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Department of Software Engineering
Charles University in Prague
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Abstract

In existing database systems there is a strong need for
searching data according to many attributes. In com-
mercial database platforms, the standard search over
multiple attributes is provided by B+-tree (or it’s vari-
ants) with compound keys. On the other hand, such
systems provide also multidimensional indexing, how-
ever, just for spatial purposes (such as GIS or CAD
applications) and use special data types and querying
syntax. In this paper we propose a native multidi-
mensional method for indexing tables with simple at-
tributes, such that multi-attribute queries can be pro-
cessed (with standard SQL queries) more efficiently
than by simple B+-tree with compound keys. For im-
plementation we have used the PostgreSQL and R-
tree-based index, though our method is applicable to
any other multidimensional indexing method. With
this combination we outperformed commercial plat-
forms (Oracle, SQL Server) by an order of magnitude
in the number of accesses to index. As a by-product, a
framework for easy implementation of external index-
ing methods into PostgreSQL was designed.

1 Introduction

Together with growing database sizes it becomes nec-
essary to use novel indexing structures for faster query
processing, especially in the case when fetching just a
small portion of the stored data. Originally, indexes
were used for searching the data according to just one
attribute, for example, the well-known B-tree [3] (B+-
tree [4], respectively). In it’s original form, the B-tree
was not designed to index multiple attributes, and so
it was not able to answer queries concerning multi-
ple attributes. However, such queries are widely used
in database applications. For example, let’s have the
following window query (conjunctive range query):
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SELECT * FROM Products WHERE
BrandId BETWEEN (13 AND 14) AND
ProductTypeID BETWEEN (13 AND 24) AND
PeriodID BETWEEN (3 AND 11)

The result set of such a query will be (probably)
very small, which should be a favorable situation for
an index. When not having a single index for multiple
attributes, we could use three indexes. Then, we get
three result sets being intersected to get the final result
(Fig. 1a). In practical applications, the user wants to
fetch just a small number of records from the database
(on average), regardless of the number of attributes
involved in the WHERE clause. Hence, with grow-
ing number of attributes, the size of the result should
remain (more or less) constant. To achieve this, the
sizes of individual result sets should grow because the
joining operation in window query is intersection (al-
ways reducing the size). If the sizes of the individual
result sets remain the same, the size of the intersection
decreases (Fig. 1b). Thus, to preserve the size of the
overall result set, the user needs to increase the sizes
of the partial result sets by specifying wider ranges
in the window query. The partial sets/ranges must
grow even exponentially (with respect to the number
of attributes) to preserve the final result size, which
is a consequence of the so-called curse of dimensional-
ity [6][7]. Finally, with growing size of the partial re-
sults, the advantage of using multiple single-attribute
indexes diminishes, and in such a case it is more effi-
cient to perform a sequential scan.

As we can observe, a solution based on multiple
single-attribute (one-dimensional) indexes is not the
right way. A possibility is to extend B-tree to index
multiple keys in its nodes. This is the standard way
of indexing multiple attributes in existing commercial
database systems (more closely described in section
2.1). The B-tree with compound keys is more effec-
tive than using multiple one-dimensional indexes, but
still is not very effective for indexing multi-attribute



Figure 1: Querying over 3 (a) and 4 (b) attributes

(multidimensional) data.
The native multidimensional indexing structures do

exist, however, they have been designed for specific
types of applications (considering just two or three di-
mensions)1. Here, the indexing was restricted to a
special “geometry” type (i.e., again a single attribute).
For these purposes, the R-tree [11] was proposed (KD-
tree was proposed sooner, but it divides space much
less effectively). Although designed for 2D/3D space,
the R-tree is extensible to an arbitrary number of
dimensions without a redesign of the original R-tree
model.

As mentioned earlier, for multi-attribute index-
ing the current commercial database systems exploit
structures based on B+-trees. Furthermore, Oracle2

and DB23 have extensions supporting spatial indexing
with R-trees, but these are appointed to GIS/CAD ap-
plications. The possibilities of multi-attribute/spatial
indexing types in platforms that appear in this paper
can be seen in Tab. 1.

