
ELSNIER

PARALLEL
COMPUTING

Parallel Computing 23 (1997) 291-309

Using knowledge-based techniques on loop
parallelization for parallelizing compilers ’

Chao-Tung Yang 2, Shian-Shyong Tseng * , Cheng-Der Chuang,
Wen-Chung Shih

Department of Computer und lnjbrmation Science, Nationul Chiao Tung University, Hsinchu. Taiwan 300,

ROC

Received 10 July 1995; revised 22 March 19%

Abstract

In this paper we propose a knowledge-based approach for solving data dependence testing and
loop scheduling problems. A rule-based system, called the K-Test, is developed by repertory grid
and attribute ording table to construct the knowledge base. The K-Test chooses an appropriate
testing algorithm according to some features of the input program by using knowledge-based
techniques, and then applies the resulting test to detect data dependences for loop parallelization.
Another rule-based system, called the KPLS, is also proposed to be able to choose an appropriate
scheduling by inferring some features of loops and assign parallel loops on multiprocessors for
achieving high speedup. The experimental results show that the graceful speedup obtained by our
compiler is obvious.

Keywords: Parallelizing compiler; Data dependence testing; Loop parallelization; Parallel loop scheduling;

Knowledge-based; Repertory grid analysis; Speedup

1. Introduction

In the past decade, multiprocessors have formed a major class of highly parallel and
widely applicable machines. To achieve high speedup on such systems, it seems likely

* Corresponding author. Email: sstseng@cis.nctu.edu.tw.
’ This work was supported in part by National Science Council of Republic of China under Grants No.

NSC83-0408~EOO9-034 and NSC84-2213-EOO9-090. A preliminary version of this paper appeared in EURO-

PAR’95, Lecture Notes in Computer Science, Vol. 966, pp. 417-428, Stockholm, Sweden, 1995.
* Email: ctyang@nspo.gov.tw.

0167-8191/97/$17.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved.

PI/ SO167-819l(96)00090-7

292 C.-T. Yang et uI./Parullel Computing 23 (1997) 291-309

for task to be decomposed into several sub-tasks which can be executed on different
processors in parallel. Parallelizing compilers [2-4,17,2 1,251, analyze sequential pro-
grams to detect hidden parallelism and use this information for automatic restructuring
of sequential programs into parallel sub-tasks on multiprocessors by using loop schedul-
ing algorithms [10,16,20]. So, it has become an important issue to develop parallehzing
compiling techniques which exploit potential power of multiprocessors. In particular,
loops are such a rich source of parallelism that their parallelization would lead to
considerable improvement of efficiency on multiprocessors [4,7,25]. Therefore, we
investigate the possibility of solving the problem on two fundamental phases, data
dependence testing and parallel loop scheduling on loops, in parallelizing compilers.

In brief, the dafu dependence testing problem is that of determining whether two
references to the same array within a nest of loops may reference to the same element of
that array [8,14,15,13,18]. Traditionally, this problem has been formulated as integer

programming, and the best integer programming algorithms are O(n°C’)) where n is the
number of loop indices. Obviously, these algorithms are too expensive to use. For this
reason, a faster, but not necessarily exact, algorithm might be more desirable in some
situations.

In this paper, we propose a new approach by using knowledge-based techniques for
data dependence testing [6]. A rule-based system, called the K-Test [191, is developed by
repertory grid and attribute ordering table to construct the knowledge base. The K-Test
can choose an appropriate test according to some features of the input program by using
knowledge-based techniques [l 11, and then apply the resulting test to detect data
dependences on loops for parallelization. Furthermore, as for system maintenance and
extensibility, our approach is obviously superior to others, for example, if a new testing
algorithm or testing technique is proposed, then we can integrate it into the K test easily
by adding knowledge base and rules.

Another fundamental phase, parallel loop scheduling, is a method that schedules the
DOALL loops on multiple processors [10,16,20]. In a shared-memory multiprocessors,
scheduling decision can be made either statically at compile time or dynamically at
runtime. Static scheduling is usually applied to uniformly distributed iterations on
processors. However, it has the drawback of load imbalancing when the loop style is not
uniformly distributed or the loop bounds could not be known at compile time. In
contrast, dynamic scheduling is more suitable for load balancing; however, the runtime
overhead must be taken into consideration. Traditionally, the parallelizing compiler
dispatches the loop by using only one scheduling algorithm, maybe static or dynamic.
However, a program has the different kind of loops including uniform workload,
increasing workload, decreasing workload, and random workload, every scheduling
algorithm can achieve good performance on different loop styles [20].

To reduce the overhead and enhance the load balancing, the knowledge-based
approach becomes another solution to parallel loop scheduling. In this paper, another
rule-based system, named Knowledge-Bused Parallel Loop Scheduling (KPLS), is also
developed by repertory grid analysis, which can choose an appropriate scheduling
according to some features of loops and system status, and then apply the resulting
algorithm to assign DOALL loops on multiprocessors for achieving high speedup. The
experimental results show that the graceful speedup obtained by using KPLS in our

C.-T. Yung rt cd./ Parullel Computing 23 (1997) 291-309 293

compiler is obvious. In the near future, we wish to study whether knowledge-based
approach may be applied to guide the wide variety of loop transformation [I] for
parallelism in parallelizing compilers.

The rest of this paper is organized as follows. In Section 2, the data dependence
testing and parallel loop scheduling problems will be reviewed. Next, our new approach
for data dependence testing and loop scheduling are proposed in Section 3 and Section
4, respectively. Section 5 gives some experimental results. Finally, Section 6 draws a
conclusion and indicates future work.

