
I.J. Information Engineering and Electronic Business, 2015, 2, 27-37
Published Online March 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2015.02.05

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 27-37

Printed Text Character Analysis Version-III:

Optical Character Recognition with Noise

Reduction, Background Detection and User

Training Mechanism for Simple Cursive Fonts

Satyaki Roy
Department of Computer Science, St. Xavier‟s College, Kolkata, India

Email: unrivaledsatyaki@gmail.com

Ayan Chatterjee, Rituparna Pandit and Kaushik Goswami
Department of Computer Science, St. Xavier‟s College, Kolkata, India

Email: ayan.saheeb.chat91@gmail.com, itsme.rituparna91@gmail.com and kg@sxccal.edu

Abstract—The present system performs analysis of

snapshots of cursive and non-cursive font character text

images and yields customizable text files using optical

character recognition technology. In the previous versions

the authors have discussed the user training mechanism

that introduces new non-cursive font styles and writing

formats into the system and incorporates optimization,

noise reduction and background detection modules. This

system specifically focuses on enhancing the process of

character recognition by introducing a mechanism for

handling simple cursive fonts.

Index Terms—Cursive font handling mechanism,

Resizing Algorithm, Character broken lines, Noise

Reduction, Background Detection.

I. INTRODUCTION

New font styles are introduced everyday and the

existing optical character recognition softwares are

outdated since they are unable to incorporate the new

fonts. Therefore in the previous versions we have

discussed the user training mechanism that would give

the user the ability to introduce new graphic symbols as

per his or her requirements. The given system can

therefore update itself with any new unknown graphic

symbol.

In the second version we have proposed three things

that the system has incorporated (i) a noise handling

module to minimize salt and pepper noise and handle text

images which have poor quality or poor lighting (ii) we

have an optimization module in place that would ensure

that process of character recognition can be optimized by

minimizing the number of comparisons. (iii) And finally

the system also has a novel binary conversion with

background detection module which is able to

differentiate between the character symbol and the image

background making the process of recognition a lot

simpler. All these mechanisms were applicable for non-

cursive fonts only.

However in the third version of the system we are

focusing on cursive fonts because the process of character

recognition is only complete when our system is extended

to handle irregular and cursive fonts. It is needless to say

that the process of character recognition tends to become

complicated when we consider cursive fonts because

there are no clear demarcations for characters when it

comes to cursive font and the point of contact between

two characters for cursive fonts can be variable.

Printed Text character analysis is fundamentally

different from the existing literature on optical character

recognition. Mori and Suen, in literature [1], have

proposed the concept of template analysis whereas our

system is based on the concept of pixel matching

algorithm. Mantas, in [2], shows that a system should

have the pre-processing and recognition techniques in

place that would cope with online and offline character

recognition techniques. The system now has a greater

reach in terms of the variety of characters or graphic

symbols it can handle and it ensures a greater degree of

flexibility and efficiency in character recognition with the

inclusion of cursive font recognition.

II. SYSTEM MODULES

This system has two distinctive modules:

- The User Training Module

As mentioned before, the User Training Module is

allows the user to train the system to recognize new

characters and font styles. We shall see that the user

training module is same for the cursive and non-cursive

fonts.

- The Character Recognition Module

The Character Recognition module actually performs

the recognition of characters. It uses the character

28 Printed Text Character Analysis Version-III: Optical Character Recognition with Noise Reduction, Background

Detection and User Training Mechanism for Simple Cursive Fonts

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 27-37

dictionary (discussed later) as the database to recognize

the characters from a text image. It must be remembered

the character recognition module here is going to be

slightly different for cursive fonts and non-cursive fonts.

Fig. 1. System Modules

Figure 1 (above) demonstrates the system components

and we shall discuss them in greater details in the next

section.

III. DETAILS OF SYSTEM IMPLEMENTATION

A. Monochrome Conversion

In [3] Maloo and Kale, have discussed the concept of

separation of foreground and background called

binarization. Monochrome conversion, which serves the

very same purpose, has been divided into three stages-

(i). Grayscale Conversion

The prime objective of this module is to reduce the

number of colors in the image. We know that grayscale

images only provide shades ranging from black

(generally denoted by 0) to white (generally denoted by

255). This module would therefore assist the system in

detecting the difference between character pixels and

background pixels. Typically character pixels have

shades closer to black and background pixels have shades

closer to white.