Multi-attribute
Database

indexes
Spatial extension

Oracle 9.i B∗-tree4 YES (R-tree)
MS SQL Server 2000 B++-tree4 5 NO
PostgreSQL 8.1 B+-tree4 YES (R-tree)
Transbase 6.4.1 UB-tree (multidim.) n/a

Table 1: Multidimensional indexing in current DB sys-
tems

1In the first place geographic information systems (GIS) and
computer-aided design systems (CAD).

2Oracle Spatial Data Cartridge
3DB2 Spatial Extender
4Compound keys.
5B+-tree with connected nodes at inner levels.

One could ask why should be spatial extensions ap-
plicable to simple SELECTs like the one mentioned
earlier? Well, records of the example vendor sys-
tem can be visualized as points in three-dimensional
space (Fig. 2a). Spatial indexes (like R-trees) allow
to index arbitrary n-dimensional objects by bound-
ing them into n-dimensional blocks and then indexing
these blocks. A window query can be similarly visual-
ized in the space as a block defined by ranges on the
attributes involved in the WHERE clause (Fig. 2b).

Figure 2: Multidimensional visualization of data (a)
and window query (b)

With this approach we can natively index combi-
nations of simple attributes with methods originally
designed for usage in spatial databases. In such a way
we could decrease the number of index accesses, while
the users can use standard SQL queries – they are not
forced to use any extending modules/language (oth-
erwise needed when using a spatial extension). Note
that not only numeric data types can be indexed by
multidimensional indexes, there just must exist a lin-
ear ordering on the data type (i.e., date, time, string).
It should be noticed that the only present-day com-
mercial system utilizing native multidimensional in-
dexing for combinations of simple attributes is the
Transbase [12], employing the UB-tree (described in
section 2.3).

2 Indexing Methods

In this paper, we consider tree-based indexes where the
data is usually stored in (or referenced from) leaf nodes
and are traced by traversing the inner nodes. The
indexing structures differ in rules for traversing the
inner nodes and in semantics of the leaf nodes. In the
next sections we briefly describe indexing structures
relevant to this paper.

2.1 B+-tree with Compound Keys

The B+-tree [4] is an extension of the (redundant) B-
tree [3] (height-balanced structure with at least 50%
node utilization) where leaves are linked together to
enable sequential access in a given order of keys.

The original B+-tree does not provide the possibil-
ity to index multidimensional data (keys). The sim-
plest way how to support them is to interpret multiple



keys as a single compound (chained) value, concate-
nating keys of individual dimensions. When compar-
ing query compound key against an indexed compound
key, the key components are compared in lexicograph-
ical order. As far as we know, most of the database
platforms use such a solution.

The asymmetry in the order is the biggest prob-
lem of compound keys. The main key component (at-
tribute) is the first one and the records in the index
are sorted according to it. Only if there are duplicate
values in the first component, the second key compo-
nent is used, and so on4. This may cause traversing
many branches of the tree when processing a window
query (if the most restrictive attribute is not the main
key component).

2.2 R-tree

The R-tree [11] can be understood as a direct mul-
tidimensional extension of the B+-tree. It intro-
duces MBR (Minimal Bounding Rectangle) as a n-
dimensional rectangular region covering the underly-
ing spatial objects. Each leaf contains data objects and
each inner node contains MBRs of its children MBRs
(or data objects), see Fig. 3. In the searching phase, a
node is entered if it has a non-empty intersection with
the query rectangle/block.

Figure 3: Space and tree representations of R-tree re-
gions.

There also exist several well-known extensions to
the R-tree such as R+-tree [17] which has overlap-free
MBRs at the same tree level; this minimizes the num-

4For this reason, it is recommended to use attributes with
a small domain as the first components of the compound keys
(many branches can be filtered out).

ber of traversed branches when searching. Another
well-known extension is the R∗-tree [5] which takes
margins of the MBRs into consideration.

2.3 UB-tree

When the number of dimensions gets higher (>5–10),
the R-tree and its alternatives become inefficient. In
high dimensions, the overlap among MBRs rapidly
grows, so many subtrees have to be traversed. Again,
this is a consequence of the dimensionality curse.