2. Background

2.1. A review of data dependence testing

A data dependence is said to exist between two statements S, and S, if there is an
execution path from S, to S,, both statements access the same memory location and at
least one of the two statements writes the memory location [8]. There are three types of
data dependences:
l True (~70~) dependence (6) occurs when S, writes a memory location that S, later

reads.
l Anti-dependence (8)) occurs when S, reads a memory location that S, later writes.
. Output dependence (8,) occurs when S, writes a memory location that S, later

writes.
Data dependence testing is the method used to determine whether dependences exist

between two subscript references to the same array in a nested loop. The index variables
of the nested loop are normalized to increase by 1. Suppose that we want to decide
whether or not there exists a dependence from statement S, to S,. A model of loop is
shown in Fig. 1. Let (u=((Y,,(Y, ,..., a,> and p=(p,,& ,..., p,) be the integer
vectors of n integer indices within the range of the upper and lower bounds of the n

loops in the example. There is a dependence form S, to S, if and only if there exist o
and j3, such that a is lexicographically less than or equal to p and the dependence
equations are satisfied as fj(cr) = gi(p >, for 1 s i I; m.

DO I, = L,,U,,

s, : A(h(Z1,Zz>...,Zn) ,..., fm(Zl,Zz,...,Zn))=..

s2 : . . . =A(gl(Zl,Zz,. ..,Z*),...,g,,(Z1,Z2,...,Zn))

ElJDDO I,,

EllDDO 12

EIDDO Z,

Fig. 1. The model of nested loop for data of the K-Test.

294 C.-T. Yang et ul./Parullel Computing 23 (1997) 291-309

In this case, we say that the system of equations is integer solvable with the
loop-bounds constraints. Otherwise, the two array reference patterns are said to be
independent. Basically, the data dependence testing problem is equivalent to integer
programming if all the fi’s and gi’s are linear functions. The data dependence tests can
be classified into three classes: single dimensional tests (e.g., GCD Test, Banerjee Test
[25], and I Test [13]), multiple dimensional tests, (e.g., Extended-GCD Test [2], A Test
[14], Power Test [22], and 0 Test [18]), and classification tests [8,15]. We find these
two papers [8,151 are similar to our approach (K-Test) in some aspects. Both of them
collect a small set of test algorithms, and try to use them to solve the problem both
efficient and exact in practical cases. However, our approach is different from theirs in
essence.
- Practical Test [8]: The test is based on classifying pairs of subscript variable

references. The major difference between the Practical test and our approach is that
the Practical test is essentially designed for practical input cases, and its strategy is
fixed. However, our approach is not constraint to some kind of input cases.

* MHL Tesr: The major difference between the MHL test and our approach is that the
MHL test is a cascaded method; that is, the Extended-GCD test is tried first; if it
fails, the next test is applied, and so on. However, our approach uses only the
appropriate after the conclusion is drawn.

2.2. A review of parallel loop scheduling

A loop is called as a DOALL loop if there is no data dependence among all iterations
by using data dependence testing, i.e., iterations can be executed in any order or even
simultaneously. Parallel loop scheduling is used to assign a DOALL loop into each
processor as even as possible. In a shared-memory multiprocessor system, there are two
kind of parallel loop scheduling strategies which can be made either statically at compile
time or dynamically at runtime. Static scheduling may be applied when the loop
iterations take roughly the same amount of execution time, and the compiler must know
how many iterations are run in advance. However, it may perform unacceptable when
the loop style is not uniformly distributed or the loop bounds can not be known at
compile time. Dynamic scheduling adjusts the schedule during execution, so we use it
whenever it is uncertain how many iterations to be run, or each iteration takes different
amount of execution time, due to a branch statement inside the loop. Dynamic
scheduling is more suitable for load balancing between processors, but the runtime
overhead and memory contention must be considered.

Various scheduling methods have been developed, In the following, the review of
these scheduling algorithms will be given. We use N and P to denote the number of
iterations and the number of processors, respectively.
. Static Scheduling: Traditional static scheduling makes the scheduling decision at

compile time, and uniformly distributes loop iterations into each processor. In static
scheduling, the N iterations are divided into [N/P] rounds. Each round is assigned
to one processor. Thus, the number of iterations and available processors must be
known at compile time.

- Self-Scheduling (SS): It is the most easy and straight forward dynamic loop schedul-
ing algorithm. Whenever a processor is idle, one iteration is allocated to it. This

C.-T. Yung et al./ Parallel Computing 23 (1997) 291-309 295

algorithm can achieve good load balancing, but also introduce too much overhead for
accessing shared index variables.

. Chunk Self-Scheduling (CSS) [20]: Instead of allocating one iteration to the idle
processor as self-scheduling, CSS(k) allocates k iterations each time, where k, called
the chunk size, is fixed and can be specified by programmers either or compilers. We
also adopted the CSS/K, which is a modified version of CSS, where K denotes the
number of chunks [9].

