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Abstract— In this paper we investigate the robustness of an
extended version of retrospective cost adaptive control (RCAC),
in which less modeling information is required than in prior
versions of this method. RCAC is applicable to MIMO possibly
nonminimum-phase (NMP) plants without the need to know
the locations of the NMP zeros. The only required modeling
information is an FIR approximation of the plant, which may
be based on a limited number of Markov parameters. In this
paper we investigate the effect of phase mismatch between the
true plant and the FIR approximation. Numerical examples
demonstrate the relationship between phase mismatch at the
command and disturbance frequencies as well as the required
level of regularization in the controller update.

I. INTRODUCTION

One of the motivations for adaptive control is the desire

to minimize the amount of required modeling information

[1–4]. For example, if an adaptive controller requires no

knowledge of the plant pole locations, then it is uncondi-

tionally robust to the actual pole locations, assuming that

they are constant or, perhaps, slowly changing. Since an

adaptive controller is robust to modeling information that

it does not need, an adaptive controller can be viewed as a

robust nonlinear controller. Since an adaptive controller tunes

itself to the actual plant, the main benefit of adaptive control

is thus the reduced need to model the system for controller

tuning without sacrificing performance.

Although model-free adaptive control allows arbitrary

plant uncertainty, model-free control may entail large learn-

ing transients and may be subject to restrictions on zero

locations [5]. Therefore, adaptive controllers typically rely on

some plant modeling data, which is obtained through either

prior modeling and identification or on-line identification.

In the present paper we focus on retrospective cost

adaptive control (RCAC) [6–10]. In the SISO case, this

approach relies on knowledge of the first nonzero Markov

parameter and knowledge of the nonminimum-phase (NMP)

zeros, if any; in the MIMO case, the number of Markov

parameters that must be known depends on whether the

plant is square, tall, or wide, as well as on the rank of the

Markov parameters. Markov parameters provide a convenient

foundation for plant modeling since they are independent of

the state space basis, and they can be identified by various
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system identification methods [11]. When a sufficient number

of Markov parameters are used within RCAC, the locations

of the NMP zeros are approximately captured, which avoids

the need to determine a state space realization and compute

the NMP zeros.

In [12], RCAC is extended to remove the need to know

the NMP zeros, as well as to reduce the number of required

Markov parameters. In particular, it is shown in [12] that in

many cases, a single nonzero Markov parameter suffices to

achieve convergence of the adaptive controller.

The purpose of the present paper is to investigate the

robustness implications of the accuracy and number of the

Markov parameters used in RCAC. We thus consider SISO

command following and disturbance rejection problems for

open-loop-stable plants with sinusoidal commands and dis-

turbances. In particular, we focus on the mismatch between

the plant and the finite-impulse-response (FIR) approxima-

tion constructed from the chosen set of Markov parameters.

Here, mismatch refers to the difference between the phase

angle of the true plant and its FIR approximation constructed

from the chosen Markov parameters when both transfer

functions are evaluated on the unit circle. The numerical

examples that we present demonstrate the phase mismatch

that can be tolerated when the adaptive regularization term

in the optimization step is appropriately chosen. Although

FIR approximation of IIR plants is a longstanding problem

in systems theory [13, 14], the challenge within the context

of RCAC is to construct a suitable FIR approximation of the

plant using minimal modeling information.

In Section 2 we present the adaptive control problem.

Next, Section 3 shows that knowledge of the gain and phase

of the plant at the frequency of the exogenous sinusoid is

sufficient to guarantee convergence. Next, in Sections 4–6,

we return to the Markov parameter formulation in Section 2,

and we show how the phase mismatch depends on the choice

and accuracy of the Markov parameters. In Section 5 we

present numerical examples to demonstrate the performance

of RCAC under various levels of phase mismatch. The role

of adaptive regularization in the presence of large phase

mismatch is also discussed.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 6085



II. PROBLEM FORMULATION

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (1)

y(k) = Cx(k) +D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu ,

w(k) ∈ R
lw , and k ≥ 0. The open-loop system (1)–(3) is

described by
[

z
y

]

= G(z)

[

w
u

]

,

where

G(z) =

[

Gzw(z) Gzu(z)
Gyw(z) Gyu(z)

]

.

