
VLSI Architecture of Leading Eigenvector Generation for On-chip
Principal Component Analysis Spike Sorting System

Tung-Chien Chen1,2, Wentai Liu1,3 and Liang-Gee Chen2

1University of California, Santa Cruz, CA, USA; 2National Taiwan University, Taipei, Taiwan;
3National Chiao-Tung University, Hsinchu, Taiwan; Email: djchen@video.ee.ntu.edu.tw

Abstract— On-chip spike detection and principal component
analysis (PCA) sorting hardware in an integrated multi-channel
neural recording system is highly desired to ease the bandwidth
bottleneck from high-density microelectrode array implanted
in the cortex. In this paper, we propose the first leading
eigenvector generator, the key hardware module of PCA, to
enable the whole framework. Based on the iterative eigenvector
distilling algorithm, the proposed flipped structure enables
the low cost and low power implementation by discarding
the division and square root hardware units. Further, the
proposed adaptive level shifting scheme optimizes the accuracy
and area trade off by dynamically increasing the quantization
parameter according to the signal level. With the specification of
four principal components/channel, 32 samples/spike, and nine
bits/sample, the proposed hardware can train 312 channels per
minute with 1MHz operation frequency. 0.13 mm2 silicon area
and 282μW power consumption are required in 90 nm 1P9M
CMOS process.

I. INTRODUCTION

On-chip implementation of neural signal processing along
with the recording circuitry can significantly reduce the
data bandwidth, and is a key to enable the wireless neural
recording system with a large amount of electrodes [1].
Without such data processing, large amount of data need
to be transferred to a host computer, and typically a cable
is required. In this case, patients and test subjects are
restrained from free movement, which impedes the advance
in fundamental neuroscience research and wireless neural
prosthetic devices for patients.

A promising approach to achieve the bandwidth reduction
is to extract spike features immediately after spike detection
on the implant site [1]–[4]. Only the event times and some
additional features about classification are transmitted after
the signal processing. This approach achieves more than 100-
fold data reduction while preserving the neuron signature for
discrimination and classification of individual neuron signal
sources. The principal component analysis (PCA) [1], [2]
and wavelet transformation [3], [4] are the most widely used
tools for this approach. In this paper, we propose to achieve
the first hardware prototype for PCA-based approach.

The PCA-based spike sorting has two major parts—the
parameter training and the on-the-fly feature extraction.
After spike detection, the training collects the detected spike
waveforms and extracts the major characteristic vectors, the
principal components (PCs), that can optimally differentiate
neurons in least square terms. Calculating the covariance ma-
trix and the leading eigenvectors are two major mathematic
operations in this part. In the on-the-fly feature extraction, the

TABLE I

DESCRIPTION OF ITERATIVE EIGENVECTOR DISTILLING ALGORITHM

1, Choose h, the number of eigenvectors required to estimate,
Choose r, the iteration number of eigenvector distilling,
Compute covariance matrix ∑cov , and set p and q to 1.

2, Initialize eigenvector ϕp up, e.g. randomly.
3, Do the eigenvector distilling process :

ϕp = ∑cov ϕp
4, Do the Gram−Schmidt orthogonalization process :

ϕp = ϕp −
p−1
∑
j=1

(
ϕT

p ϕj
)

ϕj

5, Normalize up ϕp by dividing it by its norm :
ϕp = ϕp/

∥∥ϕp
∥∥

6, Increase counter q = q+1 and go to step 3 until q equals r.
7, Increase counter p = p+1 and go to step 2 until p equals h.

feature scores are extracted by projecting the detected spike
waveforms on the PCs, and the operation of inner product is
required. Note that periodic re-training is frequently required
because of the movement of the electrodes and change of the
environment [5].

In realizing an on-chip PCA-based spike sorting circuit,
the most challenging problem is to design a hardware engine
to calculate leading eigenvectors. There are many algorithms
to calculate eigenvectors from a covariance matrix, but
most of them can hardly be mapped into an efficient VLSI
architecture. In this paper, based on a new computationally
fast and hardware friendly algorithm [6], the first VLSI
architecture to calculate the leading eigenvectors is proposed.
To facilitate the description, we name this algorithm as
iterative eigenvector distilling algorithm. The reminder of
this paper is organized as follows. In section II, the algorithm
is briefly introduced. For the detailed mathematic proof of
the algorithm, please refer to [6]. In section III, the low
power and low area VLSI architecture is proposed with a
flipped structure and adaptive level shifting method. Section
IV presents the implementation and simulation results, and
Section V concludes this work.