. Guided Self-Scheduling (GSS) [16,171: GSS can dynamically change the number of
iterations assigned to each processor. More specifically, the next chunk size is
determined by dividing the number of the remaining iterations of a DOALL loop by
the number of processors. The property of decreasing chunk size implies its efforts to
achieve load balancing and reduce scheduling overhead. By allocating large chunks
at the beginning, the frequency of mutually exclusive for accessing those shared
index variables can be reduced. The small chunks at the end of a loop serve to
balance the workload across all processors.

l Factoring [lo]: In some cases, GSS might assign too much workload to the first few
processors, so that the remaining iterations are not sufficiently time-consuming to
balance the workload. This situation arises when the initial iterations of a loop are
much more time-consuming that later iterations. The Factoring algorithm addresses
this problem. The allocation of loop iterations to processors proceeds in phases.
During each phase, only a subset of the remaining loop iterations (usually half) is
divided equally among the available processors. Because Factoring allocates a subset
of the remaining iterations in each phase, it balances load better than GSS when the
computation times of loop iterations vary substantially. In addition the synchroniza-
tion overhead of Factoring is not significant larger than GSS.

. Trapezoid Self-Scheduling (TSS) [20]: It tries to reduce the need for synchronization,
while still maintaining a reasonable balance in load. This algorithm allocates large
chunks of iterations to the first few processors, and successively smaller chunks to
the last few processors. The first chunk is of size N/2P, and consecutive chunks
differ in size N/8P2 iterations. The difference in the size of successive chunks is
always a constant in TSS, whereas it is a decreasing function both used in GSS and
Factoring.
All of the algorithms are under some assumption, so that they will be suitable in

some cases. After preliminary observation, we think concepts of knowledge-based
system should be useful to parallelizing compiling because the compiling process is no
more deterministic and many domain knowledge may be needed to solve loop schedul-
ing efficiently.

3. Using knowledge-based techniques for data dependence testing

3.1. Knowledge-based approach

Knowledge-based systems are systems that depend on a vast base of knowledge to
perform difficult tasks. The knowledge is saved in a knowledge base separately from the

2% C.-T. Yang et al./ Purdel Campwing 23 (1997) 291-309

inference component. This makes it convenient to append new knowledge or update
existing knowledge without recompiling the inferring programs. The rule-based ap-
proach is one of the commonly used form in many knowledge-based systems. The
primary difficulty in building a knowledge base is how to acquire the desired knowl-
edge. To ease acquisition of knowledge, one primary technique among them is Reper-
rot-y Grid Analysis (RGA) [12]. RGA is easy to use, but it suffers from the problem of
missing embedded meanings ill]. For example, when a doctor expresses the features of
catching a cold are headache, cough and sneeze, he means if a person catches a cold, he
may has those features. However, in RGA, a person is not considered to catch a cold
except that he gets all of the features. To overcome the problem, the concept of
Arrribure Ordering Table (AOT) is employed to elicit embedded meanings by recording
the importance of each attribute to each object [111.

A knowledge-based system is composed of two parts: the development environment
and the runtime environment. The former is used to build the knowledge base, while the
latter is used to solve the problem. In our paper, the development environment is not
discussed. The runtime enuironment contains three components, which are briefly
described as follows.
- Knowledge base: This component contains knowledge required for solving the

problem of determining an appropriate test to be applied. The knowledge can be
organized in many different schemes, and can be encoded into many different forms.
Therefore, there exist many choices of building the knowledge base.

l Znference component: This component is essentially a computer program that pro-
vides a method for reasoning about information in the knowledge base along with the
input, and for forming conclusion.

l Applied algorithm libraries: The libraries collect several representative data depen-
dence tests and parallel loop scheduling algorithms for solving dependence problems
and scheduling DOALL loops, respectively.

3.2. The anatomy of the K-test

The processes of knowledge-based data dependence testing can be described as
follows. First, the input, a set of dependence equations, is fed into the inference
component. Then, the inference component reasons about knowledge and draw a
conclusion, a test. Finally, the resulting test is applied to detect dependence relations for
loop parallelization, and generate the answer whether the loop is parallelizable or not.
An implementation, called the K-Test, is proposed to demonstrate the effectiveness of
the new approach. The K-Test is a rule-based system. The primary reason we choose a
rule-based system is that this type of system is easy to understand; in addition,
rule-based inference tools are widely available, which simplify the work of implementa-
tion.

The organization of the K-Test is shown in Fig. 2 that the three components are
replaced by actual software. We describe them briefly.
- Knowledge base: The knowledge base is constructed as a rule base, i.e., the

knowledge is expressed in the form of production rules. These rules can be coded by
hand or generated by a translator. In our K-Test, the latter is adopted. A translator,

C.-T. Yang et al. / Parallel Computing 23 (1997) 291-309 297

Input
dependent
equations

Is the loop
parallelization?
Sol: Yes (or No)

Fig. 2. Components of the K-Test

GRD2CLP, is utilized to translate the repertory grid and attribute ordering table to
CLIPS’s production rules.

* Inference componenr: An expert system shell, called CLIPS [7], is used as the
inference component. CLIPS, a forward reasoning rule-based tool, is very efficient,
and does not increase the execution time of the K-Test too much.

- Testing algorithm library: We include four tests in the library. There are GCD test,
Banerjee test, I test and Power test for solving the data dependence problem.
It should be noted that the knowledge base and the testing algorithm library shown in

Fig. 2 are flexible; that is, they are not fixed. You cart modify these two components so
long as the efficiency and precision of the system are retained. The repertory grid of the
K-Test contains four attributes and four objects which are four existing data dependence
tests. The four attributes of the K-Test are described below:

l Unity_Coefi whether the coefficients of variables are 1, 0, or - 1 or not.
- Bound-Known: whether the loop bounds am known or not.
l Multi-Dim: whether the array reference is multidimensional or not.
l Few_Var: whether the number of variables in the equation is small or not.