One of the solutions is to transform points from
n-dimensional into one-dimensional space and index
these points with classical indexing structures. How-
ever, the transformation should preserve the original
n-dimensional topology as much as possible. For ex-
ample, the compound keys mentioned before represent
such a transformation, but they do not preserve the
topology very well. Hence, the success of such a trans-
formation method lies in finding a suitable “curve”
that fills the multidimensional space and preserves the
distances among the points well. The Universal B-tree
(UB-tree) [2] uses the Z-curve (Fig. 3a) for this pur-
pose. Each point in the space has its Z-address. The
Z-addresses are further clustered into Z-regions (Fig.
3b) whose lower and upper (one-dimensional) bounds
play the role of B+-tree’s keys. An advantage of UB-
tree is its linear ordering of Z-regions which do not
overlap.

Figure 4: Z-curve (a) and Z-region (b).

3 Indexing in PostgreSQL

The PostgreSQL [16][10] is an object-relational
database system which pays special attention to ex-
tensibility. As a part of the extensibility mechanism,
users can implement their own access methods.

Each database platform that wants to allow to im-
plement user-defined access methods has to provide
interface for the methods to allow:

1. a communication with the optimizer concern-
ing the estimated time required by the indexing
method, so that it can decide about its possible
usage

2. a synchronization with the content of the indexed
relation (table), so that the DB gives an opportu-
nity to reflect modifications in the relation



3. a searching in the relation. The functions of the
interface should allow:

• search initialization

• searching for the next item in an ongoing
search

• finishing a search

• finalizing a search (cleaning)

The purpose of the outlined behavior is to abstract
the programmer from the physical details of the given
platform. Therefore, the list does not contain fetching
the retrieved records from the disk etc. Such low-level
procedures are hidden in the system and the imple-
mented access method works just with records’ IDs.

3.1 Heap and Index Relations

The PostgreSQL makes use of two types of relations –
heap relations (HRs) and index relations (IRs). The
HRs maintain all the user relations (together with the
system catalog) which are stored in an undefined order.
The heap itself consists of blocks of constant size and
each of the blocks contains zero or more records. On
the other hand, IRs contain pairs <key; value> that
allow fast retrieval of a record out of the heap following
its key.

3.1.1 Tuple Identifiers

The PostgreSQL uses tuple identifiers (TIDs) (stored
in IRs) as unique identifiers for records in each relation.
The TID is a pair <block; offset> where blocks are
defined as integer values starting from 0 for each rela-
tion. The blocks are of constant size, while the offsets
allow to address variable sized records within a block.
If a record is updated, a new version of the record
is created and new TID is allocated. The references
chaining individual versions of a record are stored in
an additional structure attached to TID and thus older
version can be tracked. The chaining of record versions
is visualized in Fig. 5.

3.2 Implementation of an Indexing Method

Building of a user-defined access method in Post-
greSQL requires:

1. to implement a set of functions defining the in-
terface that PostgreSQL core uses for communi-
cation with the access method. These functions
specify behavior of the method.

2. to register the functions (located in libraries) from
the previous step.

3. to define an index by connecting the registered
functions with a newly created index.
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Figure 5: Chained IRs referring to HRs.

4. to establish a class of operators defining SQL op-
erators and types supported by the registered ac-
cess method.

5. to use the index over columns of a table containing
types supported by the operators’ classes.

Except for the first, a description in the PostgreSQL
documentation can be found for each step. Thus, the
only step worth further discussion is the first one. Here
PostgreSQL requires the following functions to be im-
plemented:

• index build

– Usually creates a structure for the index
(e.g., tree).

• index insert

– Inserts a record into the index.

• index beginscan

– Starts a new search.

• index gettuple

– Gets a record meeting searching conditions.

• index getmulti

– Gets a set of records of specified size.

• index endscan

– Finishes a search.

• index markpos

– Marks the actual position in a scan.



• index restrpos

– Returns to the marked position.

• index rescan

– Repeats a search with the same structure
of keys but possibly different values (can be
used in joins).

• index bulkdelete

– Removes a set of records from the index.

• index costestimate

– Estimates cost of the search.