The grayscale conversion algorithm works in the usual

way by extracting every pixel value 'px' and finds its red,

green and blue components and replaced the R, G and B

values of 'px' by the average of the red, green and blue

components denoted by 'avg'. In the algorithm shown,

px1 is the converted pixel

(Let us assume that the image is in Alpha-Red-Green-

Blue format. Here „>>‟ represents right shift operation

and „&‟ is bitwise AND operation.)

for every pixel 'px' in the text image ‘IMG’,

alpha = (px>>24)& 0xff;

red = (px>>16)& 0xff

green = (px>>8)& 0xff

blue = px & 0xff

alpha = 255

avg = (red+green+blue)/3

px1 = (alpha<<24) + (avg<<16) + (avg<<8) + avg

(ii). Binary Conversion

At this stage, it is imperative to bring down the number

of possible shades from 256 to 2. This would ensure that

the process of character recognition can be simplified.

The working of this module is described below-

Let variable „n‟ hold the number of shades for a

grayscale image and „x‟ and „y‟ are counter variables for

the image.

Let “shades” be the 1-D array that has all the possible

grayscale values.

Variable k covers the first half of the “shades” array i.e.

shades closer to black and variable k2 covers the rest.

The variables „mx‟ and „my‟ are the image size along x

and y axis.

Step 1: Define k = 0

Step 2: Define k1 = k + n/2 + 1

Step 3: Define x = 0

Step 4: Define y = 0

Step 5: Extract pixel px at position (x, y)

Step 6: If px = shades [k] then make px black

Step 7: If px = shades [k1] then make px white

Step 8: Increment y. If y is less than my then GOTO 5

Step 9: Increment x. If x is less than mx then GOTO 4

Step 10: If k is less than nosh/2 GOTO 3

Step 11: End

(iii). The New Background Detection Mechanism

This is a new feature of the second version. Optical

character recognition systems are unable to handle text

images where the foreground and background colors are

very similar. Therefore this mechanism of background

detection would ensure that the system recognizes the

background color. The foreground or the character pixels

are made black whereas the background color is made

white, irrespective of the original foreground and

background colors of the image.

The first extracted pixel is the top left pixel. It is

considered the background pixel. If “Firstpix” is 255 (or

white), the foreground and background remain unchanged

else the foreground and background colors are swapped

using the variable “Newpix”. Therefore the character

pixels are always black and the background pixels are

always white.

 Printed Text Character Analysis Version-III: Optical Character Recognition with Noise Reduction, Background 29

Detection and User Training Mechanism for Simple Cursive Fonts

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 27-37

Step 1: If Firstpix = 255 then let every pixel remain

unchanged

Step 2: If Firstpix < 255 make every black pixel white

and white pixel black

Step 3: End

B. Noise handling mechanism

Sometimes noisy images are hard to read and character

recognition becomes very difficult in the presence of salt

and pepper noise.

The system makes use of median noise filter module

which removes any blotches of noise and also prevents

the possible blurring of edges.

Consider the 3 X 3 (left) image matrix given below –

Fig. 2. The working of the median filter

(As shown on the right) after arranging the elements in

ascending order we have 10, 18, 20, 20, 20, 20, 21, 22

and 100. Therefore the median element is 20. We replace

the central pixel with the median element.

From the matrix (on the left) we can clearly tell that the

central pixel is disparate i.e. noisy. Therefore we use the

median of the pixel values to replace the central pixel.

Fig. 3. Original Image with specks of noise on the left and the image
after noise removal on the right.

We have encountered a few variants of the median

filter. The primary objective of the median filter module

is to handle impulse noise, salt-and-pepper noise as

discussed in [4]. Our system implements a very simple

form of median noise filter and its effectiveness is shown

in the test cases later.

Working of Noise Handling Module-

The variable size refers to the size of the window of

consideration. In our case it is 3 X 3 =9.

