
World Applied Sciences Journal 28 (8): 1051-1060, 2013
ISSN 1818-4952
© IDOSI Publications, 2013
DOI: 10.5829/idosi.wasj.2013.28.08.11930

Corresponding Author: M. Aqeel Iqbal, Department of Computer Engineering College of Electrical and Mechanical Engineering
National University of Sciences and Technology (NUST), Pakistan.

1051

Performance Oriented Design Perspectives of
Run-Time Reconfigurable Computing Systems

M. Aqeel Iqbal and Shoab A. Khan

Department of Computer Engineering College of Electrical and Mechanical Engineering
National University of Sciences and Technology (NUST), Pakistan

Abstract: Reconfigurable computing is becoming an integral part of emerging scientific research since last
few decades. The main theme beyond this new technology is to integrate the performance benefits of
application specific integrated circuits with the hardware flexibility of programmable processors in a single
chip. The reconfigurable computing devices like field programmable gate arrays have already been playing a
vital role in the enhancement of the existing technology but still reconfigurable computing is suffering from
many technological drawbacks including the huge configuration overheads of existing reconfigurable
devices, the lack of supporting high level software tools, the support of immature compilation tools and even
the lack of supporting operating systems for the existing optimally reconfigurable devices. This research paper
introduces the reconfigurable computing from its hardware and software perspectives being existent and
further demanded for future work and emerging research dimensions in this area. Many factors have been
pointed out for further improvements so that the under laying technology can be rapidly boosted up so that
to support the requirements of the emerging scientific applications.

Key words: Reconfigurable Computing Configuration Overheads FPGAs ASICs RFUs

INTORDUCTION the computing system suffers and is far below as is
compared to that of ASICs as shown in Figure 1 and

In the domain of computing there have been two Figure 2. The processor must read each instruction from
primary methods that have been used traditionally for the memory, determine its meaning after an op-code decoding
execution of computations or algorithms. On the one process and only then can execute it. All this activity
extreme side the first known method is to use the introduces a huge amount of performance overhead for
Application Specific Integrated Circuits (ASICs) to each of individual operation. Reconfigurable computing
perform the operations in hardware. Due to the fact that is intended to fill this gap between hardware and software,
these ASICs have been designed to perform a specific achieving potentially much higher performance than
given computation, they are very fast and efficient when software, while maintaining a higher level of flexibility
executing the exact computations for which they were than hardware [1, 2] as is shown in Table 1.
designed. But along with this advantage they are
suffering with a problem that, after fabrication process the
circuits cannot be altered. On the other extreme side the
second known method is to use the programmable
processors which are a far more flexible solution.
Processors in fact execute a set of instructions to perform
a required computation. By changing the software
instructions, the functionality of the system can be altered
without physically changing the hardware. However, the
disadvantage of this flexibility is that the performance of

Table 1: Computing Systems Characteristics

Programmable Fixed Reconfigurable

Computes any Computes one Computes a number

computable function function of function

Function is defined Function is defined Function is defined

after fabrication before fabrication after fabrication

Connections on Connections on fabric Connections on fabric

fabric are fixed are fixed are programmable

World Appl. Sci. J., 28 (8): 1051-1060, 2013

1052

Fig. 1: ASIC vs. GPP Computing and hence introducing the hardware flexibility and exploit

Fig. 2: Comparison of Computing Systems machine design to a typical single application or a

Computing Using ASICs: The antithesis of a for many different applications. Hence system may
programmable general purpose processor is an ASIC demonstrate dynamic nature of its computing
based solution. In ASICs, functional units are dedicated characteristics.
to individual operations to be computed and wired
together to match precisely the computations being On System Level: Instead of the dedicating an
performed. The advantages an ASIC has over expensive machine to a single application, the machine
programmable processor can be summarized as: may perform many different applications at different