In order to elicit the embedded meanings of RGA of the K-Test, we construct the
AOT. The RGA/AOT of the K-Test is shown in Table 1. The process is described in
dialog form. For example,
Q: If BoundKnown is not equal to 5, is it possible for the Banerjee test to be
applied?A: No.

The answer means that Bound-Known dominates the Banerjee test, and hence
AOflBounhKnown, Banerjeel = ‘D’. In AOT, large integer number implies the at-
tribute being more important to the object (e.g. 2 > 1).

Table 1
The RGA/AOT of the K-Test

GCD

Unity_Coef l/’
Bound-Known l/2
Multi-Dim l/1
Few_Var 5/l

Banerjee

512
5/D
1/l
5/l

I

‘/l
l/l
‘/2
l/2

Power

l/l
5/2
5/*
l/2

298 C.-T. Yang et al./Purullel Computing 23 (1997) 291-309

3.3. The algorithm of the K-test

We now summarize the discussion of the K-Test into an algorithm. The algorithm
consists of two phases.

Algorithm: K-Test

Input:

(ab,af ,. ..,af,,M:,N,‘,.. .,Mi,N,,‘,

. . . .
ar,a;l,.. .,a:,M,“‘,N;“,. ..,M,“,N,,“‘,

Unity_Coef,Bound_Known,Multi_Dim,Few_Var)

Output:
True: the input is integer solvable.
or False: the input is not integer solvable.
or Maybe: the input may be integer solvable.

Phase 1: calling CLIPS to draw a conclusion, that is, the most suitable dependence test.
Phase 2: calling the corresponding testing algorithm to check for data dependence.

4. Using knowledge-based techniques for parallel loop scheduling

If the parallelizing compiler can analyze a loop’s attributes such as loop style, loop
bound, data locality, etc.; then the suitable scheduling algorithms for the particular case
should be applied. This leads to select scheduling algorithms by using knowledge-based
approach. The processes of knowledge-based loop scheduling method can be described
as follows. First, the compiler can get some attributes about a loop by parsing input
program. Then, the inference component reasons about knowledge and draw a conclu-
sion, a parallel loop scheduling. Finally, the resulting scheduling is applied for loop
partition.

4.1. The features of parallel loop scheduling

There are many factors influence the selection of a loop scheduling algorithm,
including number of iterations, number of processors, loop style, a start time of each
processor, synchronization overhead in a machine, and the easiness of implementation
for a algorithm, which will be discussed more detail as follows.

The number of iterations and processors must be known at compile time if we want
to use the static scheduling algorithm. This is a necessary condition for static
scheduling since the scheduling decision is made at compile time. For dynamic
scheduling methods, these two factors can be omitted.
However, loops can be roughly divided into four styles as shown in Fig. 3 including
uniform workload, increasing workload, decreasing workload, and random workload.

C.-T. Yung et al./Purullel Computing 23 (1997) 291-309 299

1. Uniform workload 2. Increasing workload

3. Decreasing workload 4. Random workload

Fig. 3. Four different loop analysis.

These four styles of loops are most common in programs, and can cover the most
cases. The static scheduling method is only suitable for the first style; dynamic
scheduling are suitable for all loop styles except that GSS is not good for the second
style. It is possible for GSS to allocate too many iterations on a processor at the
beginning when applying the second loop style; that is, GSS may cause load
imbalancing.
The starting time of each processor is also important. If the starting times are
unequal, static scheduling and CSS may not perform well. In contrast, dynamic
method is good when applying to this unequal start time condition.
The synchronization primitives provide by a system are close related to the synchro-
nization overhead introduced by scheduling algorithms. If a system provides little
synchronization primitives, the synchronization overhead will be high. Thus, we
classify the synchronization overhead into four levels. Level one is none overhead,
level two is little overhead, level three is fair overhead, and level four is high
overhead. SS is not well when the synchronization overhead is not none, since it may
introduce too much overhead. GSS is also not well when the overhead is fair or high.
If there are two scheduling algorithms suitable for a particular loop, we should
always choose the one that is easier to implement. So we also give an attribute about
the easiness of implementation in our expert system approach.
With above attributes, we may choose a scheduling algorithm for a parallel loop with

particular attributes. This is the basic idea of using knowledge-based approach to make
the selection of scheduling algorithms.

4.2. The anatomy of KPLS

In this section, we describe our new method, named Knowledge-Based Parallel Loop
Scheduling (KPLS). We propose this method using knowledge-based, because it is easy

300 C.-T. Yung et ol./Parullel Computing 23 (1997) 291-309

Input
loop’s

features

Suitable
partition
for s2m

Fig. 4. Components of the KPLS.

to understand, implementation, maintenance and extension. This approach has great
flexibility as we can add new algorithms to the repertory grid and attribute ordering
table, and then use the conversion tool to convert tables to CLIPS rules. We do not need
any modification in CLIPS source.

The organization of the KPLS is shown in Fig. 4 that consists three components. We
describe the components of KPLS briefly in the following:

l Knowledge base: The knowledge base is constructed as a rule base, i.e., the
knowledge is expressed in the form of production rules. We also use GRDZCLP to
translate the repertory grid and attribute ordering table to CLIPS’s production rules.

- Inference corizponent: CLIPS is used as the inference component, which is very
efficient for inferring, and does not increase the execution time of our KPLS too
much.

