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Abstract— Quadrocopters exhibit complex high-speed flight
dynamics, and the accurate modeling of these dynamics has
proven difficult. Due to the use of simplified models in the
design of feedback control algorithms, the execution of high-
performance flight maneuvers under pure feedback control
typically leads to large tracking errors. This paper investi-
gates an iterative learning scheme aimed at the non-causal
compensation of repeatable trajectory tracking errors over
the course of multiple executions of periodic maneuvers. The
learning is carried out in the frequency domain and uses a
simplified model of the closed-loop dynamics of quadrocopter
and feedback controller. The resulting algorithm requires little
computational power and memory, and its convergence is
shown for the nominal model. This paper further introduces a
time-scaling method that allows the initial learning to occur
at reduced speeds, thus extending the applicability of the
algorithm for high performance maneuvers. The presented
algorithms are validated in experiments, with a quadrocopter
flying a figure-eight maneuver at high speed.

I. INTRODUCTION

Aerial robotics research has embraced quadrocopters as
a popular platform, and a large number of commercial and
open-source systems are available (e.g., [1]–[3]). Compared
to other aerial robotics platforms, quadrocopters provide
mechanical simplicity, robustness, and a large dynamic po-
tential due to high thrust-to-weight ratios and fast rotational
dynamics.

Like many other robotic systems, quadrocopter aerial
platforms are often applied to tasks that involve the repeated
execution of identical or similar motions. Such applications
include for example inspection, monitoring, and filming [4].
The tasks typically require precise tracking of a reference
trajectory, which is complicated by the inherently unstable,
nonlinear dynamics of quadrocopters, as well as significant
model uncertainties and disturbances caused primarily by a
number of aerodynamic effects [5].

When a motion is executed repeatedly, causal feedback
control laws may be augmented through the use of non-
causal learning control. Using input-output data of past
executions, the added learning control is designed to provide
additional control inputs such that repeated disturbances are
eliminated. A number of authors have demonstrated the
application of iterative learning control (ILC) in combination
with real-time feedback control (e.g., [6], [7]). The combina-
tion was shown to be capable of achieving high performance
trajectory tracking, while maintaining good disturbance re-
jection for non-repetitive noise. For quadrocopters, signifi-
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cantly increased tracking performance has been demonstrated
through the use of ILC [8], [9].

Besides ILC, a number of other learning strategies have
been developed for high performance quadrocopter flight. A
first group of learning schemes aim to account for model
mismatches, for example through sliding mode control and
reinforcement learning techniques [10], neural networks [11],
and adaptive control [12].

A second approach is the use of parameterized motion
primitives, where a set of parameters defines the motion.
These parameters are then adapted in order to correct for
tracking errors at specific points along the trajectory (referred
to as ‘key frames’). Demonstrations of this approach applied
to quadrocopters include flying through narrow openings and
perching [13], as well as multiple flips and time-optimal
translations [14]. Compared to ILC, these approaches offer
improved computational efficiency as a result of the low
dimensionality of the maneuver parameterization.

This paper investigates the performance of a learning
scheme that aims to compensate for trajectory tracking errors
in the execution of periodic maneuvers in a fashion similar
to ILC. However, it is comparable to parameterized motion
primitives with respect to its use of a significantly reduced
parameterization of the learning control input. Instead of
relying on a specific parameterization of the maneuver,
we decompose the tracking error into a truncated Fourier
series. The order of the series provides a means to trade
off the ability to compensate for local disturbances against
computational complexity. The learning algorithm is closely
related to repetitive control formulations [15], which have
been suggested to be equivalent to ILC [16].

Learning is performed on the closed-loop system of
a quadrocopter controlled by an input-output linearizing
feedback controller, and the learning input is a set point
correction for the feedback control. The nominally linear
time-invariant closed-loop dynamics of the system provide
a straightforward way to compute the necessary input cor-
rections from measured tracking errors. The iterative learning
algorithm thereby reduces to the inversion of the closed-loop
dynamics.