Considerably very less executional overhead is machine demonstrates diversity in its structure.
needed to control the mapping of functional units
to operations and the routing of data-path values On Application Level: Instead of the spending precious
between them. On the other side a programmable real estate to build a separate computational unit for
processor has an overhead which is manifest in time each of newly demanded different function, the central
space and chip area. resources may be employed to perform these functions in
Due to very optimal specialized functional units sequence with an additional input, an instruction, telling
and less execution overhead circuitry around each it how to react or behave at each point of computation in
one, more functional units can be fit into the same time.
chip die area and hence chip density can be
enhanced dramatically. On Algorithm Level: Instead of the fixing the algorithms
Because the operation of each functional unit is which an application uses, an existing general-purpose
already known and planned out in advance, hence machine can be reprogrammed and reused with new
due to this fact the functional unit idleness overhead techniques and algorithms as they are developed.

can be minimized. On a programmable processor,
some of the available functional units might never
be used by a specific application [1].

Computing Using GPPs: General-purpose computing
devices like CPUs being introduced are specifically
intended for those cases where, economically, we cannot
dedicate sufficient spatial resources to support an entire
algorithm or computational task or where engineers do
not know enough about the required computational
tasks prior to the fabrication to hardwire the functionality.
The key ideas behind general-purpose computing are the
delayed binding of functionality until device is fabricated

the temporal reuse of limited functional units hence
causing partial resource utilizations. Delayed binding of
functionality and temporal reuse of available resources
work closely together and occur at many scales to
provide the characteristics that are well known now from
general-purpose computing devices. Users are quite
accustomed to exploiting these properties so that unique
hardware is not required for every task or application.
This basic theme recurs at many different levels in our
conventional systems.

On Market Level: Instead of the dedicating a

set of applications, the design effort may be utilized

times by running different sets of instructions. Hence

World Appl. Sci. J., 28 (8): 1051-1060, 2013

1053

On Application User Level: Instead of the fixing the
function of the machine at the supplier side, the
instruction stream specifies the function, allowing the
end user to use the machine as best suits his application
needs. Machines may be used for functions which the
original designers did not conceive from it. Further,
machine reaction or behavior may be upgraded in the
application field without incurring any hardware or
hardware handling costs. In the past, processors were
logically or virtually the only devices which had these
characteristics and served as general-purpose building Fig. 3: FPGA Internal Architecture
blocks. Today, many other emerging devices, including
reconfigurable devices, also exhibit the key properties and changes require whole redesign and rewiring. On the
benefits associated with general-purpose computing. other hand the software based solutions operate with

In reference to the computational theory, it is artifact software instructions. Conceptually a great flexibility
that algorithmically any computation can be generally comes from easy development and maintenance of the
represented as sequential or concurrent combinations of software code, but execution of instructions as a machine
abstract data-flow and control-flow graphs, with the program introduces high overheads in performance and
nodes of the graphs being representing the primitive area.
operations such as integer addition, subtraction, Reconfigurable Computing technology is introduced
multiplication or division etc. The primary function of a to fill the gap between hardware and software based
computer has always been to evaluate such kinds of solutions of design. The main goal of reconfigurable
computational algorithmic graphs mechanically or computing is to achieve the performance better than that
electronically so as to accomplish some real life goal. of software solutions, while maintaining a bit greater
Of course, the real computer processors cannot operate flexibility than hardware solutions [2]. Reconfigurable
on such abstract graphs directly. Instead, the algorithmic computing devices are composed of many computational
programs are encoded as a set/collection of machine elements known as Configurable Logic Blocks (CLBs)
instructions which can be executed one after another in a whose functionality is determined through programmable
specific sequence. But this is just an artifact of the configurations. These configurable elements are
design of the machine, intended originally to simplify connected by a set of programmable routing resources
the processor task and perhaps the programmer task too. as shown in Figure 3. The idea of configuration is to map
In fact the modern processors re-expose instruction level the desired logic functions of a design to the processing
parallelism by dynamically decoding the short sequences units within a reconfigurable device and use the
of machine instructions into their corresponding data-flow programmable interconnects to connect processing units
and control-flow forms before their execution. Regardless together to form the necessary circuit [3]. Great flexibility
of the fact that how a program is physically encoded or comes from the programmable nature of processing
decoded, the data-flow and control-flow graphs elements and routings. Performance can be made better
technically represent the true computations being than software based approaches due to reduced execution
performed. overhead. Under this definition, Field Programmable