II. ITERATIVE EIGENVECTOR DISTILLING ALGORITHM

Table I depicts the fast PCA algorithm based on the
iterative eigenvector distilling algorithm. “h” is the required
number of the PCs. “r” is the algorithm iteration number, and
“Σcov” is the covariance matrix calculated from the detected
spike waveforms. In the beginning, the eigenvectors, “ϕ p”,
are initialized randomly. Afterwards, the leading eigenvectors
of the covariance matrix are calculated one by one in a reduc-
ing order of dominance. The calculation of each eigenvector

has r iterations and each of the iterations has two procedures-
the eigenvector distilling process and the orthogonal process.

The key of this algorithm is to intensify the major com-
ponent on the initial eigenvector through continuously mul-
tiplying the initial eigenvector with the covariance matrix.
This procedure is called the eigenvector distilling process.
The most PC can be simply derived after several iterations
of this distilling process. For the remaining h − 1 PCs,
an additional orthogonal process is required. In order to
continuously intensify the pth PC on the initial eigenvector,
the previously measured p−1 components are removed from
the intermediate results of ϕp by the orthogonal process after
every iteration of distilling process. Note that the Gram-
Schmidt method is used in our orthogonal process.

This algorithm has several advantages in terms of hard-
ware implementation. First, this algorithm is free from eigen-
value decomposition, matrix diagonalization, symmetric rota-
tion, and matrix inverse. Second, the algorithm exactly meets
the requirement without calculating all the eigenvalues and
the minor eigenvectors. Third, the algorithm can globally
converge in a few iterations without the need for any spe-
cific initial setting. Also, the algorithm has a very regular
procedure.

III. ARCHITECTURE DESIGN

A. Flipped Structure

In the original algorithm, four kinds of math operations are
required—addition, multiplcation, division, and square root.
Generally speaking, division and square root hardware units
require much more silicon area and consume much more
power compared with multipliers and adders. In order to
optimize the power consumption and silicon area, the flipped
structure is proposed to discard these hardware-expensive
operations.

First, we discard the normalization process of ϕ p =
ϕp/

∥∥ϕp
∥∥, and change the orthogonal process to ϕ p =

ϕp−
(
ϕT

p ϕ j/
∥∥ϕ j

∥∥)(
ϕ j/

∥∥ϕ j
∥∥)

. Then, we multiply the whole

equation by
∥∥ϕ j

∥∥2
. Since

∥∥ϕ j
∥∥2 =

(
ϕT

j ϕ j

)
, the orthogonal

process finally becomes ϕp =
(

ϕT
j ϕ j

)
ϕp−

(
ϕT

p ϕ j
)

ϕ j. After
this transformation, the norm of the previously calculated
PC is flipped to the dividend part in the orthogonal process.
The division and square root operations are thus replaced by
addition and multiplication. In this way, we can not only save
the silicon area and power consumption but also increase the
hardware utilization by reusing the uncomplicated processing
units of the adders and the multipliers.

Note that this method works with an assumption that
the scaling of the eigenvectors does not affect the final
sorting performance. The new principal components are the
scaled versions of the origonal normalized ones. The scaled
PCs force the feature scores to be scaled equally for all
spike waveforms. The classification algorithms such as K-
means and mean-shift usually consider only the geographic
relativity of these feature scores. Therefore, the scaling of
the PCs does not affect the final sorting results.

f or(p = 1 : 4)
{ ϕp =

[
1, 1,, 1,

]
f or(i = 1 : 10)
{ ϕp = Σcovϕp

Level Check And Shi f t(ϕp)�
f or(j = 1 : p−1)
{ ϕp =

(
ϕT

j ϕ j

)
ϕp −

(
ϕT

p ϕ j
)

ϕ j

Level Check And Shi f t(ϕp)�}}}
� Level Check And Shi f t(ϕp) :

While
(

max(ϕp) ≥ 2(bw−1)||min(ϕp) < −2(bw−1)
)

{ ϕp = (ϕp +1) >> 1 }

Fig. 1. Pseudo-code of the iterative eigenvector distilling algorithm with
the flipped structure and adaptive level shifting scheme.