The treatment of the iterative learning problem in the
frequency domain offers an additional advantage in that
it provides a straightforward means of transferring learnt
corrections for a given maneuver geometry between different
execution speeds. We extend the learning scheme in order
to allow the learning to begin at low maneuver execution
speeds, and transfer the learnt corrections to higher speeds.

The remainder of this paper is structured as follows: Sec-
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Fig. 1. The inertial coordinate system O and the vehicle coordinate
system V , used to describe the dynamics of the quadrocopter.

tion II introduces the quadrocopter dynamics, the real-time
feedback law, and the resulting closed-loop system dynamics.
Section III presents the proposed iterative learning algorithm
and its convergence. Section IV extends the algorithm by
the transfer of learnt corrections between different execution
speeds. Section V introduces the experimental setup and
an example maneuver the algorithm was applied to. We
show experimental results in Section VI. Advantages and
limitations of the algorithm are discussed in Section VII. A
conclusion, along with an outlook, is given in Section VIII.

II. CLOSED-LOOP QUADROCOPTER DYNAMICS

In this section, we introduce the first-principles model of
the quadrocopter dynamics, and the input-output linearizing
feedback controller used to control it. The combination
of vehicle and feedback controller form the closed-loop
dynamics that the iterative learning algorithm is applied to.

A. Vehicle Dynamics

The quadrocopter is modeled as a rigid body with six
degrees of freedom: its position (p1, p2, p3) in the inertial
coordinate system O and its attitude, represented by the rota-
tion matrix O

V R between the inertial coordinate system O and
the body-fixed coordinate system V , as shown in Figure 1.

The control inputs are the rotational rates of the vehicle
about the three body axes (ωx, ωy, ωz) and the collective,
mass-normalized thrust applied by the vehicle along its third
body axis (a; in units of acceleration). The rotational rates are
tracked by high-bandwidth controllers on board the vehicle
using gyroscopic rate sensors. We therefore assume that
control inputs are followed by the vehicle without dynamics
or delay.

The translational dynamics are then given by
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where g denotes gravitational acceleration, and the rotational
kinematics are [17]
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VṘ = O

VR




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0
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The mass-normalized thrust control input is subject to sat-
uration due to the minimum and maximum speed of the
propellers:

amin ≤ a ≤ amax (3)

and the allowable body rate control inputs are bounded by
the measurement range of the onboard gyroscopic sensors:

|ωi| ≤ ωmax for i = {x, y, z} . (4)

B. Feedback Control

Within this paper, we assume that an existing feedback
control law is used to stabilize the quadrocopter and track
set points. The feedback control law is described in detail
in [18], and is reproduced here for completeness. It consists
of cascaded control loops for position and attitude along with
the inversion of the rotational kinematics as follows:

1) Position Control: For all three degrees of freedom, a
feedback control law determines the desired acceleration ¨̂pi

from the position and velocity errors such that the loop is
shaped to the dynamics of a second-order system with time
constant τi and damping ratio ζi:

¨̂pi =
1
τ2
i

(p̂i − pi) − 2
ζi

τi
ṗi for i = {1, 2, 3} . (5)

With Rxy denoting the x-th element of the y-th column
of O

V R, the thrust is computed to enforce the desired vertical
acceleration according to (1):

a =
1

R33

(
¨̂p3 + g

)
. (6)

2) Reduced Attitude Control: The desired rotation matrix
entries R̂13 and R̂23 for the given desired accelerations are
computed from (1), (5) and (6) to be

R̂13 =
¨̂p1

a
and R̂23 =

¨̂p2

a
. (7)

The attitude control loop is shaped such that the rotation
matrix entries R13 and R23 react in the manner of a first-
order system with time constant τrp by computing the desired
derivative of the rotation matrix elements:

Ṙi3 =
1

τrp

(
R̂i3 − Ri3

)
for i = {1, 2} . (8)

Inverting the rotational kinematics (2), this is converted
to the commanded rotational rates about the vehicle x- and
y-axes:

[
ωx

ωy

]

=
1

R33

[
R21 −R11

R22 −R12

] [
Ṙ13

Ṙ23

]

. (9)

The rotational rate about the third body axis, ωz , can be
determined separately as it does not influence the transla-
tional dynamics of the vehicle. We employ a proportional
controller on the Euler angle describing the vehicle heading.