In concept, the functional units are all a computer Gate Array (FPGA) is a form of reconfigurable computing
needs to evaluate the operations in a data-flow graph. In device [3]. FPGAs and other reconfigurable computing
reality, a computer must also support the physical devices have been shown to accelerate a variety of new
movement of data among the available different functional applications, such as encryption algorithms and streaming
units, as well as to and from memory. Digital system applications. Obviously, by the stated definitions, a
designers face the fundamental trade-off between programmable device cannot be an ASIC and vice versa.
flexibility and performance when making a choice between However, reconfigurable devices such as FPGAs share
different computing systems. Customized hardwire based common characteristics of both the programmable
technology like ASICs provides a high performance grade processors and hardwired ASICs. On the one hand,
and low power consumption due to the fact of being FPGAs can implement ASICs-style circuits, while on the
specialized, but lack the flexibility since any kind of new other hand; they are infinitely reprogrammable and thus

World Appl. Sci. J., 28 (8): 1051-1060, 2013

1054

Fig. 4: FPGA Routing Structure

immanently demonstrate the behavior of general-purpose
processor. This leads to the question of whether
reconfigurable hardware can capture some of the
advantages of ASICs within a general-purpose computing
environment.

Computing Using Reconfigurable Devices:
Reconfigurable computing (RC) devices generally fill
their silicon area on a chip with a large number of
computing blocks also known as configurable built-in
primitives, interconnected via a programmable switches
network [3] as shown in Figure 4. The operation of each
built-in primitive can be programmed as well as
interconnection patterns can be adjusted or modified.
Computational tasks can be implemented spatially on
the device with intermediate flowing directly from
the producing function to the receiving function.
Since thousands of reconfigurable units can be placed
on a single silicon chip, the significant data-flow may
occur without crossing chip boundaries. To first order,
one can think about turning an entire task into hardware
data-flow and mapping it on the reconfigurable
substrate. Reconfigurable computing generally provides
spatially-oriented processing rather than the temporally-
oriented processing typical of programmable architectures
such as microprocessors. The key differences between
the reconfigurable systems and the conventional
processors are:

Program Instruction Distribution: Instead of the
broadcasting a new instruction to the existing functional
units on every new cycle, the instructions are locally
configured at hand, allowing the reconfigurable device to
compress instruction stream distribution and effectively
deliver more instructions into active silicon on each cycle.

Spatial Routing of Intermediate Streams: As the space
permits, the intermediately generated data values are
routed in parallel from producing function to consuming
function rather than forcing all communication to take
place in time through a central resource bottleneck.

Finer-Grained ProgrammablePrimitives:Reconfigurable
computing devices provide a large number of
independently configurable or programmable building
blocks known as programmable primitives, allowing a
greater range of computations to occur per time step.
This effect is largely enabled by the compressed
instruction distribution.

Distributed Deployable Resources: Resources such as
memory interconnect and functional units are distributed
and deployable based on need rather than being
centralized in large pools. Independent local access allows
the reconfigurable logic designs to take the advantage of
high, local, parallel on-chip bandwidth, rather than
creating a central resource bottleneck.

Reconfigurable computing is supposed to be one of
the best alternatives to the conventional superscalar and
VLIW paradigms [1]. The main difference between a
reconfigurable device and a standard micro-processor
is in the instruction stream. In its original or purest form,
a reconfigurable computing device has no cycle-by-cycle
instruction stream. Instead of it, the device is commonly
configured by loading a complete specification of the
functions of each part of the device at once. Once the
device is being configured, the intention is for the device
to run in that configuration for a decent interval of time
before being again reconfigured. Each configuration may
demonstrate an ASIC-like circuit, specialized for the
particular task at hand. Changing configurations might
take anywhere from a few clock cycles to a few thousand
clock cycles [1, 3]. In accordance with the simpler
programming mechanism, the dynamic forwarding
crossbar switch is replaced by a less flexible configurable
switch network for making static connections among the
functional units and the short queues of retiming registers
associated with each of functional units take place of
traditional processor shared, multi-ported register file.