Consider the LTI output feedback controller

xc(k + 1) = Acxc(k) +Bcy(k), (4)

u(k) = Ccxc(k), (5)

where xc(k) ∈ R
nc . The closed-loop system with output

feedback (4)–(5) is thus given by

x̃(k + 1) = Ãx̃(k) + D̃1w(k), (6)

y(k) = C̃x̃(k) +D2w(k), (7)

z(k) = Ẽ1x̃(k) + E0w(k), (8)

where

Ã =

[

A BCc

BcC Ac

]

, D̃1 =

[

D1

BcD2

]

,

C̃ =
[

C 0ly×nc

]

, Ẽ1 =
[

E1 0lz×nc

]

,

and x̃(k) =
[

xT(k) xT
c (k)

]T
.

The goal is to develop an adaptive output feedback con-

troller that minimizes the performance variable z in the

presence of the exogenous signal w with limited modeling

information about G. The components of the signal w can

represent either command signals to be followed, external

disturbances to be rejected, or both, depending on the con-

figurations of D1 and E0.

For the adaptive system, Ac = Ac(k), Bc = Bc(k), and

Cc = Cc(k) are time varying, and (6)–(8) illustrates the

structure of the time-varying closed-loop system in which

Ã = Ã(k). To monitor the ability of the adaptive controller to

stabilize (1)–(3), we compute the spectral radius spr(Ã(k))
of Ã(k) at each time step. If spr(Ã(k)) converges to a

number less than 1, then the asymptotic closed-loop system

is internally stable.

A detailed description of the Retrospective-Cost Adaptive

Control algorithm is given in [12].

III. FINITE-IMPULSE-RESPONSE PHASE MATCHING

The RCAC algorithm described in [12] is based on Markov

parameters of Gzu that are chosen by the user to construct

the coefficient matrix H̃. However, to illustrate the effect of

these parameters on the performance of RCAC, we replace

the Markov parameters of Gzu with constants κi. These

constants can be viewed as either approximations to the

Markov parameters or as parameters obtained by phase

matching as explained below.

For 0 < j1 < j2 < · · · < jr, and κjr 6= 0, we define the

jthr -order FIR transfer function

GFIR(z)
△
=

κj1z
(jr−j1) + κj2z

(jr−j2) + · · ·+ κjr

zjr
.

Next, for θ ∈ [0, π], the phase mismatch function ∆(θ)
between GFIR and Gzu is defined by

∆(θ)
△
= cos−1

Re
[

Gzu(e
θ)GFIR(eθ)

]

|Gzu(eθ)| |GFIR(eθ)|
∈ [0, 180]. (9)

To illustrate the effect of phase matching, con-

sider the 2nd-order minimum-phase system Gzu(z) =
z−0.5

(z−0.5+0.4)(z−0.5−0.4) . We consider the sinusoidal com-

mand w(k) = sin(θ0k), where θ0 = 1 rad/sample. We

assume that θ0 and Gzu(e
θ0) are known. Then, taking r = 2,

j1 = 1, and j2 = 2, we construct the second-order FIR model

GFIR(z) =
κ1z + κ2

z2
,

where κ1 and κ2 are chosen so that ∆(θ0) = 0. For this

example, κ1 and κ2 are given by κ1 = 0.8792, κ2 = 0.864.