Add/SubMultiplier C omparator

Covariance
Matrix Memory

Register Files
for Intermediary Data

Reg. Files
for Final PC

Mux Mux

0

Mux

2 (bw-1)

Control Engine (FSM)

>>1

Start

PCs
Output

Co-variance
Input

-2 (bw-1)

Fig. 2. The block diagram of the proposed architecture for the leading
eigenvector generation.

B. Adaptive Level Shifting Scheme

After the Flipped structure, there is no division and square
root operation, and the ϕ can be easily represented in a
fixed-point integer number during the processing. It should
be advantageous since the fixed-point integer DSP system is
very friendly in terms of VLSI implementation. However, the
dynamic range of ϕ increases rapidly during the iterations.
For example, suppose the input covariance matrix is a 32×32
matrix, and each entry has 16-bit precision. The dynamic
range of ϕ is increased by 16+5 bits for every eigenvector
distilling process. If the current dynamic ranges of ϕ j is n
bits, the dynamic range of ϕ p is increased by 2×n+5 bits for
every orthogonal process. After several iterations, the final
dynamic range become prohibitively large, which impedes a
low area and low power implementation.

An adaptive level shifting scheme is proposed to optimize
the hardware in terms of processing accuracy per hardware
cost. The idea is to use the floating point concept in a
fixed point DSP system. It is realized by dynamically in-
creasing the quantization parameter according to the signal
level until the limited bit-width can completely cover the
quantized signals for each processing step. Fig. 1 shows the
pseudo code of the proposed flipped structure combining
with the proposed adaptive level shifting scheme. After either
the eigenvector distilling process or the orthogonalization

Start?

Distilling
Initial One

Eigen Vector
Overflow?

Level
Shift

Orthogonal
Process Overflow? Level Shift

Finish All Iteration?
Update One
Eigen-Vector

Finish All PC?

yes

no

yes

no
yesno

no
Idle

yes

yes

Fig. 3. Finite state machine in the control engine.

process, the level check and shift procedure is applied to
compress the dynamic range according to the current level.
The level check and shift procedure is shown in the bottom
of Fig. 1. “bw” is the pre-defined bit-width of the system
outputs of the final eigenvectors. During the level check and
shift procedure, ϕp is continuously rounded by 2 until it can
be completely represented in the pre-defined bit-width.

C. Architecture Design

Based on the modified algorithm, the block diagram of
the proposed architecture for the leading eigenvector gener-
ation is shown in Fig. 2. The input is a covariance matrix
calculated from the detected spike waveforms. The outputs
are several leading eigenvectors of the covariance matrix,
or the so-called PCs of the detected spike waveforms. Four
major processing units are implemented in this architecture.
The multiplier and adder (also used as a subtractor) units
form a multiply-accumulate (MAC) structure and are used for
the eigenvector distilling process and the orthogonalization
process. The right-shift and comparator units are used for
the level check and shift procedure. The whole algorithm
is folded into these four processing units and processed
sequentially. All the intermediary data are stored in the
register files. The control engine mainly constructed of a
finite state machine (FSM) is responsible for the scheduling
and resource allocation during the processing.

After the architecture is constructed, the next challenge
is how to do the scheduling and resource sharing. Fig. 3
shows the FSM of the control engine. Suppose each spike
waveforms has n samples, and Σcov is an n × n matrix
while ϕ is an n× 1 vector. During the state of eigenvector
distilling, “Σcov” and“ϕp” is input to MAC and the new “ϕp”
is stored back to the register file. Note that every eigenvector
distilling state takes n × n cycles. During the orthogonal
process, “ϕT

j ϕ j” is first computed, and both inputs of MAC
are “ϕ j”. Afterwards, “ϕp” and “ϕ j” are input to MAC

for “
(
ϕT

p ϕ j
)
”. Then, “

(
ϕT

j ϕ j

)
” and “ϕp” are input for

“
(

ϕT
j ϕ j

)
ϕp”. As the final step in the orthogonal process,

the MAC is initialized with “
(

ϕT
j ϕ j

)
ϕp”, and input with

“
(
ϕT

p ϕ j
)
” and “ϕ j” in the subtraction mode. After that, the

orthogonalization state is finished, and the “ϕ j” component is
totally removed from “ϕ p”. The result is also stored back to
the register files. Note that the orthogonal process to remove
each pre-calculated eigenvector, “ϕ j”, takes n× 4 cycles.
During the overflow checking state, “ϕ p” is input to the
comparator with 2(bw−1) and −2(bw−1). The checking result
is fed back to the control engine. If an overflow occurs, the
FSM will enter the level shift state, and “ϕp” is input to the
right shift engine to quantize the signal by 2. This procedure
will continue until the overflow checking fails. It takes n
cycles to pass each overflow checking and level shift state.