Step 1:Define size = size of window, b = floor ((window

size)/2)

Step 2:Define h= image height, w = image width

Step 3: i=b

Step 4: j=b

Step 5: Define array a [size], variable cnt = 0

Step 6: k=i-b

Step 7: l= j-b

Step 8: a [cnt] = IMG [l] [k], increment cnt

Step 9: Increment l. If l is less than or equal to (j + b),

GOTO 8

Step 10: Increment k. If k is less than or equal to (I + b),

GOTO 7

Step 11: Sort array a in ascending or descending order

Step 12: IMG [j] [i] = a [size/2]

Step 13: Increment j. If j is less than or equal to (w-b),

GOTO 5

Step 14: Increment i. If i is less than or equal to (h-b),

GOTO 4

Step 15: End

C. Boundary detection

Now let us understand how the system differentiates a

cursive character from a non-cursive font. The system

employs a threshold aspect ratio value „maxAsp‟. We

know that the aspect ratio is the ratio between the width

and height of the extracted character.

Fig. 4. Aspect Ratio (= width / height) for cursive font (left) and non-

cursive font (right)

As evident from Figure 4, the aspect ratio of a cursive

font is generally greater than the aspect ratio of the non-

cursive character because the width of the cursive font is

greater. Therefore if the aspect ratio of the extracted

character exceeds the threshold value „maxAsp‟, we

invoke the cursive character recognition module. Now we

shall discuss the boundary extraction modules for the

cursive and non-cursive fonts.

(i). Non-Cursive Font Handling Module

This is the most significant component in the system.

This section deals with the identification of the character

boundaries. This process is very crucial as more effective

the boundary recognition, better is the quality of character

extraction. The underlying principle behind the

recognition of character boundary is the positioning and

alignment of the dark (character) pixel values.

This non-cursive font algorithm extracts four character

boundaries for every line of written text:

-the Vertical Top Line

-the Vertical Bottom Line

-Horizontal Left Character Line

-Horizontal Right Character Line

20 18 20

10 20 21

22 20 20

20 18 20

10 100 21

22 20 20

30 Printed Text Character Analysis Version-III: Optical Character Recognition with Noise Reduction, Background

Detection and User Training Mechanism for Simple Cursive Fonts

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 27-37

Fig. 5. The non-cursive character boundary extraction process

As mentioned before the character boundary extraction

is a key component in both the modules i.e. user training

and character recognition.

With the help of figure 4, let us see how this

component works. Remember with the help of the

boundary recognition module, all character pixels are

black and background pixels are white.

The first target here is to determine the vertical top and

bottom character boundaries. These boundaries together

demarcate a line of printed text.

Vertical Top Boundary Line Extraction

Step 1: Define variable x = 0 and y = starting row ‘st’
Step 2: Define y = 0

Step 3: Define x = 0

Step 4: If IMG [x] [y] = 0 then RETURN value of y

Step 5: Increment x. If x less than the width of image

GOTO 4

Step 6: Increment y. If y less than the height of image

GOTO 3

Step 7: End

If we have an image matrix 'IMG [x] [y]' where 'y' is

the row of the image matrix and 'x' is the column of the

matrix, we scan downwards from the start row number 'st'

(where st is initially set to 0 and otherwise represents the

previous vertical bottom character line). As soon as it

detects a pixel value which equal to 0, it considers the

row to be the Vertical Top Character line and returns the

row 'y'.

For the Vertical Bottom Boundary extraction, the same

process is repeated, only this time, the downward

scanning starts from top boundary line. Therefore st =

Vertical Top Boundary Line.

Horizontal Left Boundary Line Extraction

Step 1: Define variable x = 0 and y = 0

Step 2: Define x = Horizontal Left Boundary

Step 3: Define y = Vertical Top Boundary

Step 4: If IMG [x] [y] = 0 then RETURN value of x

Step 5: Increment y. If y less than the height of image

GOTO 4

Step 6: Increment x. If x less than the width of image

GOTO 3

Step 7: End

If we have an image matrix 'IMG [x] [y]' where 'y' is

the row of the image matrix and 'x' is the column of the

matrix, we scan left to right from the leftmost pixel. As

soon as it detects a pixel value which is equal to 0 it

considers the column to be the Horizontal Left Character

line and returns the column 'x'.

For the Horizontal Right Boundary extraction, the

same process is repeated, only this time, the left to right

scanning starts from left boundary. Therefore (initially) x

=horizontal left character boundary.

(ii). Cursive Font Handling Module

The system initially employs the non-cursive character

boundary extraction mechanism. If the aspect ratio of the

character exceeds „maxAsp‟ it invokes the cursive font

handling module. The extraction of the cursive character

is based on the process of scanning the cursive word

column-wise and counting the minimum number of black

pixels in each column, as shown in Figure 6.1.