Note that the presented controller can be augmented by ap-
plying feed-forward velocities, accelerations, and control in-
puts for known input trajectories by extending Equations (5)
and (8) with the corresponding feed-forward terms. A discus-
sion of the effects and performance benefits thereof can be
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found in [19], where it is shown that feed-forward commands
can improve tracking performance, though large systematic
errors remain. A significant reason for these remaining errors
are model mismatches: As the maneuvering speed rises,
the equations of motion (1) represent an increasingly poor
approximation of the flight dynamics due to aerodynamic
effects (such as body drag and lift, as well as varying angles
of attack of the propellers).

While many applications profit from additional feed-
forward terms, we found them unnecessary in conjunction
with the learning method presented herein. This is be-
cause they do not improve the repeatability of the flight
performance, and the learning algorithm compensates for
systematic tracking errors.

C. Approximate Closed-Loop System Dynamics

The feedback control design is based on cascaded control
loops that are designed using a loop shaping approach. We
assume time scale separation between the control loops (i.e.,
τrp � τxy), and approximate the closed-loop dynamics to
depend only on the position control loops. The nominal
dynamics of the closed-loop system from a position set point
p̂ to the vehicle position p can then be approximated by three
decoupled linear time-invariant (LTI) second-order systems:

p̈i ≈
1
τ2
i

(p̂i − pi) − 2
ζi

τi
ṗi for i = {1, 2, 3} (10)

with time constant τi and damping ratio ζi. We will use
these nominal closed-loop dynamics in the iteration-domain
learning algorithm.

More accurate characterizations of the closed-loop dy-
namics could be used in the learning algorithm, e.g. by
including the underlying control loops such as the attitude
control (7)-(9). However, our experiments showed that the
low-order model was sufficient to guide the iterative learning
process. Higher-order LTI models would require linearization
of the closed-loop dynamics about an operating point, and
therefore may not accurately predict global system dynamics.

It was shown in [19] that the closed-loop dynamics of
the quadrocopter and feedback controller, while exhibiting
relatively large errors during fast motion, provide good re-
peatability. We will now exploit this property by introducing
an iterative learning algorithm that compensates for system-
atic, repeated tracking errors over the course of multiple
iterations.

III. LEARNING ALGORITHM

This section introduces the frequency domain iterative
learning algorithm that is used to minimize repeated tracking
errors, which may be caused for example by modeling
inaccuracies, the closed-loop dynamics of the system, and
repeated disturbances.

A. Learning Overview

The objective of the learning scheme is to find control
inputs such that the quadrocopter precisely follows a desired,
periodic trajectory, which is given by p∗(t) for t ∈ [0 T ], with
T being the maneuver period.

Feedback

Vehicle

Closed-Loop Dynamics

p̂(t)

p(t)

+ +

+ −

p̄(t)

p∗(t)

p̃(t)

Iterative Learning

Fig. 2. The system structure used in the learning algorithm. The learning
scheme has a serial architecture, meaning that it changes the set point used
by a feedback controller. Due to the feedback linearizing architecture of
the feedback controller, the iterative learning law need not consider the
nonlinear dynamics of the vehicle: The closed-loop dynamics are nominally
linear time-invariant.

We use the approach of adapting the set point p̂(t) of
the controller, also called a serial architecture [7] or indirect
learning-type control [16]. A set point correction p̄(t) is
added to the desired trajectory set point p̂(t) = p∗(t)+ p(t),
as shown in Figure 2. In comparison to modifying the control
inputs directly, this offers the advantage that the dynamics
from a change in the set point p̂ to a change in the vehicle
position p are those of the closed loop system, which are
designed to be nominally LTI.

The core idea of the adaptation law is to measure the
output error p̃(t) = p(t) − p∗(t) of the closed-loop system
over an iteration, and decompose it into a truncated Fourier
series. Due to the additivity of the LTI nominal system
dynamics [20], it is possible to compute a set point correction
truncated Fourier series p̄(t) from p̃(t) that compensates for
repeated tracking errors. This correction, scaled by a step size
in order to increase robustness with respect to non-repeatable
disturbances and model inaccuracies, is then added to the
feedback control set point for the next iteration.