We just mentioned methods that form the core of
an access method. They can be implemented in virtu-
ally every language supported by PostgreSQL, but in
practice, they are written in C (as the PostgreSQL core
itself). The crucial function is index gettuple which is
called repeatedly as long as there are records to be
fetched from the index.

3.3 Searching for a Record

When the access method is implemented, the process
of searching and fetching a record from the DB storage
goes as follows:

a User enters an SQL command (Fig. 6a).

b PostgreSQL searches for all indexes created upon
the table (Fig. 6b).

c For each index, time needed for finding the result
is estimated - index costestimate.

d WHERE clause is parsed and a set of records
representing the restriction is returned - scan key
structure (Fig. 6c).

e The optimal index (according to c) is used for the
search.

f Function of the access method returning desired
set of records is called repeatedly (Fig. 6d) to get
the result (Fig. 6e).
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Figure 6: Process of searching and fetching a record.

3.4 External Indexing

Each access method provided by PostgreSQL imple-
ments the required methods and uses HRs as its repos-
itory to store IRs for the indexed relations. Thus, it
passes IR’s TIDs to the core and the core picks up the
relevant records out of the heap. We have a problem
here – when somebody wants to use his/her external
(3rd party) framework for indexing in PostgreSQL, it is
necessary to store IRs in this framework. This causes
an overhead since, in the optimal case, the framework
should refer directly to the HRs (Fig. 7). In the cur-
rent version, our framework passes IR’s TID to the
core which fetches HR’s TID which, in turn, fetches
the resulting record.

Figure 7: Storing IR in an external indexing structure.

The PostgreSQL’s interface to access methods al-
lows user not to bother with physical details (fetching
records, etc.) but it is still necessary to work with IRs
and know (relatively thoroughly) the implementation
details of PostgreSQL. We have developed a frame-
work that makes implementation of user-defined access
methods even easier. Actually, it is a framework on the
database side which communicates with the external
indexing framework on one side, and index * methods
on the other. The framework requires the following
functions to be implemented:

• void FW CreateStructure(Relation index relation);

– On the basis of the index relation, the index’s
structure is set (types and number of attributes).

• void *FW PrepareInsert(Relation index relation);

– In this function, the index is initialized (open-
ing a persistent storage, setting global variables,
. . . ).

• void FW InsertTuple(void *fw data, Relation in-
dex relation, IndexTuple index tuple, BlockNumber
block number, OffsetNumber offset);

– Inserts record into the index. The input parame-
ter fw data is reference to the structure contain-
ing informations created in FW PrepareInsert.

• void FW FinishInsert(void *fw data);



– Cleans memory after finishing a scan. fw data
represents reference to global data (which should
be the object of the cleaning).

• void FW InitSearch(IndexScanDesc scan, ScanDirec-
tion dir);

– If the external method is built in the way that
it fetches all the records in one pass and then
returns it one by one, it is accomplished here.
The returned records are stored in the scan pa-
rameter.

• bool FW GetNextTID(IndexScanDesc scan, ScanDi-
rection dir, BlockNumber *block number, Offset-
Number *offset);

– Fetching the next record (see the previous func-
tion).

• void FW DeleteTuple(BlockNumber block number,
OffsetNumber offset);

– Deletes a record from the external storage.

If the external indexing framework is written in C,
it can be compiled with the FW * functions (Post-
greSQL’s framework). Otherwise, the framework has
to be compiled into a library and wrapped by C func-
tions.

We used ATOM [1] as the external framework
which is written in C++ and hence we needed to wrap
it in order to communicate with FW * functions, as
can be seen in Fig. 8.

3.4.1 Advantages of External Indexing

There are several important reasons why to use the
developed framework:

• Minimization of necessary PostgreSQL mastering
– it is sufficient to be familiar with the input struc-
tures that enter the framework’s functions.

• Implementation time – implementing an exist-
ing indexing method into PostgreSQL through
the connection bridge takes insignificant time.
Most of the time is spent on understanding in-
dex * functions and working with memory in
PostgreSQL.

• Implementation of the indexing method is
database independent and it is possible to use it
with other database platforms as well.

3.4.2 Implementation Challenges

In the previous section we described advantages of
using an external index for implementing an access
method. Although, such a solution has also disadvan-
tages:

ATOM

R-Tree

DLL Wrapper
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functions
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Figure 8: Communication between indexing and Post-
greSQL framework.