The phase mismatch function illustrated in Figure 1 confirms

that GFIR exactly matches Gzu at θ0 = 1 rad/sample. Note

that the Markov parameters H1, H2 of Gzu are H1 = 1 and

H2 = 0.5, and thus κ1 and κ2 are not Markov parameters

of Gzu(z). We let H̃ =
[

κ2 κ1

]T
, nc = 5, η0 = 0, and

P0 = I2nc
. The performance z(k) converges to zero, and the

closed-loop system with the converged control gains θ(k) is

stable as shown in Figure 2.

We now modify H̃ by keeping κ2 the same, but replacing

κ1 = 0.8792 by κ1 = −0.1792. This modification increases

the phase mismatch at θ0 to ∆(1) = 40 deg. Keeping the

same controller parameters, we consider the same command

w(k) = sin(k). The performance converges to zero and the

closed-loop system is stable.

We now further decrease κ1 to −0.8792 and keep κ2

the same, so that the phase mismatch ∆(1) increases to 91
deg. Keeping the same controller parameters nc, P0, and η0,

RCAC converges to an internal model controller with high

gain at θ0 = 1 rad/sample, but destabilizes the system and

thus cannot track the command, as shown in Figure 3.

Keeping κ1, κ2 the same so that ∆(1) = 91 deg, we

now introduce adaptive regularization by letting η0 = 0.1.

Keeping the same controller parameters nc and P0, the

performance converges to zero, and adaptive regularization

prevents RCAC from destabilizing the closed-loop system,

as shown in Figure 4.

These numerical results indicate that phase matching plays
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Fig. 1. Phase mismatch function ∆(θ). Note that ∆(1) = 0.
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Fig. 2. Command following with w(k) = sin(k). In this case, H̃ is
constructed such that ∆(1) = 0 deg, without using Markov parameters. The
performance z(k) converges to zero, and RCAC converges to an internal
model controller with high gain at θ = 1 rad/sample.

a role in the convergence of the performance and closed-

loop stability. In practice, however, Gzu may be uncertain,

and, furthermore, we may not know the frequency content

of the exogenous input w(k). In this case, we cannot con-

struct GFIR to match Gzu at the command or disturbance

frequencies. We thus consider Markov-parameter-based con-

structions of GFIR.

IV. MARKOV PARAMETERS AND PHASE MATCHING

Now, we return to the case in which GFIR is constructed

based on Markov parameters. For 0 < j1 < j2 < · · · <
jr, Hjr 6= 0, consider the FIR approximation GFIR(z) of

Gzu(z) given by

GFIR(z) =
Hj1z

(jr−j1) +Hj2z
(jr−j2) + · · ·+Hjr

zjr
,

where Hji are the Markov parameters of Gzu(z). Note that

GFIR(z) approximates Gzu(z) in the sense that the ji
th

Markov parameter Hji of Gzu(z) is also the ji
th Markov

parameter of GFIR(z) for 1 ≤ i ≤ r. For θ ∈ [0, π], the

phase mismatch function ∆(θ) between GFIR and Gzu is

defined as in (9).

Different choices of Markov parameters Hji lead to differ-

ent FIR models that have different levels of phase mismatch.

For example, for the 2nd-order nonminimum-phase system

Gzu(z) =
z−1.5

(z−0.8)(z−0.5) , taking r = 1, j1 = 1 leads to the
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Fig. 3. Command following with w(k) = sin(k). In this case, H̃ is
constructed such that ∆(1) = 91 deg, without using Markov parameters.
The performance grows unbounded, and RCAC converges to a destabilizing
internal model controller.
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Fig. 4. Command following with w(k) = sin(k). In this case, H̃ is
constructed such that ∆(1) = 91 deg, without using Markov parameters.
In this case, adaptive regularization prevents RCAC from destabilizing the
closed-loop system, and the performance z(k) converges to zero.

1st-order FIR approximation

GFIR(z) =
H1

z
=

1

z
. (10)

Similarly, taking r = 1, and j1 = 2 leads to the 2nd-order

FIR approximation

GFIR(z) =
H2

z2
=

−0.2

z2
. (11)

Figure 5 shows that the phase mismatch functions ∆1(θ)
and ∆2(θ) corresponding to (10) and (11), respectively, are

significantly different.