. Scheduling algorirhm library: There are six scheduling algorithms in the library
including static scheduling, SS, CSS, GSS, Factoring, and TSS. It is also the
advantage of expert system; whenever, we can easily modify the rules and adding the
new scheduling strategy flexibly.
The repertory grid and attribute ordering table of KPLS are shown in Table 2. “X”

means that the attribute has no relation with the object. There are six algorithms and five
attributes in both tables. We describe these attributes as follows:

l Loop-Style: means the different styles of loop (1: uniform workload, 2: increasing
workload, 3: decreasing workload, or 4: random workload).

- Start_Time: means whether the starting time of each processors is equal or not,
influencing the execution time of loop.

- Loop-Bound: means whether the loop bounds are known or not in compile time.

Table 2
‘Ihe RGA/AOT of the KPLS

static ss css GSS TSS Factoring

Loop-Style (II/D x/x (1)/D 12,41/D x/x x/x
Star-Time YES/D x/x YES/D x/x x/x x/x
Loop-Bound YES/D x/x NO/D x/x x/x x/x
Overhead x/x (0)/D II ,23/D Ill/2 (2,3/ 1 (2,3)/ 1

GSY x/x x/x x/x NO/2 x/x NO/2

C.-T. Yung et uI./Parullel Computing 23 (1997) 291-309 301

. Overhead: means the different overhead of synchronization primitives on system (0:
none, 1: little, 2: fair, or 3: high).

- Easy: means whether the implementation of algorithm is easy or not.
Six rules can be generated from the repertory grid, one rule per column. We list the

first rules below:

(defrule rule-01
(LoopStyle known ?vl? cfl)
(StartTime known ?v2? cf2)
(LoopBound known ?v3? cf3)
(test (and
(eq ?vl 1)
(eq ?v2 yes)
(eq ?v3 yes)

)I
=g
(bind ?fcf (min ?cfl ?cf2 ?cf3))
(assert(goa1 Static =(* 0.80 ?fcf)))
(assert(phase print-goal)))

4.3. The Algorithm of the KPLS

In this section, we describe our algorithm of KPLS. The algorithm consists of three
phases.

Algorithm: KPLS

Znput:The following information can be obtained from the input file.
1. What kind of loop style? (1-4 styles)
2. Are the start time of processors roughly equal? (Yes/No)
3. Is the loop bound known during compiler time? (Yes/No)
4. What is the synchronization overhead level? (None/Low/Fair/High)
5. Use easy-to-implement methods only? (Yes/No)
A certainty factor (CF) [ll] value for each question to express the question’s impor-
tance is given.
0utput:What kind of loop scheduling strategy will be applied. If there are more than one
suggestion, the one with maximal CF value will be chosen.
Phase 1: Get the loop attributes from parallelism detector.
Phase 2: Call CLIPS to draw a conclusion by using rules; that is, the most suitable loop
scheduling method.
Phase 3: s2m [9] uses the appropriate loop scheduling to partition the DOALL loop on
multiprocessors.

4.4. An example

Now, we give an example to illustrate the algorithm. The program segment of adjoint
convolution is shown in the following:

302 C.-T. Yang et al. / Parallel Computing 23 (1997) 291-309

1.
2.

3.
4.
5.

Fig. 5. A program segment with loop-independent dependence.

DOALL 19 I=l, N*N

DO 29 K=I, N*N

A(I)=A(I)+X*B(K)*C(I-K)

29 CONTINUE

19 CONTINUE

The following attributes can be obtained from parallelism detector during Phase 1.
The workload of loop is decreasing, that means the loop style is the second.
Because the workload of this program segment is uniform, the starting time is
roughly equal.
The loop bound is unknown during compile time.
On our share-memory architecture, we assume the synchronization is fair.
The easy-to-implement method is chosen.
Phase 2, the KPLS uses those attributes, and determines that the TSS is the most

suitable algorithm. In Phase 3, the TSS is invoked; that is, TSS is suitable for s2m, then
s2m partition this loop by using TSS.

4.5. The relationships between K-Test and KPLS

For example, consider the program segment as shown in Fig. 5. Although 5, is true
dependent on S,, the dependence is restricted in each iteration, that is loop-independent
dependence. Our K-Test is used to determine whether dependences exist between two
subscript references to the same array in the nested loop. Therefore, all of the iterations
in the loop can be executed in parallel, called as DOALL loop. Another example is
shown in Fig. 6, 5, is true dependent on S,, the dependence is occurred across
iterations, that is loop-carried dependence, called as DOACROSS loop, whose iterations
are either executed sequentially, or in parallel through the enforced synchronization
instructions within the loop body.

If a loop can be executed in parallel, we want to break this loop down to a set of
tasks on different processors. As we know, task granularity, which is an important issue
in loop partitioning heavily influences load balancing. Therefore, a good loop-partition-

ti

Fig. 6. A program segment with loop-carried dependence.

C.-T. Yung et al./ Parallel Computing 23 (1997) 291-309 303

ing algorithm will achieve better load balancing with only a small overhead. Once KPLS
gets information from the loop and system, it can make good and correct scheduling
decisions for that loop, while other scheduling methods try only one scheduling
approach to solve all kinds of loops. Since no single loop scheduling algorithm performs
well across all applications on multiprocessor systems, our new approach provides a
good way to make compilers more flexible efficient, and intelligent in loop scheduling
for achieving high parallelism.

5. Experiments

5.1. Our plaflorm: AcerAltos 10000 system

Our experiments are run on AcerAltos 10000 system, which is a PC-based shared-
memory, symmetric multiprocessor computer designed for departmental client/server
environments. The system includes up to four i486-DX (33 MHz) CPUs, an 8 K internal
cache and a 128 K external cache per CPU, 32 MB shared-memory, and a 64Bit
high-speed frame bus. Due to the symmetric architecture, computation tasks can easily
be distributed to any available processor. This means that balanced loading of all
processors can be achieved.