World Appl. Sci. J., 28 (8): 1051-1060, 2013

1055

The very famous and familiar 90-10 rule asserts that
90% of execution time is consumed by about 10% of a
program code, that 10% generally being inner loops.
Reconfigurable computing devices excel in those special
cases where the computation represented by a
configuration is repeated many times again and again,
so that the time required to load a configuration can be
amortized over a long execution time and/or overlapped
with other execution. When all of the important loop
bodies of an application can be configured to fit
within the reconfigurable computing machine, there
would seem to be no need for the execution
overhead of a fully dynamic instruction fetch and Fig. 5: Reconfigurable Processors Core
issue mechanism, allowing the machine to be leaner and
more efficient. These in general consist of a micro-processor core

By reducing the hardware to just the essentials coupled with a reconfigurable device element,
needed to support computation, the reconfigurable implemented using an FPGA technology, that can adopt
computing design scales better to larger sizes than the one or more functions on-the-fly. Different reconfigurable
more complex superscalar and VLIW architectures. processor classes have been defined, based on the manor
Although an expansion of the configurable routing in which the micro-processor and reconfigurable device
network would cause it to grow quadratically with the elements have been connected with each others [5, 6].
increase in the number of the functional units, it only
needs to grow enough to support the connectivity FPGA Used As Computing Device: Field-programmable
required by the real applications. Furthermore, unlike a gate arrays (FPGAs) have really dramatically
superscalar or VLIW machine architecture, the revolutionized the way the digital hardware has been
reconfigurable computing hardware can easily exploit designed and built since their commercial introduction
not only the simple Instruction Level Parallelism (ILP) in the mid-1980. Over this period of time, these commodity
but also the inter-iteration and thread parallelism, making digital parts have instantly become invaluable system
reconfigurable computing well poised to work with very components due to their ability to implement huge
large numbers of functional units. number of different logic functions efficiently and their

In particular the reconfigurability can be obtained ability of being easily reconfigured as system hardware
by using the devices known as Field Programmable Gate requirements change under the effect of the running
Arrays [4]. In FPGAs, the involved technology offers the applications. Gradually growing progressive
possibility to vary the functionality of the chip at design improvements in technology has really increased the
time as well as at run time, depending on the value logic density/capacity of these computing devices from
assumed by particular inputs, called Configuration the equivalent of a few handful simple TTL logic gates
Streams [4]. FPGA design consists of a layout of identical just a decade ago to the density of a recent huge sized
cells, implementing from simple Boolean operations to application specific integrated circuits today commercially
more complex 4-bits arithmetic, connected through a available.
vast routing network of programmable wiring switches. Several commercial vendors have already been
Both the functionality as well as the connections of the providing devices with density/capacities of more than
cells among wires can be programmed through the setting one million logic gates. With this available abundance of
of particular values held in SRAM based cells. This kind logic density and programmable routing resources, many
of devices presents therefore high flexibility, at the new application areas for FPGAs have become feasible
expense of a lower speed and integration than that and are under further research. Recent advances in logic
exhibited by ad-hoc ASICs. Reprogrammability is in emulation technology have made scalable hardware
general exploited by a particular kind of programmable based systems with hundreds of FPGA devices available
processors, called Reconfigurable Processors. Figure 5 for verification of prototype digital logic designs systems
is showing the core of a typical reconfigurable processor. and for use as custom computing platforms for

World Appl. Sci. J., 28 (8): 1051-1060, 2013

1056

applications with large amounts of fine-grained as well as
coarse-grain parallelism [4, 5]. While hardware system
density as well as capacity has matured to an extent
considerably in recent systems, the underlying software
systems still needed to automatically map user designs
and applications to hardware are still in their infancy.
Technically the greatest limitation to the use of
contemporary multi-FPGA based systems technology
for computation and emulation is the amount of time
overhead required to place and route the individual
circuits inside the individual FPGA devices. In certain
existing systems, this compilation time is on the
magnitude of hundreds of CPU hours as opposed to tens
of minutes for typical processor based computing
systems/platforms [6].