Step 1: Extract the number of black pixels in every

column (in variable „pixcnt‟) of the extracted character

window and store it in array „arr1‟ where lchar and rchar

are the left and right boundaries and horUpLine and

horDownLine are the top and bottom boundaries of

extracted cursive word-

Define array ‘arr1’

For j=lchar to rchar

Variable pixcnt = 0

For i = horUpLine to horDownLine

 if IMG [j] [i] = 0

 Increment pixcnt

End for

arr1[cn] = pixcnt

Increment cn

End for

Fig. 6.1. Cursive Boundary Extraction

Step 2: As Figure 6.1 suggests, the entries of the array

„arr1‟ refer to the number of dark pixels in every column.

 Printed Text Character Analysis Version-III: Optical Character Recognition with Noise Reduction, Background 31

Detection and User Training Mechanism for Simple Cursive Fonts

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 27-37

The column(s) that has the minimum number of dark

pixels (i.e. minpos in Figure 6.1) is the possible points of

contact between two characters in the cursive word. The

columns with the minimum number of pixels are

registered in the array „arr2‟. Here „minval‟ is the

minimum number of dark pixels and the array „arr2‟

stores the column index of all such columns with

minimum black pixels.

Define minval=arr1[0]

For i=1 to cn do

if arr1 [i] < minval then

 minval= arr1 [i]

end if

end for

For i= 0 to cn do

If arr1[i] = minval

Arr2[leng] = i + lchar

Leng = leng + 1

Ignore all the consecutive entries of ‘minval’ because

they represent the continuous connecting strokes between

two characters

End for

Step 3: Now we are performing the process of character

extraction from a cursive word by employing the array

„arr2‟. As shown in Figure 6.2 we can extract characters c,

a, s and t from the cursive word. For example the first

estimated character „c‟ is between arr2 [0] and arr2 [1],

the second estimated character „a‟ is between arr2 [1] and

arr2 [2].

Fig. 6.2. Every columns of minimum number of dark pixels are stored
in the array „arr2‟

A character after extraction is stored in a binary pixel

string „pix‟, resized and matched with the existing

database entries. For example if a „pix‟ pattern between

arr2 [0] and arr2 [1] is not a match, we consider a pix

pattern between arr2 [0] and arr2 [2]. If again there is no

match the system considers the space between arr2 [0]

and arr2 [3]. This continues until a match is found or

rchar is encountered.

D. Binary Pixel Pattern Generation

Once the character boundary has been recognized, the

system generates the binary pixel pattern which is a

binary string that stores the pixel values lying within the

window of the character boundaries.

As we have mentioned before, in the pixel pattern „pix‟,

character pixels are represented by 0 and background

pixels are represented by the value 1.

Step 1: Define i = Vertical Top Boundary

Step 2: Define j = Horizontal Left Boundary

Step 3: If IMG [j] [i] = 0 then append 0 to string pix else

append 1.

Step 4: If j <= Right Boundary then GOTO 3

Step 5: If i <= Bottom Boundary then GOTO 2

Step 6: End

This binary pixel pattern is resized and stored in the

database called the character dictionary for character

matching process.

E. Resize Algorithm

In [5] Mithe, Indalkar and Diveka have discussed

normalization techniques to ensure uniform size of

characters and smooth recognition of characters. After

extraction and generation of the binary pixel pattern „pix‟,

the extracted character is resized to a default value of 10

x 10. This ensures a few things:

- It helps the pixel-wise character matching process,

because every character is reduced to the same size.

- It reduces memory overhead because 100 character

values are stored for each character.

- It speeds up the matching process because the time

taken to perform 100 comparisons is not very high.

The resizing algorithm works on the principle of

mapping. It simply scales down a matrix of certain pixel

size to a 10 x 10 matrix. We would like to point out here

that the size of 10 X 10 is not fixed.

We have experimentally determined that we are

obtaining an optimum performance and quality with the

10 X 10 binary strings. If the window size is increased

then the time to perform character recognition will also

be quite high.

In the resizing algorithm below:

The values „h1‟, „w1‟ are the height and width of the

original binary pixel matrix, whereas both „h2‟ and „w2‟

are set to 10 (which is the size of the reduced or resized

pixel matrix). The resized character matrix is stored in 1-

D array „temp‟.