5.2. Operating system and threads

The operating system run on our target machine was OSF/l [5]. Many of the kernel
services provided by OSF/l were derived from the Mach (version 3.0) operating
system. Mach was designed from the ground up to support symmetric multiprocessing
and distributed computing. It also contains a native threads facility, allowing separate
threads of a single application to be executed simultaneously.

OSF/l provides P Threads package which is a set of low level, language indepen-
dent primitives for manipulating threads of control. The package, a runtime library,
provides P Thread function calls which allow parallel programming in C under the
operating system. These functions provide multiple threads of control for parallelism,
shared variable, mutual exclusion for critical sections, and condition variables for
synchronization of threads. Therefore, OSF/l is used to develop our parallel compiler.
Besides, our parallelizing compiler is very easy to be ported to other operating systems
[9]. In the following, the thread related data types and functions used in our compiler are
described.

5.3. Integrating K-Test and KPLS in PFPC

We integrate K-Test and KPLS in PFPC [9,24] to generate the efficient object codes
for multiprocessors. The K-Test is used to treat the data dependence relations and then
restructure a sequential FORTRAN source program into a parallel form, i.e., if a loop
can be parallelized, then parallelism detector (K-Test) converts it into DOALL loop. In
the previous version of our compiler, Parafrase-2 (p2fpp) is used to treat the data

304 C.-T. Yung et al./Parullel Computing 23 (1997) 291-309

1: 23

2: 1 1 10

3: -1 1 10

4: 0 1 10

5: 1

6: 0 1 10

7: -1 1 10

8: 1 1 10

9: -1

Fig. 7. The input format of testing algorithms.

dependence analysis [23,19]. For improving the capacity of loop partition module in s2m
193, the KPLS is used, instead of the previous version, to build an intelligent loop
scheduling method. Because the restriction of the OS scheduling, the system call for
binding any thread onto the appropriate processor is not available and only dynamic
scheduling is employed. We can only partition loops and encapsulate with data into
threads by s2m and let the OS dynamically choose the threads to run on multiprocessors.
The experiments only concerned the performance of KPLS in PFPC.

5.4. Experiments with K-Test

We have coded the GCD test, the Banerjee test, the I test, the Power test and the
K-Test in C programming language. Experiments in previous work usually implement
their methods in a prototype parallelizing compiler, such as Parafrase-2 [I 7,231, Tiny
[18], etc. Nevertheless, we cannot afford such a large project. Consequently, we decide
to construct a main program which reads the input equations from a file, then calls
CLIPS, and finally invokes the tests. Hence, we examine all input codes, select the
representative array subscripts, and encode them into an input file by parallelism
detector. For example, the simultaneous equations

x-y= 1, -y+z= -1, where 1 I x,y,z% 10

is encoded into the form of Fig. 7. The first line contains two numbers: the first
represents the number of equations, and the second refers to the number of variables.
Hence, (2 3) means there are 2 equations and 3 variables. Lines 2-5 represent the first
equation and lines 6-line 9 mean the second equation. The three numbers in line 2 refer
to the coefficient, the lower bound and the upper bound, respectively.

We have performed experiments on two numerical packages, EISPACK and LIN-
PACK. EISPACK is a collection of subroutines computing the eigenvalues of matrices.
LINPACK is a collection of Fortran subroutines which analyze and solve various
systems of simultaneous linear algebraic equations. Because of their systemization and
representativity, the packages have been widely adopted as benchmark programs [8,14].

EISPACK has 75 subroutines, which contain about 70000 pairs of array references.
LINPACK has 51 subroutines, which contains about 5000 pairs of array references [8].
In our experiments, we consider only possible true dependent references. Table 3 lists
th: number of lines, subroutines and array pairs tested.

C.-T. Yang et al./Parallcl Computing 23 (1997) 291-309 305

Table 3

Program characteristics for practical data

lines subrs array pair tested

EISPACK 11519 15 211

LINPACK 7421 51 106

Table 4 shows the usage and success frequencies of the dependence tests for the two
packages. The notations are similar to that in [S]. “A” denotes the number of times the
test is applied; “S” denotes the number of times the test succeeds in determining
dependences; “I” denotes the number of times the test proves the pair is data
independent.

We know that practical array subscripts are usually simple, with unity coefficiencies
and few index variables. Therefore, the GCD test seems sufficient for practical data and
the Power test and the K-Test are not significantly superior to the GCD test. Note that in
LINPACK and EISPACK, the loop bounds are all parameters and are unknown values.
This is why the Banerjee test can not be applied to the two packages.

‘Ihe execution time of the K-Test is significantly longer than the GCD test, the
Banerjee test and the I test. The overhead results from the cost of inferential process and
the usage of the expensive Power test. However, the time required by the K-Test is
nearly the same as that of the Power test in the worst case. In fact, the amount of time is
relatively small compared with the whole compiling process.

5.5. Experiments with KPLS

We show the performance gained by using PF’PC’s KPLS
examples of different loop styles.

on the following four

The first example is matrix multiplication, where the two outer loops can be
parallelized. Since the example is highly load balanced, every iteration of the outermost
DO loop takes constant time to execute; this kind of loop is called uniform workload.

The matrix size is 600 X 600.