Such a long turn-around time overhead from
conceptual development to physical implementation
(emulation) significantly limits the on-the-fly modification
or upgrading capability of the most of the existing FPGA
based computing applications. Almost all existing FPGAs
place and route systems are very optimized to use as
much of the logic and routing resources in a target device
as virtually possible. For most of the FPGA designers
being developing a single logic design over several
weeks or months, the compilation time overhead measured
in hours is quite tolerable and preferable to the greater
expense of purchasing a larger device that will be only
partially used and filled. For designers using FPGA
devices for reconfigurable computing, systems compile
time overheads of several hours are unreasonable as
compared to compile time overheads for processors that
typically require only few seconds or maximum of few
minutes [7]. Furthermore, much of this compile time is
currently spent performing placement and routing on
functional logic components, used across a set of FPGA
computing applications, when a library of pre-placed and
pre-routed macros in conjunction with a macro-based
floor planner could be used instead [1, 7].

The use of FPGAs in a system is generally a trade-off
when compared to its possible ASIC solution [8]. A fully
customized implementation of a hardware circuit will
always give us the higher performance than an FPGA
based system implementation but likely at a some what
higher cost due to reduced production volume compared
to the commodity FPGA [6]. It is quite possible to make
similar trade-offs in the implementation of designs inside
the FPGA based systems. Figure 6 is showing the
different possible ways of coupling a reconfigurable core
with a standard processing unit like CPU. For a fixed sized

Fig. 6: Coupling Approach for Reconfigurable Fabric

device it is possible to vary the amount of time overhead
needed to place and route a circuit design based on the
layout algorithm chosen and the amount of design logic
and interconnect targeted to the device. Typically it has
been observed that fine-grained place and route
approaches currently employed by FPGA vendors do not
scale up well in terms of compilation time overhead
versus quality with increased device logic capacity and
chip density and that there is a need for new kind of under
laying layout approaches.

No doubt the logic placement, the floor planning
and the routing algorithms for VLSI layout have been
widely studied for many decades; the little work has been
done in the optimization of these algorithms to find a
feasible solution quickly at the cost of an intermediate
increase in required resources [8]. Generally, work in this
kind of research area has been focused on achieving the
optimal layout solution, in terms of minimized required
resources or optimal performance, at the cost of a
significant increase in search evaluation time overheads
[7]. Recent trends in field of reconfigurable computing
indicate that in many special cases the incremental
changes in FPGA circuits may be required over the
execution period of an application. By isolating placement
and routing resources into some kind of specific regions
of the device these changes can be made without
replacing and rerouting the large amounts of logic
circuitry left unmodified by the change. This additional
requirement of isolation requires special consideration in
the layout process and additional cost since; in general,
existing architectures are not designed to directly
support this design style [8].

World Appl. Sci. J., 28 (8): 1051-1060, 2013

1057

FPGA Based System Development: Digital circuit
designing has evolved rapidly over the last few decades.
The digital logic circuits were initially designed with
vacuum tubes and transistors. Integrated Circuits (ICs)
were invented over the time where logic gates were placed
on a single chip. The first integrated circuit (IC) chips
were SSI (Small Scale Integration) chips where the gate
count was very small. Then the chips known as MSI
(Medium Scale Integration) came. With the advent of LSI
(Large Scale Integration) technology, the digital
designers could put thousands of logic gates on a single
chip. The chip designers now began to use the circuits Fig. 7: RTL Based Design Simulations
and logic simulation techniques to verify the functionality
of the complex building blocks of the magnitude of
few thousands transistors. With the advent of VLSI
(Very Large Scale Integration) technology, the digital
designers could design single chips with more than
100,000 transistors. Due to the enormous complexity of
these circuits, it was not possible to verify these circuits
on a bread board. Computer-aided techniques became
critical for verification and design of VLSI digital circuits.
Computer based simulation type programs to do an
automatic placement and routing of circuit also became
very much popular.