B. Iteration-Domain Feedback Law

We rewrite the measured output error p̃(t) as a combi-
nation of a truncated Fourier series e(t) of order N , and a
remaining truncation error v(t):

p̃(t) = e(t) + v(t) (11)

with

e(t) = a0 +
N∑

k=1

ak cos (kΩ0t) +
N∑

k=1

bk sin (kΩ0t) (12)

where the fundamental frequency is Ω0 = 2π/T .
The objective of the iterative learning scheme is to elimi-

nate the effects of errors described by the Fourier series e(t).
The additional error v(t) captures the truncation effects of
e(t), and could be captured by e(t) through an increase of
the series order N .

Let P̃ (ω) denote the Fourier series representation of
p̃(t), composed of the Fourier series representations of e(t)
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and v(t):

P̃ (ω) = E(ω) + V (ω) (13)

with

E(0) = a0 (14)

E(kΩ0) = ak − jbk for k = 1 . . . N. (15)

The signals considered herein are real, and we therefore
limit the analysis to ω ≥ 0 without loss of generality [20]. We
further note that, by the assumption that e(t) is a truncated
Fourier series and v(t) its truncation error, it follows that

E(ω) = 0 for ω > NΩ0 (16)

V (ω) = 0 for ω ≤ NΩ0 . (17)

Let G(ω) be the transfer function of the nominal closed-
loop feedback system (10) from the position set point to the
vehicle position:

G(ω) =
P (ω)

P̂ (ω)
=

1
1 − τ2ω2 + 2jζτω

. (18)

Assume that we have executed the trajectory for iteration i,
and measured the tracking error p̃i. The iteration feedback
law is then given by the correction Fourier series

P̄ i+1(kΩ0) = P̄ i(kΩ0) − γiG−1(kΩ0) Ei(kΩ0) (19)

for k = 0 . . . N , with the step size γi being a tuning
parameter. The time signal p̄i(t) is then constructed from
P̄ i(ω) and applied to the system in the next iteration.

C. Convergence

We now consider the convergence of the frequency domain
tracking error P̃ (ω). Using the additivity of the closed-
loop LTI dynamics, the iteration update leads to an error
progression of

P̃ i+1 = P̃ i + G(P̄ i+1 − P̄ i) (20)

= P̃ i − G
(
γiG−1Ei

)
(21)

Ei+1 + V i+1 = Ei + V i − γiEi (22)

and therefore an evolution of the tracking errors E and V
according to

Ei+1 =
(
1 − γi

)
Ei (23)

V i+1 = V i . (24)

It can be seen that E converges to zero for constant step
sizes 0 < γ = γi ≤ 1, while the higher-frequency error
V (which is not captured by the truncated Fourier series)
remains constant.

Note that high values of the step size γ provide faster
convergence, while being more susceptible to disturbances
caused by non-repeatable effects. The step size can therefore
be used to trade off the convergence rate of E and noise re-
jection. This may be necessary because P̃ could include non-
repetitive process and measurement noise, and the Fourier
series decomposition is therefore only an estimate of the true
repeatable error E. In our experiments, we choose decaying
values of γi, combining fast initial convergence and noise-
resistance in the long run.

IV. TIME SCALING FOR HIGH PERFORMANCE

MANEUVERS

When attempting to learn high performance maneuvers
that approach the performance limits given by the system
dynamics (1)-(4), it may not be possible to execute iterations
and measure the corresponding tracking errors. For example,
the tracking errors may grow large enough to cause the
vehicle to collide with its environment, invalidating the error
measurement. Furthermore, tracking errors may be so large
that the approximate dynamics (10) no longer accurately
predict the behaviour of the closed-loop control system,
leading to instabilities in the learning algorithm.