Step 1: Define w1 = Image width, h1 = Image height

Step 2: Define w2 = 10, h2 = 10

Step 3: Define 1-D array ‘a’ which stores original pixel

string

Step 4: Define x_ratio = w1/w2, y_ratio = h1/h2

Step 5: Define i = 0

Step 6: Define j = 0

Step 7: Define px = j * x_ratio, py = i * y_ratio

Step 8: temp [(i*w2)+j] = a [(int)((py*w1)+px)]

Step 9: Increment j. If j less than w2 then GOTO 7

Step 10: Increment i. If i less than h2 then GOTO 6

Step 11: End

32 Printed Text Character Analysis Version-III: Optical Character Recognition with Noise Reduction, Background

Detection and User Training Mechanism for Simple Cursive Fonts

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 27-37

Fig. 7. Original Character (left) and Resized Character (right)

F. Independent Character Scaling

There is another small task which remains to be done

after the extraction of characters. When there are two

characters adjacent to each other that have varying

heights, then the character which is shorter tends to have

a white space on top as evidenced by figure 8 shown

below.

Fig. 8. The white space on top of character „a‟ that exists because„d‟ has
a greater height

The independent character scaling algorithm simply

removes the white space on any character after extraction.

This is very important for accurate character recognition.

G. Storage into character dictionary

It is very important to store the pattern for a certain

character for future reference as proposed in [6]. To do

that, the database called character dictionary is the

mainstay of the User Training Mechanism. Once the

binary pixel pattern has been generated for a certain

character, the pixel pattern is transferred to the character

dictionary. In our algorithm we have used a MS Access

database but any other data storage can be utilized. The

dictionary has the following fields:

- Character name

- Binary Pixel Pattern String

- Aspect Ratio (to be used for optimization purposes as

discussed later)

Table 1. Character Dictionary Sample for character „a‟

Character

Name

Binary Pixel String

100 pixel values

Aspect Ratio

A 11111000111… 1.1818

It must be remembered that the system already has a

character dictionary in place. The advantage here is that

the user may add new characters to the dictionary with

the user training module and introduce new writing styles

at his will. The character dictionary is not a predictive

mechanism to correct instances of misspellings as

proposed in [7]. It would only make the process of

character recognition more accurate.

H. Comparison and Matching Algorithm

This technique of character recognition/ matching

works with the pixel matching method where the

corresponding 10 X 10 values of the extracted pixel

pattern is resized and matched against the pixel pattern of

the character dictionary. If the number of matched pixels

exceeds a threshold value (generally set to 85 out of 100

pixels) we can call it successful character recognition.

The simplistic matching algorithm is described here,

Step 1: Take one character entry in the dictionary, define

counter = 0

Step 2: Define i = 0

Step 3: Extract pix_a = ith pixel of the extracted

character

Step 4: Extract pix_b = ith pixel of the database entry

Step 5: If pix_a = pix_b then counter = counter +1

Step 6: i = i +1, if i less than 100 GOTO 3

Step 7: If counter is greater than or equal to 85, then the

match is successful.

Step 8: GOTO 1 until the end of database is reached

Step 9: End

The comparison and matching algorithm also includes

an additional mechanism that would handle characters

that are not clearly printed due to poor image resolution

or lighting.

Fig. 9. The incomplete print of extracted character „b‟.

As you can see in Figure 9, the character b, after

extraction is not clearly printed. However our system uses

a mechanism where it ignores the rows which have no

black pixels. Therefore the character recognition is based

on the pixel matching of the remaining rows. Therefore

the system recognizes the character „b‟ without difficulty

despite its poor print.

 Printed Text Character Analysis Version-III: Optical Character Recognition with Noise Reduction, Background 33

Detection and User Training Mechanism for Simple Cursive Fonts

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 27-37

I. Newline and Space Detection

We must understand that merely recognizing

characters is not enough. The system must be able to

detect end of character lines and spaces in between

characters as well. Therefore we have a separate

mechanism to recognise newlines and spaces.

- Newline Detection: Previously we have spoken about

the recognition of the Horizontal Right Character

Boundary and the Vertical Bottom Character

Boundary.

The algorithm works as follows:

If the right boundary returns -1, it indicates end of line.

If bottom boundary returns -1, it indicates end of the

page.

- Space Detection: If the algorithm detects a gap of

atleast 10 pixel columns between adjacent characters,

it considers the gap to be a space. The value of 10

pixel columns has been determined experimentally.