Hardware DescriptionLanguages (HDLs):Since so many
years the traditional programming languages such as Fig. 8: Design Flow for Programmable Logic
“Fortran”, “Pascal” and “C” were being used to describe
computer programs that were sequential in their execution. interconnections to implement the logic circuits were
Similarly, in the digital design field Hardware Description automatically extracted by logic synthesis tools from the
Languages (HDLs) came into existence. HDLs allowed provided RTL description. Digital designers now no
the digital designers to model the concurrency of longer had to manually place gates to build digital circuits.
processes found in active hardware modules or elements They could describe complex circuits at an abstract
[9]. Hardware description languages such as Verilog-HDL level or even at algorithmic level in terms of functionality
and VHDL became popular out of all of the invented and data flow by designing those circuits in HDLs [9].
HDLs. Verilog-HDL was invented in 1983 at Gateway Logic synthesis tools would implement the specified
Design Automation and later on the VHDL was developed computational functionality in terms of logic gates and
under contract from DARPA. Both Verilog-HDL and logic gate interconnections. HDLs also began to be used
VHDL simulators to simulate large digital circuits quickly for system-level design. HDLs were used for the
gained acceptance from designers [9]. simulation of system boards, interconnection buses,

Even though the hardware description languages FPGAs (Field Programmable Gate Arrays) and PALs
were popular for logic verifications, the digital designers (Programmable Array Logics). A common approach is to
had to manually translate the HDL-based design into a design each IC chip, using an HDL and then verify system
schematic circuit with interconnections between logic functionality via simulation.
gates. The advent of logic synthesis changed the digital
design methodology radically. Digital circuits could be HDLs Based Development Flow: A typical digital logic
described at a register transfer level (RTL) by use of an design flow and logic simulations steps for designing
HDL. Thus now the digital designer had to specify how VLSI based integrated circuits are shown in Figure 7 and
the data flows between registers and how the design Figure 8. The digital design flow shown is typically used
processes the data. The details of logic gates and their by digital designers who use HDLs. In any design,

World Appl. Sci. J., 28 (8): 1051-1060, 2013

1058

specifications are written first of all at initial step. have been designed to allow the configuration switching
Specifications in fact describe abstractly the in depth in a small number of system clock cycles measuring
functionality, interface and overall internal architecture nano-seconds rather than milli-seconds [11]. While
of the digital circuit to be designed. A behavioral several DPGA devices have been developed in research
description is then created to analyze the design in terms environments, none are currently commercially available
of functionality, performance and other high-level issues. due to the large configuration overhead costs associated

The behavioral level description is manually with the required large configuration memory. In order to
converted into an RTL description in an HDL. The digital promote the hardware reconfigurations at lower cost,
designer has to describe the data flow that will implement several commercial FPGA families have been introduced
the desired digital logic circuit. From this point onward, recently that allow for fast partial reconfiguration of
the design process is done with the assistance of FPGA functionality from off-chip memory resources
available EDA tools. Logic synthesis tools convert the available [11]. A significant challenge to the use of these
RTL description to a gate-level netlist. A gate-level netlist reconfigurable computing devices is the development of
is in fact a description of the logic circuit in terms of logic compilation softwares and techniques which will partition
gates and connections between them. Logic synthesis and schedule the order in which the computations will
tools ensure that the gate-level netlist meets timing, area take place and will determine about which circuitry must
and power specifications. The gate-level netlist is input be changed. While some preliminary work in this thrilling
to an automatic placing and routing tool, which creates a area has been completed, more advanced tools are still
circuit layout. The circuit layout is verified and then needed to fully leverage the new hardware technology.
fabricated on a chip. Thus, most design activity is Other software approaches that have been applied to
concentrated on manually optimizing the RTL description dynamic reconfiguration include the definition of
of the circuit. After the RTL description is done ok, EDA hardware sub-routines and the dynamic reconfigurations
tools are available to assist the designer in further of the instruction sets.
processes. Designing at the RTL level has shrunk the While high-level compilation for micro-processors
digital design cycle times from few years to few months has been an active research area for few decades, the
and even few days [10]. It is also possible to do many development of compilation technology for reconfigurable
design iterations in a short period of time. Behavioral computing is still in its infancy and needs more research
synthesis tools have begun to emerge recently. dimensions to be explored [11, 12]. The compilation
These tools can create RTL descriptions from a behavioral process for FPGA-based systems is often very
or algorithmic description of the circuit. As these tools complicated by the lack of identifiable coarse-grained
mature, digital circuit design will become similar to structures in fine-grained FPGAs and the dispersal of the
high-level computer programming. Designers will simply logic resources across many pin-limited reconfigurable
implement the algorithm in an HDL at a very abstract level. computing devices on a single computing system or
EDA tools will help the designer convert the behavioral platform. In particular, since most reconfigurable
description to a final IC chip. computing systems contain multiple programmable