IV. IMPLEMENTATION RESULTS

A. Implementation Results

We use 90 nm 1P9M process to implement the proposed
leading eigenvector generator for various specifications with

TABLE II

RESULTS OF DIFFERENT PROCESSING ACCURACY

Spec.:
Entire Core

Covariance Processing
Max. Bit Memory Units +

Width Matrix Register Files

I/O Internal Area Power Area Area
Circuit (um2) (uW) (um2) (um2)

2 11 45996 93 17667 26465
4 17 70027 150 20859 47303
8 29 119956 255 29154 88937
16 53 222950 469 45744 175341

TABLE III

RESULTS OF DIFFERENT SAMPLE NUMBER PER SPIKE WAVEFORM

Spec.:
Entire Core

Covariance Processing
samples Memory Units +

per Matrix Register Files
Spike Area Power Area Area

Waveform (μm2) (μW) (μm2) (um2)
16 79209 152 18135 59322
32 132021 282 31228 98929
64 255495 521 75481 178071

one MHz operation frequency. Table II reports the imple-
mentation results of different processing accuracies. The
input bit-width specifies the precision of the given covariance
matrix while the output bit-width specifies the precision of
the required PCs. The sample number of spike waveforms
is fixed to support as large as 32 samples while the PC
number and iteration number can go up to four and 128
respectively. Note that if the input/output (I/O) bit-width is n,
the maximum bit-width of internal circuit is 3×n+5 which
happens after the orthogonal process. The size of the on-chip
static random access memory is 32×32×n bits to store the
covariance matrix. When the bit width goes high, the area
of covariance matrix memory, register files, and processing
units increase in order to store and process more data. The
hardware costs almost linearly increase in this case.

TableIII reports the implementation results of different
sample numbers of spike waveforms. This time the I/O bit
width is fixed to 9 bits. The PC number and iteration number
can still go up to 4 and 128 respectively. If sample numbers
of spike waveform is m, the size of the on-chip static random
access memory is m×m×9 bits. When the sample number
of spike waveforms goes high, the dimensions of Σ cov and ϕ
increase. This fact increases the area of the covariance matrix
memory and the register files. The area cost also linearly
increases in this case.

Table IV shows the hardware capability of different hard-
ware parameters. The processing capability is defined as the
number of channels that can be trained in PCA algorithm
within one minute. The number is reported for the worst
case (which requires the maximum cycles for level checking
and shifting) and with iteration number of 20, required
principal number of 4, and 1MHz operation frequency. In the
maximum specification of 64 samples per spike and 16 bit
bit-width of each input spike sample and output eigenvector
sample, our hardware can perform PCA analysis for 90
channels within one minute.

TABLE IV

THE HARDWARE CAPABILITY OF DIFFERENT HARDWARE PARAMETERS

Samples per I/O Bit- Required Cycles for Channel Number
Spike (#) width (bit) each Channel (#) per Minute (#)

64 16 666k 90
32 16 246k 244
32 9 192k 312
16 9 73k 822

Pattern #1

0.7

0.8

0.9

1

13579111315 Bit

Score

1st PC 2nd PC

3rd PC 4th PC

Pattern #2

13579111315 Bit

Score

1st PC 2nd PC

3rd PC 4th PC

0.7

0.8

0.9

1

Fig. 4. The comparison between the principal components generated
by Matlab function and our hardware Verilog model. The test patterns
are downloaded form [7]. Pattern # 1 and # 2 are C Easy1 noise005 and
C Difficult1 noise005.

B. Precision Analysis and Case Study

The precision analysis is made in order to establish the
tradeoff between hardware cost and sorting performance. We
use the neural data from [7] to validate our hardware. The
Matlab “eig” function is used as our benchmark. Note that
the nonlinear energy operation algorithm [8] is applied as
the spike detection method, and we build a classification
algorithm based on the watershed segmentation algorithm
[9]. After spike detection, the detected spike waveforms are
aligned horizontally and vertically according to their peaks
and 8/12 samples are used before/after the peak to represent
each spike waveform. The iteration number for each PC is
set to 20 in this analysis.