In general, using successively more Markov parameters in
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Fig. 5. Phase mismatch functions ∆1 and ∆2 for (10) and (11),
respectively.
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Fig. 6. Phase mismatch functions ∆r for GFIR,r . Note that the peak
value of the phase mismatch decreases as r increases.

the construction of GFIR leads to improved phase matching

over θ ∈ [0, π]. For example, for Gzu(z) as defined above,

define

GFIR,r(z)
△
=

r
∑

i=1

Hi

zi
=

H1z
r−1 + · · ·+Hr

zr

as the rth-order FIR approximation with ji = i, 1 ≤ i ≤ r.

Figure 6 shows that the peak of the phase mismatch function

decreases as r increases. Note that phase matching matters

only at the command and disturbance frequencies, which

may or may not be known in practice. Furthermore, in

addition to the number and choice of Markov parameters,

the phase mismatch depends on the accuracy of the Markov

parameters, as determined by the modeling accuracy.

The numerical results in the next section show that

the level of regularization required for convergence of the

adaptive controller depends on the phase mismatch at the

command and disturbance frequencies. In particular, for

command and disturbance frequencies at which the phase

mismatch is less than 90 deg, RCAC is insensitive to the level

of regularization. As the phase mismatch increases above 90

deg, the controller becomes more dependent on the choice

of regularization η0.

V. COMMAND FOLLOWING AND DISTURBANCE

REJECTION WITH DETERMINISTIC SIGNALS

In this section, we present numerical examples to investi-

gate the effect of the choice of H̃ on the convergence of the

adaptive controller. We consider the exogenous signal w(k)
generated by

xw(k + 1) = Awxw(k),

w(k) = Cwxw(k),

where xw ∈ R
nw , and Aw has distinct eigenvalues on

the unit circle. Assuming that no command frequency is

a zero of Gzu, and none of the eigenvalues eθi of Aw

are zeros of GFIR(z), we show by numerical examples

that a sufficient condition for convergence of z to zero is

to have ∆(θi) < 90 deg for all 1 ≤ i ≤ nw in the

presence of adaptive regularization. When this condition is

not satisfied, convergence may still be possible but may

require an appropriate level of regularization.

Example 5.1: Consider the 2nd-order plant Gzu(z) =
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Fig. 7. Example 5.1: Stable, nonminimum-phase plant, step-command

following. In this case, H̃ = H1, so that ∆(0) = 180 deg. The performance
is driven in the wrong direction due to 180-deg phase mismatch at DC.
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Fig. 8. Example 5.1: Stable, nonminimum-phase plant, step-command

following. In this case, H̃ = H2, so that ∆(0) = 0 deg. The performance
z(k) now converges to zero.

z−1.5
(z−0.8)(z−0.5) . We consider a command following problem

with the step command w(k) = 2. We first take H̃ = H1,

so that ∆(0) = 180, as shown in Figure 5. We take nc =
3, P0 = I2nc

, and η0 = 0.5. The performance does not

converge to zero, as shown in Figure 7. In fact, we observe

that the performance is driven in the opposite direction due to

the 180-deg phase mismatch at DC. We now take H̃ = H2,

so that ∆(0) = 0, as shown in Figure 5. Keeping nc, η0,

and P0 the same, the performance now converges to zero, as

shown in Figure 8. �

Example 5.2: Consider 4th-order plant Gzu(z) =
z(z−4)(z−3)

(z−0.8)(z−0.6)(z−0.5−0.5)(z−0.5+0.5) . Taking H̃ = H1, the

phase mismatch function ∆(θ) is illustrated in Figure 9.