J. Optimization Mechanism

The optimization strategy is an instrumental part of the

system design in the second version of printed text

character recognition. The prime objective of the OCR

system is to ensure that the character recognition is brisk

and efficient. In order to maintain the speed of

recognition, the character matching process must be

optimized. The present system makes use of a few subtle

techniques like aspect ratio test and first-row comparison

testing.

Aspect Ratio Test- The aspect ratio takes advantage of

the fact that the aspect ratio is an integral part of the

character which remains same irrespective of the size of

character. The system performs a match of aspect ratio at

the beginning of the matching process. A drastic

mismatch in the ratio causes the system to ignore the

database entry and move on to the next entry for a given

extracted character.

First-row Comparison Test- This testing mechanism

compares the first row of the database 10x10 pixel matrix

with the first row of current character pixel values. A

blatant mismatch would cause the control to shift to the

next database entry. It must be remembered that by first

row we mean the first 10 pixel values.

Here is a snippet that explains the working of the

aspect ratio test-

Step 1: Extract the next character in the database

Step 2: Define asp = aspect ratio for the extracted

character

Step 3: Define asp = aspect ratio for the database entry

Step 4: Define t = asp – dd

Step 5: If absolute value (t) > 0.2 then the aspect ratios

are different so skip the database entry

Step 6: GOTO 1

Step 7: End

IV. OVERALL SYSTEM ALGORITHM

We have just discussed the independent components of

the system. Now let us discuss the overall algorithm we

have implemented in the system.

Brief system algorithm for Insertion Module –

Step I: Read image- IMG of graphical symbol or

character to be trained to the system

Step II: Convert IMG to its monochrome equivalent with

black and white spades

Step III: Apply the noise handling mechanism

Step IV: Extract the boundary of the character to be

trained.

Step V: Calculate the aspect ratio = width/height for the

character for optimization.

Step VI: Create the binary pixel pattern generation.

Step VII: Resize the extracted character and store the

information in the character dictionary.

Step VIII: End

Brief system algorithm for Character Recognition

Module –

Step I: Read image- IMG of graphical symbol or

character to be recognized.

Step II: Convert IMG to its monochrome equivalent with

black and white spades

Step III: Apply the noise handling mechanism

Step IV: Extract boundary for every character or cursive

word that is encountered.

Step V: Calculate aspect ratio = width/height for the

character for optimization.

Step VI: Create the binary pixel pattern generation and

resize the character

Step VII: Perform top and bottom independent scaling of

character

Step VIII: Apply the comparison algorithm with the

optimization mechanism to recognize the character

Step IX: If match is found print character and space (if

necessary).

Step X: GOTO step IV for the extraction and recognition

of the next character.

Step XI: End

V. WORKING OF THE SYSTEM

In our previous versions [8] and [9] we have discussed

the working of the user training module for the non-

cursive font. Here we are discussing the same modules

for the cursive fonts.

The working of both the modules have been briefly

illustrated in the following sections A and B, by applying

them on a character images-

A. Working for the User training module

We have shown the steps involved in the training

module using the character „a‟.

34 Printed Text Character Analysis Version-III: Optical Character Recognition with Noise Reduction, Background

Detection and User Training Mechanism for Simple Cursive Fonts

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 27-37

Step 1: The user may use the User Interface to upload an

image of the character he wishes to introduce into the

character dictionary. The character image is converted

into the corresponding grayscale and monochrome.

Fig. 10. Insert image of character to be trained

Step 2: The boundary is recognized and character is

extracted (Figure 11).

Fig. 11. Character after boundary recognition and extraction.

Step 3: The character is resized and independently scaled

(Figure 12).

Fig. 12. The character is resized

Step 4: The extracted character is inserted into the

character dictionary. The user training process is

complete.

Fig. 13. Character „a‟ inserted into database

B. Working for the Character Recognition Module

Step 1: The image is uploaded for character recognition

(Figure 14).

Fig. 14. The image for recognition

Step 2: The individual characters are identified. In this

case the characters „a‟ and„d‟ are recognized as shown

below and subsequently resized.

Fig. 15. The binary matrix for the extracted character„d‟ where 1
represents background (white) and 0 represents character (black) pixels.

Step 3: At this point we also use the optimization

mechanism which skips the pixel-wise comparison when

the database entry does not have a similar aspect ratio as

the extracted character.