Existing Potential Research Areas: An important aspect of most compilation systems. Several compilation systems
of reconfigurable computing devices is their ability to for reconfigurable computing hardware have followed a
reconfigure the functionality of computational units or traditional multi-device ASIC design flow involving
elements in response to the changing operating pin-constrained device partitioning like concepts [13].
conditions and data sets of the running application. In order to overcome the pin limitations and to
While SRAM-based FPGAs have supported few hundred achieve the full logic utilization on a per-device basis
milli-seconds reconfiguration overheads rates for some using this approach, either excessive internal
time, only recently devices have been created that allow device interconnection or I/O counts have been needed.
for rapid device reconfigurations at run-time and are A hardware virtualization approach has also been outlined
known as Run-time Reconfigurable Devices [10, 11]. that promotes the high per device logic utilization.
Dynamically reconfigurable FPGAs known as DPGAs Following the design partitioning and placement
contain multiple interconnect and the logic configurations techniques, the inter-FPGA wires is scheduled on
for each programmable location in a reconfigurable inter-device wires at compilation time, allowing the
computing device. Often these computing architectures pipelining of communication. Inter-device pipelining also

devices, design partitioning forms an important aspect

World Appl. Sci. J., 28 (8): 1051-1060, 2013

1059

forms the basis of several FPGA system compilation from many emerging engineering challenges. In the next
approaches that start at the behavioral level. A high-level
synthesis technique has also been described that
outlines inter-FPGA scheduling at the RTL level.
Further more the functional allocation has also been
performed that takes into account the amount of logic
available in the target system and available inter-device
interconnect. Combined resource communications and
functional resource scheduling has also been performed
to fully utilize the available logic and communication
resources. The Inter-FPGA communication and
FPGA-memory communication have also been virtualized
since it has been recognized that memory rather than
inter-FPGA bandwidth is frequently the critical resource
in the reconfigurable computing systems and individual
device synthesis using RTL compilation.

Reconfigurable Computing Applications:Reconfigurable
computing systems that have been based on FPGAs have
shown impressive speedups for a large number of
computing applications by customizing the underlying
hardware logic of the computing platform or system to
create exactly the hardware functionality required [14].
Typically, due to the large size of the circuits so created
to perform the computation, multiple FPGA devices are
needed for design implementation. A large number of
recently completed projects have used hundreds of FPGA
devices in concert as a reconfigurable computing platform
to solve computational challenges such as shortest-path
search calculations, array sorting, FFT calculations and
special purpose processor implementations [15]. Latest
advancements in the high-level compilation technology
for these computing domains will likely lead to a rapid
increase in the number of potential applications for
reconfigurable computing [16-18]. As the complexity of
reconfigurable computing applications and targeted
platforms grows, the ability of application designers to
map the desired designs by hand to reconfigurable
hardware becomes limited by the amount of time needed
to analyze the complex variety of new hardware
implementation tradeoffs available [15]. These limitations
have given rise to many new automated high-level design
flows for emerging multi-FPGA based reconfigurable
computing systems.

CONCLUSION

Although the reconfigurable computing has been
an active research area since last few decades, the
reconfigurable computing technology is still suffering

few years it is expected that there would be many radical
changes in all aspects of this design space. FPGA
architectures are supposed to cope with the ever more
powerful fabrication technologies, altering conventional
interconnections and resource mixes to best support
multi-million gate designs. Reconfigurable computing also
puts its own demands on the emerging chip architectures
like system on chip technology. The scientific
community must find a way to make their desired features
cost-effective for the commercial chip vendors, either by
making them valuable to be inserted into general-purpose
architectures or by growing a new commercial market for
reconfigurable computing chips.

