although
“Trans12_Temp14” and “Trans10_Temp14” modes suffer
more image degradation at low compression ratios, the R-D
curves would approach the software model when increasing
the compression ratio (i.e. less than 0.5 and 0.7 dB while
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Table 2 Comparisons of several 1-D column processors for the 9/7 filter.

Architecture Multi-plier Adder Register Critical path Band-width

Direct + 4 stages [3] 4 8 16 TM+2TA 2 I/O

Direct + 32 stages 4 8 32 TM 2 I/O

Rescheduling [4] 4 8 19 TM 2 I/O

Flipping + 5 stages [5] 4 8 11 TM 2 I/O

Modified [7] 2 4 20 TM 1 I/O

Proposed (optimized) 4 8 10 TM+2T1-bit FA 2 I/O

Table 3 Comparisons of several row processor architectures for the single-level 2-D DWT architecture (N: image height).

Architecture Multi-plier Adder Critical path Temporal buffer Band-width

DSA [6] 4 8 4TM+8TA 4N 2 I/O

Direct + 4 stages 4 8 TM+2TA 10N 2 I/O

Direct + fully pipe. 4 8 TM 32N 2 I/O

Flipping + no pipe.[5] 4 8 TM+5TA 4N 2 I/O

Flipping + 5 stages[5] 4 8 TM 11N 2 I/O

Modified [7] 2 4 TM 4N 1 I/O

Proposed (optimized) 4 8 TM+2T1-bit FA 4N 2 I/O

Table 4 PSNR of several test images with different data bits for transposing buffer (i.e. performing 4-level DWT/IDWT).

Transposing Buffer (Bit-Width) 16 15 14 13 12 11 10 9 8

Lenna512 49.76 50.14 49.89 49.90 49.33 47.76 44.26 39.45 34.07

Baboon512 50.13 50.36 50.30 50.25 49.57 47.91 44.33 39.18 33.51

Pepper512 49.27 49.54 49.41 49.30 48.94 47.38 44.06 39.16 33.82

Airplane512 49.01 49.38 49.23 48.98 48.66 47.22 44.08 39.29 33.93

Boat512 49.82 49.99 49.97 49.83 49.24 47.47 44.23 39.22 33.55

Avg. PSNR (dB) 49.60 49.88 49.76 49.65 49.15 47.55 44.19 39.26 33.78
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CR is larger than 32). For the Baboon image shown in
Fig. 11, all five modes achieve the R-D curve of the
software model (i.e. less than 0.5 dB). Therefore, from the
simulation results, we conclude that under different com-
pression ratios, the data width of memory can be properly
reduced with slight image degradation. In the modes
considered here, “Trans12_Temp16” mode is very close to
the software model. We emphasize that when the compres-
sion ratio becomes high, the memory data width can be
further reduced (i.e. “Trans10_Temp14” mode). Therefore,
under various compression ratios and applications, it is
practical to determine the working operation modes first
and then design the corresponding energy-aware memory
architecture to reduce the power consumption [14].

5 Conclusion

In this paper, we propose a high-speed and low-memory
pipelined architecture for the lifting-based 2-D DWT of the

9/7 filter defined in JPEG 2000. The critical path of 1-D
architecture can be shortened by using less pipeline
registers compared with other architectures. Besides, more
pipeline registers can be used to enhance the processing
speed without increasing the internal memory size for the 2-
D case. Thus, the tradeoff between high-speed and low-
memory can be eased. Moreover, since a portion of
DWT coefficients from least significant bits would be
discarded after the rate-distortion optimization, one can
reduce the bit-width of internal memory for various
compression ratios and applications to make efficient
power consumption.
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Table 5 Five operation modes with specified memory bit-width.

Operation
mode

Trans16_
Temp16

Trans12_
Temp16

Trans12_
Temp14

Trans11_
Temp14

Trans10_
Temp14

Transposing
buffer (bit)

16 12 12 11 10

Temporal
buffer (bit)

16 16 14 14 14

Multiplier
(bit × bit)

16×12 16×12 16×12 16×12 16×12

Adder/
Register
(bit)

16 16 16 16 16
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