In order to allow the algorithm to be applied to such
maneuvers, we extend it by introducing a speed scaling factor
λ, giving control over the execution speed of the maneuver.
Consider two different maneuver execution speeds λ1 and
λ2. We define the scaled maneuver durations

T1 =
T

λ1
and T2 =

T

λ2
(25)

and the corresponding nominal trajectories

p∗1(t1) = p∗(λ1t) for t1 ∈ [0 T1] (26)

p∗2(t2) = p∗(λ2t) for t2 ∈ [0 T2] . (27)

Now assume that λ1 < λ2, and that the iterative learning
law (19) has converged to a correction signal P̄1(ω) that
provides good tracking performance at the execution speed
λ1. The objective is then to use P̄1(ω) in order to construct an
initial guess of P̄2(ω) such that the initial tracking errors at
the execution speed λ2 are sufficiently small for the learning
control to converge.

An obvious choice for the transfer between two ma-
neuver speeds is to keep the learnt input corrections and
simply re-map them to the corresponding frequencies (i.e.,
P̄2(kλ2Ω0) = P̄1(kλ1Ω0)). However, the varying sensitivity
of the closed-loop transfer function at the two different
frequencies could potentially lead to large errors. Instead, we
assume that, without the application of the iterative learning
correction p̄(t), the tracking error for the two different
maneuver execution speeds λ1, λ2 are

p̃ (λ1t1) = p̃ (λ2t2) (28)

implying that the tracking error will be scaled in time
identically to the maneuver, and not change apart from this.
Note that, for significant changes of λ, the assumption of
similar tracking errors is likely to be false. For incremental
changes of λ, however, the similarity of tracking errors can
be expected.

It follows that the correction input Fourier series for the
new maneuver execution speed λ2 can be computed from
the old maneuver execution speed λ1 to be

P̄2(kλ2Ω0) = G−1(kλ2Ω0) G(kλ1Ω0) P̄1(kλ1Ω0) (29)

for k = 0 . . . N .
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V. EXPERIMENTS

Experiments were carried out in the Flying Ma-
chine Arena, an aerial vehicle research platform at
ETH Zurich [21]. The quadrocopter vehicles used are mod-
ified Ascending Technologies ‘Hummingbird’ vehicles [1],
equipped with custom electronics to allow greater control
of the low-level control algorithms [14]. A motion capture
system provides position and attitude information, which
is filtered by a Luenberger observer. The filtered full state
information is used by the feedback controller, and the
filtered position information is used in the learning algorithm.

A. Nominal Maneuver Design

We will now design a high performance periodic maneu-
ver, to which we will apply the presented learning algorithm.
The maneuver consists of a figure-eight motion executed in
the horizontal plane around two obstacle points, as shown
by the dotted black line in Figure 3.

Assume, without loss of generality, that the first obstacle
point lies at the origin of the inertial coordinate system O,
and the second obstacle point is located at a distance L in the
p1-direction. The maneuver is composed of two half-circles
about the obstacle points, and two splines connecting the
half-circles. The maneuver is executed as fast as possible,
with the speed being limited by the control input satura-
tions (3)-(4).

1) Semi Circles: The radius Rs of the semi circles is
user-defined, and the circular trajectory covers an angle of
180◦. The time required for the half circle is determined
by computing the control inputs along the circular trajec-
tory [22], and finding the fastest time for which the control
input constraints (3)-(4) are satisfied.

2) Connecting Splines: Polynomial trajectories are used
to connect the two half-circles. In order to achieve continuity
in the control inputs, four boundary constraints arise at each
end of the trajectory [23]: with the radius and rate of the semi
circles fixed, the position, velocity, acceleration, and jerk at
the beginning and end of the half circle are fully defined.
In order to satisfy the four boundary constraints on both
ends of the spline, we construct a seventh-order polynomial.
The remaining degree of freedom in the spline design is
the duration of maneuver. In order to achieve high speed,
we iterate over the duration until the fastest maneuver that
satisfies the control input bounds (3)-(4) is found, using the
algorithm from [24] to compute the inputs.

An example of the figure-eight motion can be seen in
Figure 3. In this specific example, the parameters were
chosen to be L = 4m, Rs = 0.75m, amax = 1.8g =
17.65m s−2, and ωmax = 500◦ s−1. The resulting maneuver
duration is T = 3.3 s, with an average speed of 4m s−1 and
a maximum speed of 6m s−1. This example will be used as
the reference trajectory to be learnt in Section VI.

