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ABSTRACT

Semi-supervised clustering employs limited supervision in
the form of labeled instances or pairwise instance constraints
to aid unsupervised clustering and often significantly im-
proves the clustering performance. Despite the vast amount
of expert knowledge spent on this problem, most existing
work is not designed for handling high-dimensional sparse
data. This paper thus fills this crucial void by developing a
Semi-supervised Clustering method based on spheRical K-
mEans via fEature projectioN (SCREEN). Specifically, we
formulate the problem of constraint-guided feature projec-
tion, which can be nicely integrated with semi-supervised
clustering algorithms and has the ability to effectively re-
duce data dimension. Indeed, our experimental results on
several real-world data sets show that the SCREEN method
can effectively deal with high-dimensional data and provides
an appealing clustering performance.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications -
Data Mining; I.5.3 [Pattern Recognition]: Clustering

General Terms

Algorithms, Experimentation

Keywords

Semi-Supervised Clustering, Pairwise Instance Constraints,
Feature Projection

1. INTRODUCTION
Semi-supervised clustering, learning from a combination

of labeled and unlabeled data, has recently become a topic
of significant interest to data mining and machine learning
communities. Indeed, in many application domains, addi-
tional information such as some labeled instances or pair-
wise instance constraints are available and can be used to
aid the unsupervised clustering process [4, 5, 10, 25, 26].
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Existing methods for semi-supervised clustering can be
generally grouped into three categories. First, the constraint-
based methods aim to guide the clustering process with pair-
wise instance constraints [25] or initialize cluster centroids
by labeled instances [4]. Second, the distance-based meth-
ods employ metric learning techniques to get an adaptive
distance measure used in the clustering process based on
the given pairwise instance constraints [26]. Finally, the hy-
brid method proposed by Basu et al. [5] unifies the first two
methods under a general probabilistic framework.

However, most existing semi-supervised methods are not
designed for handling high-dimensional data. It is well-
known that the traditional Euclidean notion of density is
not meaningful in high-dimensional data sets [7]. Since most
semi-supervised clustering techniques are based on proxim-
ity or density, they often have difficulties in dealing with
high-dimensional data. Therefore, it is necessary to inte-
grate feature reduction into the process of semi-supervised
clustering. The key challenge is how we can incorporate
supervision into dimensionality reduction such that the re-
duced data can still capture the available class information.

To this end, we propose a Semi-supervised Clustering
method based on spheRical K-mEans via fEature projec-
tioN (SCREEN). Specifically, we first formulate the prob-
lem of constraint-guided feature projection and provide an
analytical solution to the associated optimization problem.
Then, we exploit this constraint-guided feature projection
technique to reduce the dimensionality of the original dataset
and use constrained spherical K-means algorithm on the
low-dimensional projected data for clustering.

In this paper, we consider supervision provided in the
form of must-link and cannot-link constraints on pairs of
instances. A must-link constraint means that the pair of
instances involved must reside in the same cluster while
a cannot-link constraint means that the pair of instances
should always be placed in different groups. Indeed, the use
of must-link and cannot-link constraints is a natural and
practical choice, because the labeled instances may not be
available and are harder to collect than pairwise constraints.
For example, in the context of clustering GPS data for lane-
finding [25] or grouping different actors in movie segmenta-
tion [3], the complete class information may not be available
in these cases, but the pairwise instance constraints can be
extracted automatically with minimal effort. Also, a user
who is not a domain expert is more willing to provide an
answer to whether two objects are similar/dissimilar more
than to specify explicit labels. Moreover, pairwise instance
constraints are more general than class labels in that we



can always generate equivalent pairwise instance constraints
from labeled instances, but not vice versa.

Finally, we have conducted experiments on some real-
world datasets from different application domains. Our ex-
perimental results show that, for high-dimensional data, the
SCREEN method can achieve better clustering performance
than the state-of-the-art, semi-supervised clustering meth-
ods. In addition to this, we provide an analysis on the rel-
ative importance of must-link and cannot-link constraints.
This analysis indicates that cannot-link constraints are much
more important than must-link constraints in providing su-
pervision for the clustering process.

Overview. The remainder of this paper is organized as
follows. In Section 2, we introduce the general framework of
our proposed SCREEN algorithm. Section 3 discusses the
experimental results on several real-world datasets. Related
work on the existing methods of semi-supervised clustering
is discussed in Section 4. Finally, in Section 5, we draw
conclusions and make suggestions for future work.