Fig. 16. Optimization process where the aspect ratio of the extracted
character does not tally with that of the database entry. Hence the

system „ignores‟ the current database entry „a‟. Here the variable t is the

absolute value of the difference between the extracted character aspect

ratio and the database entry aspect ratio.

As shown in Figure 16, the database entry is „a‟ and its

aspect ratio is not the same the extracted character,

therefore the comparison is skipped. This is the example

of the optimization process.

 Printed Text Character Analysis Version-III: Optical Character Recognition with Noise Reduction, Background 35

Detection and User Training Mechanism for Simple Cursive Fonts

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 27-37

Fig. 17. Successful character match

As depicted in Figure 17, for every character whose

boundary is recognized, we perform a match with a

database entry. (In figure 17, after extraction we find a 92

percent match with a database entry of„d‟ even though the

percentage match may be as low as 80 percent).

Step 4: The process of character recognition continues

until all the characters are recognized. In figure 18, we

have a printed text with only two characters.

Fig. 18. Final printed text

VI. TEST RESULTS

In this section we shall consider all the examples of

successful character recognition of rare text images.

In the four cases discussed below, successful character

recognition is possible because of the four new modules

introduced in this version namely (i) cursive font

handling mechanism (ii) noise handling mechanism (iii)

background detection mechanism and (iv) optimization

mechanism.

Table 2. Special Test Cases with description, text image and final printed text (below)

Nature of Test Case Text Image Final Printed Text

Test Case I: In figure 19, there is a character image where

parts of the characters are missing (broken lines) is recognized
by the system. This is possible to the additional mechanism

used in the compare or matching algorithm that ignores the
rows with no character pixels.

Fig. 19. Test Case 1

lines are not clear

Test Case II: In figure 20, we have the successful recognition

of simple cursive font with the help of the cursive font

recognition module

Fig. 20. Test Case 2

u can

sue

me

Test Case III: In figure 21, we show the successful recognition

of simple cursive font with the help of the cursive font
recognition module

Fig. 21. Test Case 3

cast is very

good

Test Case IV: In figure 22, we take an image with the almost

same foreground and background color which makes it almost
impossible to distinguish.

Recognition is made possible due to the monochrome and
background detection module. We have the original image

(left) and the image after monochrome conversion (right).

Fig. 22. Test Case 4

see

the
color

36 Printed Text Character Analysis Version-III: Optical Character Recognition with Noise Reduction, Background

Detection and User Training Mechanism for Simple Cursive Fonts

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 27-37

Test Case V- In test case 5, we have a poor quality image –
This image is noisy. However our system is able to recognize

the characters successfully because of the application of the
noise detection module.

Fig. 23. Test Case 5

this is a
poor

quality
image do u

see it

Test Case VI – In figure 24, there is a low Light Image –

Another example of the effectiveness of the noise detection
module.

Fig. 24. Test Case 6

all the

world is a
stage

Test Case VII- In figure 25 a high Resolution Image is

considered- The process of character recognition is quick

because of the optimization module

Fig. 25. Test Case 7

the present system

addresses a few key

aspects of optical
character recognition

technology existent
systems are hardcoded in

terms of the fonts and

writing
styles they can

accommodate it not only
reduces the

shelf life of the system

but also makes
processing

large documents a
cumbrous task

VII. CONCLUSION AND FUTURE SCOPE

Our system has been designed in java using the

PixelGrabber class to read text images as described in [10]

and [11]. The fundamentals of image processing used

character detection and recognition are referred from the

book of Gonzalez, Woods and Eddins [12].

The present system can handle a variety of fonts and

writing styles. We have incorporated a variety of features

like the user training, optimization, noise reduction,

background detection and simple cursive font handling

modules to render flexibility to the process of optical

character recognition. However the system can be

improved greatly to handle more irregular and cursive

fonts with more erratic points of contact.

ACKNOWLEDGEMENT

We are grateful to the Department of Computer

Science, St. Xavier‟s College, Kolkata for giving us the

unique opportunity of working on the project. We

wholeheartedly thank the 2012-14 batch of M.Sc.

Computer Science for their support and encouragement.

REFERENCES

[1] Mori S, Suen C Y and Yamamoto K,"Historical review of

OCR research and development", Proceedings of IEEE 80,

pp. 1029–1058, 1992.