We first consider the sinusoidal command w(k) =
sin(θ0k), where θ0 = 2 rad/sample. Figure 9 shows that

∆(2) = 2.3 deg. We take nc = 6, P0 = I2nc
, and vary

η0 from 0.01 to 10. Figure 10 shows that the performance

z(k) converges to zero for each choice of η0, although the

transient behavior is affected by the choice of η0.

We now consider the sinusoidal command w(k) =
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Fig. 9. Example 5.2: Phase mismatch function ∆(θ) with H̃ = H1.
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Fig. 10. Example 5.2: Stable, nonminimum-phase plant, command follow-
ing with w(k) = sin(2k). Each subplot corresponds to a run with different
η0. The performance z(k) converges to zero in each case, and the transient
performance is improved as η0 increases.
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Fig. 11. Example 5.2: Stable, nonminimum-phase plant, command fol-
lowing with w(k) = sin(0.65k), η0 = 0.055. The performance z(k)
converges to zero with this level of regularization even in the presence of
large phase mismatch ∆(0.65) = 152 deg at the command frequency.
However, the large phase mismatch results in longer adaptation period.

sin(θ0k), where θ0 = 0.65 rad/sample. Figure 9 shows that

GFIR does not match Gzu well at θ0 = 0.65 rad/sample

with a phase mismatch ∆(0.65) = 152 deg. We take nc = 6,

P0 = I2nc
, and vary η0 from 0.01 to 10 as before. For all

of the values of η0, the performance z(k) does not converge

to zero.

Now, we consider the same command w(k) = sin(0.65k),
and we take nc = 6 and P0 = I2nc

, and η0 = 0.055.

The closed-loop response in Figure 11 shows that, with

this level of regularization, the controller converges to a

stabilizing internal model controller, and the performance

z(k) converges to zero. �

Example 5.3: Consider the 3rd-order plant Gzu(z) =
(z−1.8)(z−0.8)

(z−0.85)(z−0.75−0.4)(z−0.75+0.4) . We consider the sinu-

soidal disturbance w(k) = sin(θ0k), where θ0 = 2.31
rad/sample. With the plant realized in controllable canonical

form, that is, B = [ 1 0 0 ]
T

, we take D1 = [ 0 1 0 ]
T

, so that

the disturbance is not matched with the input.

We first take H̃ = H1, so that ∆(2.31) = 13 deg. Taking

nc = 5, P0 = 0.1I2nc
, and η0 = 1, the closed-loop response

in Figure 12 shows that the output z(k) of the plant converges

to zero, and RCAC converges to a stabilizing internal model

controller.

We now take H̃ = [H4 H3 H2 H1 ]
T

. Note that ∆(2.31) =
4.5 deg, however, GFIR has a zero at the disturbance fre-

quency eθ0 . Taking nc = 5, P0 = 0.1I2nc
, and η0 = 1, the

closed-loop response in Figure 13 shows that, due to the zero

of GFIR at the disturbance frequency, RCAC does not adapt,

and thus the controller gains remain at zero. Consequently,
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Fig. 12. Example 5.3: Stable, nonminimum-phase plant, unmatched
disturbance rejection with w(k) = sin(2.31k). In this case, H̃ = H1,
so that ∆(2.31) = 13 deg. The performance z(k) converges to zero.
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Fig. 13. Example 5.3: Stable, nonminimum-phase plant, unmatched
disturbance rejection with w(k) = sin(2.31k). In this case, ∆(2.31) = 4.5
deg, but RCAC cannot adapt since GFIR has zeros at the disturbance
frequency e±θ0 .

the adaptive controller cannot affect the performance. �

Example 5.4: We consider the plant Gzu in Example

5.3. With the plant realized in controllable canonical form,

we take E0 = [ 0 0 0 −1 −1 −1 ], D1 = [ I3×3 03×3 ], and

consider the exogenous signal w(k) = [w1(k) ··· w6(k) ]
T
=

[ sin θ1 ··· sin θ6 ]
T

, where the disturbance frequencies are θ1 =
0.6 rad/sample, θ2 = 1.2 rad/sample, θ3 = 1.8 rad/sample,

and the command frequencies are θ4 = 0 rad/sample,

θ5 = 2.4 rad/sample, and θ6 = 3 rad/sample.