Table 1: Summary of notations.
Symbols Description

N number of instances in the original dataset
K number of pre-specified clusters

X = {xi}
N
1 set of N unlabeled instances

U = {µi}
K
1 set of K cluster centroids

CML set of must-link constraints
CCL set of cannot-link constraints
Cd×m difference matrix formed by CCL

Mm×m covariance matrix of Cd×m

F = {Fl}
k
1 projection matrix calculated from Mm×m

ξl corresponding eigen value of Fl

β ratio between must-links and cannot-links

2. THE SCREEN METHOD
Before we describe the SCREEN method, we summarize

the main notations used in this paper in Table 1.

Feature Projection

Reduced Instances Cannot−link
Constraints

Projected Instances

Must−links

Cannot−links

Preprocessing

PC Spherical K−means

...
Cluster 1 Cluster 2 Cluster k

Unlabeled Instances

Figure 1: The Framework of the SCREEN Method.

Figure 1 shows the framework of the SCREEN method.
Given a set of instances and a set of supervision in the form
of must-link constraints CML = {(xi, xj)} where (xi, xj)
must reside in the same cluster, and cannot-link constraints
CCL = {(xi, xj)} where (xi, xj) should be in the different
clusters, the SCREEN method is composed of three steps. In
the first step, a pre-processing method is exploited to reduce
the unlabelled instances and pairwise constraints according
to the transitivity property of must-link constraints. In the
second step, a constraint-guided feature projection method,
called SCREENPROJ , is used to project the original data
into a low-dimensional space. Finally, we apply a version of
semi-supervised clustering algorithms based on constrained
spherical K-means on the projected low-dimensional dataset
to produce the clustering results.

The rest of this section is organized as follows. In Sec-
tion 2.1, we introduce our initialization method for the un-
labeled instances and pairwise constraints in detail. Sec-
tion 2.2 presents the constraint-guided feature projection
method– SCREENPROJ–which gives an analytical solution
to the optimization problem in finding the projection ma-
trix. Finally, in Section 2.3, we describe our semi-supervised
clustering based on constrained spherical K-means to pro-
duce the final clustering results.
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Figure 2: An Illustration of Initialization.

2.1 Initialization
If there is no error in the pairwise constraints, it is easy

to demonstrate that the must-link constraints represent an
equivalence relation. This enables us to replace each transi-
tive closure of must-link constraints with its average instance
as demonstrated in Figure 2, where the solid line represents
the must-link constraint and the dashed line represents the
cannot-link constraint. In Figure 2, original instances are
shown in white nodes and the average instances of transi-
tive closures are represented by grey nodes. Sets {a1, a2, a3},
{b1, b2, b3, b4, b5}, and {c1, c2, c2} represent different transi-
tive closures forced by must-link constraints. After initial-
ization, we can eliminate all must-link constraints and use
the average instances a, b and c in each closure to rep-
resent the original cannot-link constraints. In the trans-
formed dataset, the size of each transitive closure becomes
the weight of the representative instance. Note that if there
are some erroneous constraints, we need to identify and re-
move them in the initialization step. However dealing with
the mis-specified constraints is out of the scope of this paper.

The benefit of initialization is that we simplify the prob-
lem of constraint-guided clustering where we only need to
focus on the cannot-link constraints in the optimization pro-
cess as described in the following subsection. Another ben-



efit is that we can further reduce the size of unlabelled in-
stances and cannot-link constraints. This is helpful for deal-
ing with some large datasets.

2.2 SCREENPROJ - A Constraint-Guided Fea-
ture Projection

In the previous work [5, 26], the pairwise constraints were
used for learning an adaptive metric between the prototype
of instances. However, learning a distance metric among
high-dimensional instances is very time consuming. More
importantly, recent research on high-dimensional space has
shown that the concept of distance in high-dimensional space
may not be meaningful [7]. Instead of using constraint-
guided metric learning, in this paper we propose a constraint-
guided feature projection approach (SCREENPROJ) to fur-
ther improve the performance of semi-supervised cluster-
ing in the high-dimensional datasets. The objective is to
learn the projection matrix Fd×k = {F1, . . . , Fk} containing
k orthogonal unit-length d-dimensional vectors, which can
project the original datasets into a low-dimensional space
such that the distance between any pair of instances in-
volved in the cannot-link constraints are maximized while
the distance between any pair of instances involved in the
must-link constraints are minimized. The objective function
we try to maximize is:

f =
X

(x1,x2)∈CCL

‖F T (x1−x2)‖
2−

X

(x1,x2)∈CML

‖F T (x1−x2)‖
2

(1)
subject to the constraints

F T
i Fj =



1 if i = j
0 if i 6= j

(2)

where ‖ · ‖ denotes L2 norm and F is the projection matrix
whose column vectors are orthogonal to each other.