The second example is adjoint convolution, which exploits significant load imbal-
ance; only the outer loop can be parallelized and the ith iteration of it takes O(N2 - i)

Table 4

Application/Success/Independence frequencies for practical data

EISPACK LINPACK

A s I A s I

GCD 206 204 0 83 83 0

Banerjee 0 0 0 0 0 0

I 206 204 0 83 83 0

Power 206 206 2 83 83 0

K 206 206 2 83 83 0

306 C.-T. Yang et al./Pnrallel Computing 23 (1997) 291-309

Mat-Mu1 Adj-av Rev_Adj Tram_Clo

Fig. 8. The speedup for individual programs.

time to execute. As i increases from one to N 2, the workload decreases from O(N ‘> to
O(1). This kind of loop is called decreasing workload. We choose the problem size to
be 150~ 150.

The third example is reverse adjoint convolution, which also exploits significant load
imbalance; only the outer loop can be parallelized and the ith iteration of it takes O(i)
time to execute. As i increases from one to N 2, the workload also increases from O(1)
to O(N’). This kind of loop is called increasing workload. The problem size is
150 x 150.

The fourth example is transitive closure. The characteristic of this program is that the
workload is dependent on the input data. Each iteration takes either O(1) or O(N > time.
This kind of loop is called random workload. We selected different matrix sizes for
testing alone, then combined four programs using 1000 X 1000 and 500 X 500, respec-
tively.

There are two parts to each experiment: the first part concerns the execution time and
speedup rate of each program, and the other is a combination of all four programs. The
speedup rate of the four programs in Fig. 8 (see also Table 5) show that GSS performed
poorly with a decreasing workload as in adjoint convolution. CSS/4 is suitable for
uniform workloads like matrix multiplication, and Factoring is suitable for reverse
adjoint convolution. We also adapted the CSS/I [9], which is a modified version of
CSS, where 1 means the number of chunks. Among the scheduling algorithms, none is
suitable for all tasks. KPLS can choose an appropriate schedule and obtain good results
for all programs except transitive closure. In transitive closure, our approach does not
choose the fastest one, CSS/4, but chooses TSS, because the imbalanced workload in

Table 5
The execution time of individual programs (see)

Serial css/ I CSS/4 CSS/8 CSS/16 GSS Factoring TSS KPLS

Mat-Mu1 854.46 848.18 225.96 230.92 232.13 250.94 259.32 230.14 as CSS/4
Adj_Conv 769.50 776.38 350.80 256.70 239.90 369.54 245.01 237.68 as TSS
Rev_Adj 604.5 I 632.37 281.01 215.19 171.63 182.01 168.93 177.57 as Factoring
Trans_Col 2310.96 2221.81 695.73 708.83 702.60 730.30 713.62 710.68 as TSS

C.-T. Yang et al./ Parulkl Computing 23 (1997) 291-309 307

Combined
progr=n

Fig. 9. The speedup for the combination of four programs.

this program is not so obvious, because the control flow is related to the input data, and
because the matrix size is 500 X 500, which is divided exactly by the number of CPUs.
In most cases, KPLS makes a better choice than other scheduling even for a single loop.

Fig. 9 (see also Table 6) shows the speedup for the big program integrating all four
programs. Conventionally, every scheduling algorithm uses only one method through for
an entire program. However, KPLS can always choose an appropriate scheduling
algorithm according to the loop behaviors in a program. In second part of the
experiment, KPLS chooses a different style of loop scheduling for each loop in the
combined program. For example, according to the loop behavior, KPLS selected TSS for
the adjoint convolution part of the combined program and CSS/4 for matrix multiplica-
tion, instead of only selecting one scheduling method. We were concerned about the
loop runtime cost. During execution, selecting a good loop scheduling algorithm by
considering the runtime cost is important; once the compiler specifies the right loop
schedule, the program can save execution time. Furthermore, KPLS spends only a little
time on knowledge-based inference. Since no single scheduling algorithm performs well
across all applications, our method is able to make compilers more flexible and efficient
at loop scheduling.

6. Conclusions and further directions

In this paper we have proposed a new approach by using knowledge-based tech-
niques, which integrates existing data dependence testing algorithms and loop schedul-
ing algorithms to make good use of their advantages for loop parallelization. A
rule-based system, called the K-Test, was developed by RGA and AOT to construct the

Table 6
The execution time for the combination of four programs (set)

Serial CSS/l CSS/4 CSS/S CSS/16 GSS Factoring TSS KPLS

All 2185.59 2167.99 872.34 683.85 636.38 763.67 651.52 644.43 582.47

308 C.-T. Yang et d/Parallel Computing 23 (1997) 291-309

facts and rules

Input data

(CLIPS-J (,)

1
Output data

Fig. 10. Components of our approach.

knowledge base. The K-Test could choose an appropriate testing algorithm by knowl-

\transformalionj

edge-based techniques, and then apply the resulting test to detect data dependences on
loops. Another rule-based system, called the KPLS, was also developed by RGA and
AOT, which was embedded in our s2m, that could choose an appropriate scheduling and
then apply the resulting algorithm for assigning parallel loops on multiprocessors to
achieve high speedup. The experiments have shown that the KPLS can apply more
suitable loop scheduling strategy. Once we choose the right method for loop scheduling,
the program can save more execution time. The experimental results also have shown
that the graceful speedup obtained by our compiler is obvious. Furthermore, as for
system maintenance and extensibility, our approach is obviously superior to others. In
addition, we are going to study whether knowledge-based approaches may be applied to
guide the wide variety of loop transformation for parallelization in parallelizing compil-
ers. The new model which using knowledge-based techniques for loop parallelization
contains three components as shown in Fig. 10.