Sorting Error
Rate: 3.16%

Case I: Matlab (float)

1

2 3

Sorting Error
Rate: 2.68%

Case II: Verilog (9-bit)

3
1

2

Sorting Error
Rate: 3.32%

Case III: Verilog (4-bit)

2

1

3

Sorting Error
Rate: 22.88%

Case IV: Verilog (2-bit)

32

1

Fig. 5. Case studying using pattern #2. The first case uses Matlab function
with floating point input neural data and eigen vectors, while the second to
fourth cases use our hardware verilog model with 9-bit input neural data
and 9-/4-/2-bit eigen vectors.

Fig. 4 shows the comparisons between the principal
components generated by the Matlab function and our
hardware verilog models. We use the correlation func-
tion, ‖ϕT

VerilogϕMatlab
/

norm
(
ϕVerilog

)×norm(ϕMatlab)‖, as
the similarity score. The simulation results show that the
hardware with 9-bit precision is a good trade-off point. For
this precision, the hardware is minimized without affecting
the accuracy of output PCs.

The sorting performances with Matlab function and our
Verilog model are demonstrated in Fig. 5. Compared to the
first case that uses Matlab function with the floating point
data, the second case with 9-bit PC has almost the same
2-D feature map and sorting result. In the third case with 4-
bit PC, the feature map has some distortion, but the sorting
performance is still maintained. In the last case with 2-bit PC,
the feature map is totally distorted, which ruins the sorting
result.

V. CONCLUSION

In this paper, the first VLSI architecture for leading
eigenvector generation was designed for the PCA-based
spike sorting system. The iterative eigenvector distilling
algorithm is used because of its simple and regular na-
ture. The proposed flipped structure enables the low cost
and low power implementation, while the adaptive level
shifting scheme optimizes the accuracy and area trade off.
According to the implementation results with specification
of four PCs/channel, 32 samples/spike and 9bit/sample, the
proposed hardware can train 312 channels per minute at
1MHz operation frequency and consumes 132k μm 2 silicon
area and 282μW power in 90 nm 1P9M process.

REFERENCES

[1] Z. Zumsteg, C. Kemere, S. ODriscoll, G. Santhanam, R. Ahmed,
K. Shenoy, and T. Meng, “Power feasibility of implantable digital spike
sorting circuits for neural prosthetic systems,” IEEE Trans. on Neural
Systems and Rehabilitation Engineering, vol. 13, no. 3, pp. 272–279,
2005.

[2] K. G. Oweiss, D. J. Anderson, and M. M. Papaefthymiou, “Multispike
train analysis,” in Proc. of IEEE, May. 1977, vol. 65, pp. 762–773.

[3] J. C. Letelier and P. P. Weber, “Spike sorting based on discrete wavelet
transform coefficients,” Journal of Neuroscience Methods, vol. 101, no.
2, pp. 93–106, 2000.

[4] E. Hulata, R. Segev, and E. Ben-Jacob, “A method for spike sorting and
detection based on wavelet packets and shannon’s mutual information,”
Journal of Neuroscience Methods, vol. 117, no. 1, pp. 1–12, 2002.

[5] K. Shenoy, G. Santhanam, S. Ryu, A. Afshar, B. Yu, V. Gilja, M. Linder-
man, R. Kalmar, J. Cunningham, C. Kemere, A. Batista, M. Churchland,
and T. Meng, “Increasing the performance of cortically controlled
prostheses,” in Proc. 28th Annu. Conf. IEEE Engineering in Medicine
and Biology Society, Aug. 2006, pp. 6652–6656.

[6] A. Sharma and K. K. Paliwal, “Fast principal component analysis using
fixed-point algorithm,” Pattern Recognition Letters, vol. 28, no. 10, pp.
1151–1155, 2007.

[7] R. Quian Quiroga, “Simulated extracellular recordings,” .
[8] K. H. Kim and S. J. Kim, “Neural spike sorting under nearly 0-

db signal-to-noise ratio using nonlinear energy operator and artificial
neural-network classifier,” IEEE trans. on Biomedical Engineering, vol.
47, no. 10, pp. 1406–1411, 2000.

[9] D. Wang, “Unsupervised video segmentation based on watersheds
and temporal tracking,” IEEE trans. on Circuits System on Video
Technology, vol. 8, no. 7, pp. 539–546, 1998.