• Duplicated reading of pages. This problem is
caused by the need of storing IRs not only in
the external indexing method only, but also in
PostgreSQL (links to HRs). The problem is es-
pecially unpleasant when dealing with physical
pages (which have to be read from an external
physical storage). On the other hand, records
in the framework are much smaller than those in
PostgreSQL and hence more of them can be stored
in a cache to avoid reading them from disk.

• Global data. The external method might need to
store global data for a time spanning over a scan’s
lifetime. Unfortunately, PostgreSQL does not of-
fer the possibility to store global data. Hence,
the solution is to use temporary files or specific
abilities of the operating system.

• Impossibility of recognizing end of existence of an
index. In our point of view, this issue has arisen
due to the inconsistence when implementing user
defined indexes in PostgreSQL. When index is
created, user defined function is called but there
does not exist such a possibility when index is de-
stroyed. Hence, an external indexing method that
uses some kind of external storage can not recog-
nize when to delete its repository for this storage.
To the best of our knowledge, the only solution
is to recycle the storage when the same name is
reused in future (which does not solve the prob-
lem how to handle dropped and never recreated
indexes).

3.5 Native R-tree Indexing

Using the framework described above we have imple-
mented the R-tree as a native multidimensional in-
dexing method into PostgreSQL. This way one could
implement also other multidimensional indexing meth-
ods, like the UB-tree. One could even implement in-
dexing methods suitable for different purposes, e.g.,
the M-tree [8] for similarity search, however, for such
an extension the implementation using the framework



must additionally define new SQL operators (similar-
ity predicates), which is out of scope of the framework
and of our paper, but is supported natively by Post-
greSQL.

4 Experimental Results

We performed experiments to prove the benefits of na-
tive multidimensional indexing when compared with
the conventional compound-key indexing. The testing
platform was a Pentium4-3GHz, 1GB RAM, 80GB HD
- 5400 rpm. We used PostgreSQL 8.1 (denoted PG in
the figures), Oracle 9i Release2, Microsoft SQL Server
2000 and Transbase 6.4.1 as the database platforms in
the competition. Each of the platforms used 8KB disk
pages and so did the ATOM framework. To be able
to compare all the platforms correctly, we did not use
any optimization techniques such as clustered indexes
in SQL Server or index-organized tables in Oracle.

As mentioned earlier, Microsoft SQL Server [13]
uses B++-tree5 which is B+-tree with linked lists con-
necting also inner nodes at each level, Oracle [15] uses
B∗-tree which is B+-Tree with 2/3 node utilization,
and PostgreSQL uses the standard B+-tree. We have
also included the native multidimensional indexing in
terms of R-tree-enhanced PostgreSQL (our approach
described earlier) and Transbase [12] with its UB-tree.

4.1 The Testbed

We used two synthetic and one real dataset. The first
synthetic dataset (denoted Uniform) was based on clus-
ters of uniformly distributed (up to 15-dimensional)
points (abstracting from table records). The number
of generated clusters was related to the dataset size
(the greater dataset, the more clusters). In the sec-
ond synthetic dataset (denoted Gauss), the data (up
to 3-dimensional points) followed the Gauss (normal)
distribution without clusters. Finally, in order to test
our method also with real-world data, we used a table
from the DBLP database [9] which contained 435,373
records (denoted DBLP). From the DBLP table we
chose attributes author, type of publication, year of
publication and number of pages for indexing (i.e., four
dimensions).

The Uniform dataset was chosen to see how window
query selectivity, dimension and dataset size impacts
the number of accesses to the index (logical nodes
fetched from the disk). For each of the tests, 100
queries were performed and the results averaged.

The Gauss dataset was tested differently. One of the
space’s diagonal was divided into 11 parts and each
of the parts formed a diagonal of an n-dimensional
cube. Inside each of the cube 100 points were ran-
domly picked up and selected as centers of windows
queries (whose ranges corresponded to 1/11 of the

5This is not the official name of the structure, just our label.

space’s diagonal). 100 window queries originated from
each cube were used to average the results.