We first take H̃ = H1, which yields ∆1(θ) shown in

Figure 14. Taking nc = 25, P0 = 0.1I2nc
, and η0 = 0.1,

the performance z(k) does not converge to zero because of

the large phase mismatch at low frequencies.

Now taking H̃ = [H3 H2 H1 ]
T

yields ∆3(θ) shown in

Figure 14. Taking nc = 25, P0 = 0.1I2nc
, and η0 = 0.1, the

closed-loop response illustrated in Figure 15 shows that the

performance z(k) converges to zero. �
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Fig. 14. Example 5.4: Phase mismatch functions ∆1 and ∆3.
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Fig. 15. Example 5.4: Command following and disturbance rejection with
a 6-tone exogenous signal. In this case, ∆3(θ) < 90 deg for all 0 ≤ θ ≤ π,
and the performance z(k) converges to zero.
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Fig. 16. This figure shows the effect of uniform additive error and random
additive error in the Markov parameters for the plant in Example 5.4, and
r = 3. For positive α, degradation is highest at θ = 0, whereas, for negative
α, degradation is highest at θ = π. Degradation is low at the intermediate
frequencies for all α. With σχ = 1, ∆(π) = 180 deg, and degradation is
lower at all other angles.

VI. ROBUSTNESS TO UNCERTAIN MARKOV

PARAMETERS

We now investigate robustness of RCAC when the Markov

parameters are not known perfectly. We consider two types

of uncertainty. For each type, we investigate the degradation

in phase matching as the uncertainty level increases.

For r ≥ 1, Hr 6= 0, we define the uniform additive

uncertainty α, and random additive uncertainty σχ > 0 such

that

H̃ =
[

Hr + α · · · H1 + α
]T

,

H̃ =
[

Hr · · · H1

]T
+ χ(0, σχ),

where Hi are the Markov parameters of Gzu(z), α is a

constant, and χ(0, σχ) ∈ R
r is a normally distributed random

vector with zero mean and covariance σ2
χIr.

For r ≥ 2, uniform additive uncertainty and random

additive uncertainty can introduce 180-deg phase mismatch

at DC or the Nyquist frequency. In Figure 16, we show

the effect of uniform and random additive uncertainty for

the plant in Example 5.4, and r = 3, H̃ = [H3 H2 H1 ] =
[−1.145 −0.25 1 ]. Positive α brings ∆(0) to 180 deg for

α = 0.25H1 and α = 0.5H1, while negative α brings ∆(π)
to 180 deg for α = −0.25H1 and α = −0.5H1. Note that

degradation at intermediate frequencies is lower compared

to θ = 0 and θ = π, for both positive and negative α.

Furthermore, ∆(π) degrades to 180 deg for σχ = 1H1,

although lower frequencies are less affected compared to

θ = π.

VII. CONCLUSIONS

We provided a numerical investigation of the perfor-

mance and robustness of retrospective cost adaptive control

(RCAC). In particular, we considered the effect of the choice

and accuracy of the Markov parameters used by RCAC. For

the case in which the plant is known at the frequency of

the command and disturbance signals, we showed that, if

parameters of an FIR model are chosen to match the phase

of the plant, then RCAC stabilizes the plant with an internal

model that achieves command following and disturbance

rejection. In this case, the only information needed about

the plant is a single point on its Nyquist plot. For the case in

which the plant or spectrum of the exogenous signals may be

unknown, we considered the effect of the choice of Markov

parameters, and we showed that the phase difference between

the plant and the FIR model constructed from the Markov

parameters determines the level of adaptive regularization

needed for convergence. Finally, we considered the phase

mismatch due to uncertainty in the Markov parameters.
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