B. Implementation of the Learning Algorithm

The nominal maneuver design introduced in the previous
section is periodic, meaning that one execution immediately
follows the other. The learning algorithm was implemented

position p1 (m)

position p2 (m)

-1 0 1 2 3 4 5

-1

0

1

Fig. 3. Two-dimensional view of the learnt maneuver for L = 4 m,
Rs = 0.75 m. The nominal maneuver design is shown by the black
dotted line. The set point trajectory p̂(t) after convergence of the algorithm
is shown in dashed blue. It can be seen that tracking performance is
improved considerably from the initial trial (thick solid red) to execution
after convergence (thin solid blue). Final execution errors are always below
5 cm. The period of the maneuver is T = 4.7 s.

such that adaptation of the control inputs occurs without
interrupting the repeated execution of the nominal maneuver.
Each iteration of the learning algorithm consists of three
steps:

1. Measure the tracking error p̃ for at least one period T .
By averaging the error over multiple iterations, improved
rejection of non-repetitive disturbances can be achieved.

2. Apply the iteration-domain feedback law (19).
3. Execute at least one period of the motion before mea-
suring the tracking error in order to permit the system to
converge to a repeatable trajectory.

The learning step size was chosen to be

γi =

{
1 for i = {1, 2}
3
i otherwise

(30)

with the objective of providing a good compromise between
fast learning and good rejection of non-repeatable errors.

VI. RESULTS

This section presents experimental results that demonstrate
the performance of the introduced learning scheme. We begin
with a discussion of the learning performance at a fixed
maneuver execution speed, followed by the extension to
increasing maneuver speeds.

A. Learning at Fixed Maneuver Execution Speed

In order to demonstrate the effectiveness of the presented
learning algorithm at a fixed maneuver speed, the maneuver
is learnt at a constant speed of λ = 0.7, i.e. 70% of the
nominal maneuver speed. At this speed, the maneuver could
be safely executed with no initial set point correction (i.e.
p̄1(t) = 0), and the learning algorithm converged.

Figure 3 shows the trajectories of the vehicle and the
set points in the horizontal plane, both at the start of the
learning process and after convergence. Figure 4 shows the
evolution of the error coefficients over 22 iterations of the
learning algorithm. It can be seen that the error coefficient
magnitude quickly reduces from values in excess of 100 cm
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to values below 2 cm. The peak tracking error was reduced
from approximately 200 cm to 5 cm.

For fixed maneuver execution speeds λ significantly larger
than 0.7, the learning process failed to converge when ini-
tialized with no initial set point correction. Our experiments
showed that this behaviour was largely independent of the
learning step size γ. We believe this to be caused by the
inaccurate characterization of the closed-loop dynamics for
very large errors as a LTI system because nonlinear effects
such as actuator saturation become significant.

B. Transferring Learnt Data Between Execution Speeds

In a second experiment, the same maneuver was executed
at increasing speeds. The execution speed was initialized at
λ = 0.7, and was increased by 0.05 every eight iterations
until the nominal speed λ = 1 was reached. The learning
rate was again chosen according to Equation (30), but the
iteration count index i was reset to i = 1 each time λ
was changed. At each change of λ, the update law (29)
was applied in order to produce updated correction inputs.
Figure 5 depicts the norms of the error Fourier coefficients,
showing good initial convergence to values on the order of
1 cm, followed by increases to around 10 cm every time the
execution speed was changed.

Note that the maneuver could only be learnt at λ = 1 by
starting learning at lower values of λ and then transferring
the learnt trajectory to higher values. As discussed for the
fixed-speed experiments, an immediate execution at λ = 1
resulted in divergence of the error during learning.

VII. ADVANTAGES AND LIMITATIONS

The experimental results in the previous section demon-
strated the ability of the learning algorithm to significantly
improve the tracking performance for periodic maneuvers. A
key enabler for this is the underlying feedback control law
that makes maneuver executions highly repeatable.