We studied the number of accesses to index and
time in seconds to answer the query. Note that the
number of accesses is a logical unit, since it is not de-
pendent on the implementation details of a particular
database platform.

4.2 Index Size

We measured the index size for platforms where we
were able to get this information. The Tab. 2 shows
that space needed by B-tree is virtually the same as the
space needed by R-tree. In both cases, the size grows
linearly with the volume of data stored. The double
size of the R-tree index incorporated into PostgreSQL
is the consequence of the need to store the IRs twice
(as described in section 3.4). To show the difference,
the first column (ATOM(R)) refers to the pure R-tree
size without the other PG overhead.

Dataset PG+ MSSQL

size
ATOM(R)

ATOM(R)
PG(B+)

(B++)

104 207 412 246 248

5 ∗ 104 1 053 2 061 1 139 1 112

105 2 113 4 129 2 261 2 280

2 ∗ 105 4 085 8 116 4 514 4 440

5 ∗ 105 10 261 20 329 11 256 11 024

106 20 695 40 831 22 487 21 936

2 ∗ 106 41 595 81 859 44 950 43 752

5 ∗ 106 111 970 212 617 112 334 109 200

Table 2: Index size - dimension 2 (in KB)

4.3 Synthetic Data

The first set of experiments concerned the impact of
the dataset size on the number of accesses to the in-
dex. As Fig. 9 shows, with growing size of the dataset
the number of accesses grows linearly. In this one-
dimensional case, the R-tree outperforms the other
methods, while the relative difference stays approx-
imately constant with growing dataset size. With
higher query selectivity (in % of dataset size), the dif-
ference is even more obvious.
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Figure 9: Impact of dataset size on access count (dif-
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If we increase the dimension to 2, it is apparent that
the R-tree still outperforms compound keys methods
(Fig. 10) but, on the other hand, R-tree is outper-
formed by UB-tree when it comes to larger databases.

If we further increase the dimension to 3, we can
see that the difference between UB-tree and R-tree
remains very similar but standard solutions begin to
lag noticeably (Fig. 11).
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Figure 11: Impact of dataset size on access count with
growing selectivity

It seems that with growing dimension the difference
between standard solutions and R-tree/UB-tree also
grows. In the next experiments we focused on the
growing dimensionality, see Fig. 12. It turns up that R-
tree performs efficiently just up to 8 dimensions. Then
the overall volume of MBR overlaps grows rapidly, and
the efficiency of the index deteriorates. Moreover, this
trend is even more considerable in larger dataset.
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The next experiments considered the query selec-
tivity. In Fig. 13, we can notice that R-tree’s and UB-
tree’s number of accesses grows linearly with the in-
creasing selectivity (independently on the dimension).
On the other hand, standard solutions’ growth shows
logarithmic trend in higher dimensions. The reason
for this trend is the fact that with growing number
of fetched records, the disadvantage of the standard
methods caused by the asymmetry of the first key de-
creases (many branches will be traversed, anyway).
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Figure 13: Impact of selectivity on the number of ac-
cesses (growing dimension)

When looking at Gauss, it is interesting how the
methods behave when the query window “moves” to
the center of the space (i.e., when the selectivity
grows). The horizontal axis in Fig. 14 represents the
diagonal of the space, hence in the center the selec-
tivity is highest. The results confirm the previously
observed measurements. In a single dimension the R-
tree is the best method, while in higher dimensions
and higher selectivities (on the sides of the axis) the
winner is UB-tree.
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Figure 14: Moving window query

4.3.1 Realtimes

In further experiments we measured the realtimes.
Here we should point out the fact that index accesses
comprise disk and memory access.