As a final goal, a high-performance and portable FORTRAN parallelizing compiler
will be constructed at NCTU. We believe that our research will yield more insights into
developing high-performance parallelizing compilers for multiprocessors running under
multithreaded operating systems.

Acknowledgements

We would like to thank the anonymous reviewers for suggesting of improvements,
and offering of encouragements.

References

Ill D.F. Bacon, S.L. Graham and O.J. Sharp, Compiler transformations for high-performance computing,

ACM Computing Surveys 26 (4) !994) 345-420.

[2] U. Banerjee, Dependence Anulysis for Supercomputing (Kluwer Academic Publishers, Norwell, MA,

1988).

C.-T. Yang et al./Purallel Computing 23 (1997) 291-309 309

[3] U. Banerjee, R. Eigenmann, A. Nicolau and D.A. Padua, Automatic program parallelization, Proc. IEEE

81 (2) (1993) 211-243.
[4] W. Blume, R. Eigenmamt, K. Faigin, J. Grout, J. Hoeflinger, D.A. Padua, P. Petersen, B. Pottenger, L.

Rauchwerger, P. Tu and S. Weatherford, Polaris: The next generation in parallelizing compilers,

Technical Report no. CSRD-1375, Cntr. for Supercomputin, m Res. and Dcv., Univ. of Illinois at

Urbana-Champaign, 1994.
[5] J. Boykin, D. Kirschen, A. Langennan and S. LoVerso, Programming under Much (Addison Wesley,

Reading, MA, 1993).
[6] B.M. Chapman and H.M. Herbeck, Knowledge-based parallelization for distributed memory systems,

Proc. of the First International ACPC Conference on Parallel Computing, Salzburg, Austria (Springer,

Berlin, 1991) 77-89.
[7] J.C. Giarratano and Cl. Riley, Expert Sysrems: Principles und Programming (PWS-Kent, Boston, 1993).

[8] G. Gaff, K. Kennedy and C.W. Tseng, Practical dependence testin,, 0 in: Proc. ACM SIGPLAN ‘91 Conf:

on Programming Language Design utul Implementation, Toronto, Canada (1991) 15-29.

[9] M.C. Hsiao, S.S. Tseng, CT. Yang and C.S. Chen, Implementation of a portable parallelizing compiler

with loop partition, in: Proc. 1994 ICPADS, Hsinchu, Taiwan, ROC (1994) 333-338.

[IO] S.F. Hummel, E. Schonberg and L.E. Flynn, Factoring: A method for scheduling parallel loops, Comm.

ACM 35 (8) (1992) 90-101.

[I 1] G.J. Hwang and S.S. Tseng, EMCUD: A knowledge acquisition method which captures embedded

meanings under uncertainty, Internut. J. Man- Muchine Srudies 33 (1990) 43 1-45 1.

[121 G.A. Kelly, The Psychulogy of Personul Cunstructs, Vol. I (W.W. Norton, New Yorli, 1955).

[13] X. Kong, D. Klappholz and K. Psarris, The i test: An improved dependence test for automatic

parallelization and vectorization, IEEE Truns. Paruilel Distributed Systems 2 (3) (1991) 342-349.

[14] Z. Li, PC. Yew and C.Q. Zhu, An efficient data dependence analysis for parallelizing compilers, IEEE

Trans. Parullel Disrrihufed Systems 1 (I) (1990) 26-34.

[15] D.E. Maydan, J.L. Hennessy and M.S. Lam, Efficient and exact data dependence analysis, in: Proc. oj’

the ACM SIGPLAN ‘91 Con5 on Programming Lunguuge Design and Implemmturion. Toronto, Canada

(1991) l-14.

[16] CD. Polychronopoulos and D.J. Kuck, Guided self-scheduling: A practical self-scheduling scheme for

parallel supercomputers, IEEE Trans. Comput. 36 (12) (1987) 1425- 1439.

[171 C.D. Polychronopoulos, Parallel Programming und Compilers (Kluwer Academic Publishers, 1988).

[181 W. Pugh, A practical algorithm for exact array dependence analysis, Comm. ACM 35 (8) (1992)

102-l 14.

[19] WC. Shih, CT. Yang and S.S. Tseng, Knowledge-based data dependence testing on loops, in: Proc.

1994 Internat. Computer Symp., Hsinchu, Taiwan, ROC (1994) 961-966.

[20] T.H. Tzen and L.M. Ni, Trapezoid self-scheduling: A practical scheduling scheme for parallel compilers,

tEEE Trans. Parallel Distributed Systems 4 (I) (1993) 87-98.

[21] M. Wolfe, Optimizing Supercompilers jk Supercomputers (Pitman, London and MIT Press, Cambridge,

MA, 1989).

[22] M. Wolfe and C.W. Tseng, The power test for data dependence, /EEE Trans. Purullel Distributed

Systems 3 (5) (1992) 591-601.

[23] C.T. Yang, S.S. Tseng and C.S. Chen, The anatomy of parafrase-2, in: Proc. Nut. Sci. Council Republic

of’ Chinu (Par? A) I8 (5) (1994) 450-462.

[24] C.T. Yang, S.S. Tseng and M.C. Hsiao, A model of parallelizing compiler on multithreaded operating
systems, in: Proc. HPC-ASIA ‘95, Taipei, Taiwan, ROC, 1995.

[25] H.P. Zima and B. Chapman, Supercompilers for Parallel und Vector Computers (Addison-Wesley,

Reading, MA, 1990).