REFERENCES

1. Compton, K. and S. Hauck, 2002. Reconfigurable
computing: a survey of systems and software, ACM
Computing Surveys, 34(2): 171-210.

2. Philip Garcia, Katherine Compton, Michael Schulte,
Emily Blem and Wenyin Fu, 2006. An overview of
reconfigurable hardware in embedded systems,
EURASIP Journal on Embedded Systems, pp: 1-19.

3. Benkrid, Khaled, 2008. High Performance
Reconfigurable Computing: From Applications to
Hardware IAENG International Journal of Computer
Science, vol. 35, issue 1. February.

4. Compton, K. and S. Hauck, 2000. An introduction to
reconfigurable computing, IEEE Computer Society.

5. Katherine Compton, 2008. Reconfiguration
Management in Reconfiguration Computing, (ed.) S.
Hauck & A. Dehon, Morgan Kaufman, pp: 65-86.

6. Francisco Barat, R. Lauwereins and G. Deconinck,
2002. Reconfigurable Instruction Set Processors from
a Hardware/Software Perspective, IEEE Transactions
on Software Engineering, 28(9): 847-862.

7. Hartenstein, R., 2001. A Decade of Reconfigurable
Computing: A Visionary Retrospective”. In Design,
Automation and Test in Europe Conference (DATE),
642(64): 13-16.

8. Kuon, I. and J. Rose, 2006. Measuring the gap
between FPGAs and ASICs, in Proceedings of the
ACM/SIGDA 14th International Symposium on
Field-Programmable Gate Arrays (FPGA ’06),
pp: 21-30.

9. DeHon, A., J. Adams, M. DeLorimier, et al., 2004.
Design patterns for reconfigurable computing, in
Proceedings of the 12th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM ’04), pp: 13-23.

World Appl. Sci. J., 28 (8): 1051-1060, 2013

1060

10. Hartenstein, R., 2002. Trends in reconfigurable logic 15. Hauck, S., T. Fry, M. Hosler and J. Kao, 2004.
and reconfigurable computing, in Proceedings of CHIMAERA: Integrating a Reconfigurable Unit
the 9th IEEE International Conference on Electronics, into a High-Performance, Dynamically-Scheduled
Circuits and Systems (ICECS ’02), pp: 801-808. Superscalar Processor, in IEEE Transactions on Very

11. Hauck, S., 1998. The Roles of FPGAs in Large Scale Integration (VLSI) Systems, 12: 2.
Reprogrammable Systems Proceedings of the IEEE, 16. Mueen Uddin, Asadullah Shah, Raed Alsaqour and
86(4): 615-638. Jamshed Memon, 2013. Measuring Efficiency of Tier

12. Bauer, L., M. Shafique and J. Henkel, 2008. Level Data Centers to Implement Green Energy
A Computation and Communication-Infrastructure Efficient Data Centers, Middle-East Journal of
for Modular Special Instructions in a Dynamically Scientific Research, 15(2): 200-207.
Reconfigurable Processor; Proc. of IEEE 17. Hossein Berenjeian Tabrizi, Ali Abbasi and
International Conference on Field Programmable Hajar Jahadian Sarvestani, 2013. Comparing the
Logic and Applications (FPL 2008), Heidelberg, Static and Dynamic Balances and Their Relationship
Germany, pp: 203–208, pp: 8-10. with the Anthropometrical Characteristics in the

13. Peck, W., E. Anderson, J. Agron, J. Stevens, Athletes of Selected Sports, Middle-East Journal of
F. Baijot and D. Andrews, 2006. Hthreads: A Scientific Research, 15(2): 216-221.
computational model for reconfigurable devices. 18. Anatoliy Viktorovich Molodchik, 2013. Leadership
In 16th International Conference on Field Development: A Case of a Russian Business
Programmable Logic and Applications, Madrid, School, Middle-East Journal of Scientific Research,
Spain. 15(2): 222-228.

14. Todman, T.J., G.A. Constantinides, S.J.E. Wilton,
O. Mencer, W. Luk and P.Y.K. Cheung, 2005.
Reconfigurable computing: architectures and
design methods, IEE Proceedings: Computers and
Digital Techniques, 152(2): 193-207.