Hence, the time spent while searching is noticeably
influenced by caching of nodes which is dependent on
the individual database platform, the size of cache
(which often cannot be adjusted to narrow the exper-



Dim Query selectivity PG(R) PG(B+) MSSQL(B++) Oracle(B∗) TB(UB)
2 2 % 3.62 71.88 51.59 52.87 8

3 % 3.62 63.13 43.8 43.99 7.97
3 2 % 4.31 94.82 71.42 71.04 10.25

3 % 3.95 109.45 78.71 78.88 10.05
4 2 % 9.87 86.31 70.83 71.44 12.43

3 % 10.73 92.08 76.02 76.1 13.15

Table 3.: Access count – DBLP

Dim Query selectivity ATOM(R) PG(R) PG(B+) MSSQL(B++) Oracle(B∗) TB(UB)
2 2 % 3.13 5.31 5.78 0.46 0.93 3.58

3 % 3.28 5.94 4.84 0.34 0.73 3.42
3 2 % 2.97 4.69 6.25 0.87 1.73 3.88

3 % 2.66 5 7.19 1.06 1.76 2.82
4 2 % 3.91 6.88 6.72 1.6 1.69 3.58

3 % 5 7.2 7.66 1.3 1.82 2.19

Table 4.: Realtime (s) – DBLP
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Figure 15: Impact of query selectivity on realtime

imental conditions), etc. The results can be seen in
Fig. 15. In these experiments R-tree results are di-
vided into two parts – the time needed by ATOM to
find records and the overall time (with PostgreSQL
overhead). We can see that in one dimension, com-
mercial solutions are faster, however they have to ac-
cess higher number of nodes (we can see the impact
of a good implementation and optimizing). On the
other hand, if the dimension is high enough the bene-
fits of multidimensional indexing dominate (here only
three dimensions sufficed) – both UB-tree and R-tree
outperformed the other methods. Unfortunately, the
R-tree-enhanced PostgreSQL is fairly slow due to the
inherent overhead of PostgreSQL (access to HRs and
IRs, see section 3.1).

The B+-tree of PostgreSQL shows poor results,
even though it is comparable to other solutions in the
number of index accesses (Fig. 12). Anyway, under the
scope of PostgreSQL the native multidimensional in-
dexing extension brings a clear improvement for higher
dimensions.

4.4 Real Data

In the last experiments we indexed the DBLP dataset
where we measured both number of accesses and re-

altime. When looking at the results representing the
number of accesses (Tab. 3), we can see that with
the DBLP dataset the benefits of the multidimensional
methods are even more noticeable than in the case of
synthetic datasets. In some cases, the R-tree is even
20× more efficient than Oracle’s or SQL Server’s meth-
ods.

However, when it comes to realtimes, the same
problem as in the case of synthetic datasets arises. The
commercial solutions are able to beat the competitors
because of their good implementation (Tab. 4).

5 Utilization of the Idea

The presented idea is quite simple, but still very pow-
erful. It allows to store various multidimensional data
types and query them effectively with standard SQL
syntax. Let’s point out few areas where such a type of
index can find use:

• Symmetric multidimensional queries. Example is
the vendor system where users need to query ac-
cording to multiple attributes with similar selec-
tivity. As stated at the beginning of the paper,
in such a case only multiple B-trees would do
the work in current commercial database systems.
Hence the data can be accessed more easily.

• Object features - multimedia databases. Features
of objects such as pictures usually contain many
dimensions (color distribution, shapes, . . . ). For
these features we can use multidimensional in-
dexes only, but then the objects have to be bun-
dled in some kind of BLOB object. That is not
necessary when using native multidimensional in-
dexing presented in this paper.

• Mapped non-relational databases. Various com-
plex database models exploit the relational model



in order to efficiently implement access to their
data. For example, besides native engines, XML
databases are often transformed into plain tables
[14]. XPath or XQuery queries are then expressed
using the standard SQL, which leads to intensive
multi-attribute queries.

6 Conclusion

In this paper we applied the R-tree into PostgreSQL
for native multidimensional indexing of relational
databases. We extensively tested our approach against
today’s most widely used database platforms and
showed that our solution outperforms these solutions
in terms of platform-independent efficiency measures.
However, to beat the competitor also in realtimes, the
native multidimensional indexing must be optimized
and incorporated directly into the DBMS core in the
future. Under the scope of PostgreSQL, however, the
R-tree-based multidimensional indexing outperforms
the standard B+-tree indexing in both, the access costs
as well as realtimes. As a by-product, we developed a
framework that allows other interested researchers to
implement their own indexing methods and test them
within a real database environment (PostgreSQL) with
just a minimal knowledge of the platform.
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