[2] J. Mantas,"An overview of character recognition

methodologies", Pattern Recognition Volume 19, Issue 6,

pp. 425–430, 1986.

[3] Mamta Maloo, K.V. Kale, “Gujurati Script Recognition:

A Review”, International Journal of Computer Science

Issues, Vol. 8 Issue 4 No. 1, pp. 480-489, July 2011.

[4] Kwame Osei Boateng, Benjamin Weyori Asubam, David

Sanka Laar, “Improving the Effectiveness of the Median

Filter”, International Journal of Electronics and

Communication Engineering Volume 5 No. 1 (2012) pp

85-87.

[5] Ravina Mithe, Supriya Indalkar, Nilam Divekar, “Optical

Character Recognition”, International Journal of Recent

Technology and Engineering (IJRTE) Volume 2 Issue 1,

pp. 72-75, March 2013. Nick Efford, “Digital Image

Processing a Practical Introduction using Java”- Pearson

Education.

[6] Sukhpreet Singh, “Optical Character Recognition

Techniques: A Survey” Journal of Emerging Trends in

Computing and Information Sciences, Vol. 4, No. 6 June

2013.

[7] Youssef Bassil, Mohammad Alwani, “OCR Post-

Processing Error Correction Algorithm Using Google's

Online Spelling Suggestion”, Journal of Emerging Trends

in Computing and Information Sciences, Vol. 3 No.1, pp.

90-99, January 2012.

 Paper Title: Preparations of Papers for the Journals of the MECS Publisher 37

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 27-37

[8] Satyaki Roy, Ayan Chatterjee, Rituparna Pandit, Kaushik

Goswami, “Printed Text Character Analysis Version-I:

Optical Character Recognition with the new User

Training Mechanism”, International Journal of Advanced

Computer Research, Volume 4 No. 2 Issue 15 June, 2014.

[9] Satyaki Roy, Ayan Chatterjee, Rituparna Pandit, Kaushik

Goswami, “Printed Text Character Analysis Version-II:

Optimized optical character recognition for noisy images

with the new user training and background detection

mechanism”, International Journal of Advanced Computer

Research Volume 4 No. 2 Issue 15 June, 2014.

[10] Herbert Schildt, “Java- The Complete Reference, 8th

Edition”, McGraw-Hill Companies.

[11] Kwame Osei Boateng, Benjamin Weyori Asubam, David

Sanka Laar, “Improving the Effectiveness of the Median

Filter”, International Journal of Electronics and

Communication Engineering Volume 5 No. 1 (2012) pp

85-87.

[12] Gonzalez, Woods and Eddins, “Digital Image Processing

Using Matlab”, Gatesmark Publishing.

Authors’ Profiles

Satyaki Roy is a student of M.Sc. final

year at St. Xavier's College Kolkata, India.

He has a number of publications in bit and

byte-level symmetric key cryptographic

algorithms and image processing. His work

Ultra Encryption Standard (UES) Version-I

has been cited on several occasions. His

research interests include networking,

image processing, machine learning and genetic algorithms.

Ayan Chatterjee is currently pursuing his

Master's degree from St. Xavier's College,

Kolkata, India. During his bachelor's studies,

he has worked in fields of Graphics Design

and AI. His research interests include Image

Processing, Network Security and

Networking.

Rituparna Pandit is a post-graduation

student at St. Xavier‟s College, Kolkata. In

the past she has been involved in projects of

web design, image processing etc. Her

research interest includes Image Processing,

Network Security and Microprocessors.

Prof. Kaushik Goswami is currently

working as a faculty in the Department of

Computer Science, St. Xavier‟s College

Kolkata. His main areas of interest are

Operating System, Networks, Web Page

Design, OOPS, UNIX, Oracle etc. He has

published several papers on Cryptography,

Green Computing, Image

Processing and Ubiquitous Computing in

reputed journals and conferences. He has also contributed in

many projects and researches undertaken by the department.

How to cite this paper: Satyaki Roy, Ayan Chatterjee, Rituparna Pandit, Kaushik Goswami,"Printed Text Character

Analysis Version-III: Optical Character Recognition with Noise Reduction, Background Detection and User Training

Mechanism for Simple Cursive Fonts", IJIEEB, vol.7, no.2, pp.27-37, 2015. DOI: 10.5815/ijieeb.2015.02.05