It can also be seen that a simplified model of the closed-
loop dynamics, though only capturing a relatively rough
approximation of the true behaviour, suffices to guide the
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Fig. 4. Logarithmic plot of the evolution of error coefficient norms
during the learning of the example maneuver at a fixed speed of λ = 0.7.
Each line represents the norm of the three-dimensional error coefficients
for one frequency. The lines at iteration zero are from top to bottom:
k = {1, 2, 4, 5, 0, 6, 3, 7, 10, 8, 9}.
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Fig. 5. Logarithmic plot of the evolution of error coefficient norms during
learning with changes in execution speed. Each line represents the norm of
the three-dimensional error coefficients for one frequency. The maneuver
execution speed λ was increased by 0.05 every 8 iterations, starting at 0.7
(resulting in a maneuver period of T = 4.7 s) and ending at 1.0 (T = 3.3 s).

learning process. Similar results have been demonstrated for
other learning algorithms, e.g. reinforcement learning [25].

The analysis of the tracking error signal as a truncated
Fourier series allows the use of the order of the series
to define a trade-off between 1) the ability to compensate
for highly localized tracking errors, and 2) computational
complexity and memory requirements. The limitation to
relatively low Fourier series orders also provides a con-
venient way to suppress high-frequency jitter in the learnt
compensation, an effect that can be frequently observed
in iterative learning control approaches [9]. Furthermore,
inaccuracies of the dynamic model at high frequencies can be
circumvented by limiting the learning to lower frequencies.

Due to the simplified dynamic model, the serial archi-
tecture, and the frequency domain approach in the learning
algorithm, it is not trivial to extend the learning law to
incorporate additional learning constraints such as input
constraints or penalties. Large tracking errors can lead to
behaviour that is not captured by the simplified model,
causing the learning algorithm to fail.

The frequency domain approach to iterative learning also
provides a convenient way to transfer learnt correction inputs
between different execution speeds of the same maneuver.
This allows initial learning to occur at reduced speeds, thus
providing a safe way to learn high-speed maneuvers where a
poor initial guess of the correction input can lead to a crash
or to non-convergence.

VIII. CONCLUSION AND OUTLOOK

We have investigated a frequency-domain iterative learn-
ing scheme for periodic quadrocopter flight. The iteration-
domain feedback law leverages the nominally linear time-
invariant closed-loop dynamics of the quadrocopter feedback
system in order to determine correction values from observed
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errors in a straightforward manner. The approach allows
the learning of high performance maneuvers by executing
them at a reduced speed initially, and then transferring learnt
corrections to higher speeds.

Experimental results demonstrated the application of the
learning scheme, and highlighted the advantages of learning
at reduced speeds. An example figure-eight maneuver could
only be learnt at full speed when using learnt parameters
from lower speeds to initialize the learning process.

The transfer of learnt corrections between different ex-
ecution speeds involves the estimation of how tracking
errors depend on this speed. Due to the varied nature of
possible error sources in quadrocopter flight (e.g., external
disturbances such as wind or ground effects, sensor or
actuator miscalibrations, or unmodeled system dynamics),
this estimation is not a trivial task. The learning scheme
presented herein is based on the assumption that the tracking
error is essentially independent of execution speed.

It is obvious from experimental results – as well as from
more accurate models of quadrocopter flight [26] – that the
tracking error depends on the execution speed. It would
therefore be useful to develop a means of predicting the
change in tracking error when altering execution speed, for
example by using knowledge of the dynamical model, or by
extrapolating changes in tracking errors from previous speed
changes.

The frequency domain approach used herein also lends
itself to accounting for model uncertainty, which can often
be directly converted to uncertainty in the transfer function
(see, for example, [27]). This uncertainty could potentially
be used to design a robust iterative learning scheme. For
example, the iterative feedback correction gain could be
chosen separately for varying frequencies. This would allow
the fast compensation of errors at frequencies where the
model is well known, and more conservative adaptation
at frequencies with high uncertainty. The comparison of
such a frequency-domain robust iterative learning control
approach to other robust learning control formulations (see
e.g. [7] for an overview) could provide further insight into
the applicability of the algorithm under uncertainty.
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