As we described in Section 2.1, by applying the initial-
ization methods shown in Figure 2, we can eliminate each
transitive closure from must-link constraints with its equiva-
lent average instance. Then, the objective function in Equa-
tion (1) can be further reduced to:

f =
X

(x′

1
,x′

2
)∈C′

CL

‖w1w2 · F
T (x′

1 − x′

2)‖
2 (3)

where {wi}
N′

i=1 is the set of weights (which is measured by
the number of instances in each transitive closure) for the
reduced instances after pre-processing to the must-link con-
straints and N ′ is the reduced size of instances (N ′ ≤ N).

Note that in Equation (3), we still adopt the Euclidean
distance instead of the cosine similarity as in the SPKM al-
gorithm to calculate the objective value. This is because we
work on the unit-length instances that satisfy the property
in the following equation:

‖x − µ‖2 = ‖x‖2 + ‖µ‖2 − 2xT µ = 2 − 2xT µ (4)

From Equation (4), we can see that using the cosine sim-
ilarity is equivalent to using the Euclidean distance when
operating on the unit-length instances.

There exists an analytical solution to the above optimiza-
tion problem of finding the optimal projection matrix F in
Equation (3). The following theorem shows that the opti-

mal projection matrix F is given by the first k eigenvec-
tors of the covariance matrix Md×d for a difference matrix
Cd×m, where each column of C is a weighted difference vec-
tor w1w2 · (x′

1 − x′
2) ∈ Rd for a pair (x′

1, x
′
2) in C′

CL and m
is the number of pairs of cannot-link constraints.

Theorem 1. Given the desired dimensionality k (k < d),
the set of cannot-link constraints C′

CL, and the covariance
matrix M = cov(C) (where C is defined as above), the opti-
mal projection matrix Fd×k is comprised of the first k eigen-
vectors of M corresponding to the k largest eigenvalues.

Proof. Consider the objective function

f =
X

(x′

1
,x′

2
)∈C′

CL

‖w1w2 · F
T (x′

1 − x′

2)‖
2

=
X

(x′

1
,x′

2
)∈C′

CL

w2
1w2

2

X

l

F T
l (x′

1 − x′

2)(x
′

1 − x′

2)
T Fl

=
X

l

F T
l

2

6

6

6

4

X

(x′

1
,x′

2
)

∈C′

CL

w2
1w2

2 · (x′

1 − x′

2)(x
′

1 − x′

2)
T

3

7

7

7

5

Fl

=
X

l

F T
l (CCT )Fl =

X

l

F T
l MFl

where Fl’s are subject to constraints F T
l Fh = 1 for l = h

and 0 otherwise.
Using the traditional Lagrange multiplier optimization tech-

nique, we write the Lagrangian

LF1,...,Fk
= f(F1, . . . , Fk) −

k
X

l=1

ξl(F
T
l Fl − 1) . (5)

By taking the partial derivative of LF1,...,Fk
with respect

to each Fl and setting it to zero, we get

∂L

∂Fl

= 2MFl − 2ξlFl = 0 ∀l = 1, . . . , k

⇒ MFl = ξlFl ∀l = 1, . . . , k . (6)

It is clear from Equation (6) that solution Fl is an eigen-
vector of M and ξl is the corresponding eigenvalue of M. To
maximize f , F must be the first k eigenvectors of M which
makes f the sum of the k largest eigenvalues of M .

After the constraint-guided feature projection as described
above, we can represent the original instances in a low-
dimensional space which conforms to the class information
given in the form of pairwise constraints.

2.3 Constrained Spherical K-means
Since we eliminate the must-link constraints and shrink

the original dataset in the initialization step, our version of
constrained spherical K-means for semi-supervised cluster-
ing is slightly different from the one as shown in [25]. In
this section, we introduce our version of constrained spher-
ical K-means algorithm for semi-supervised clustering.

Given a set of reduced instances X ′ = {x′
1, . . . , x

′

N′} with
the corresponding weights W = {w1, . . . , wN′}, a set of
cannot-link constraints, and a pre-specified number of clus-
ters K, we aim to find K disjoint partitions. As shown
in [12], finding a feasible solution for the cannot-link con-
straints is much harder than that for the must-link con-
straints. It is computationally intractable to find an exact



cluster assignment which does not break any cannot-link
constraints. Therefore, we adopt a local greedy heuristic
to update cluster centroids as follows.

Given each cannot-link constraint (x′
i, x

′
j) ∈ CCL, we find

two different cluster centroids µx′

i
and µx′

j
such that

wi · x
′T
i µx′

i
+ wj · x

′T
j µx′

j
(7)

is maximized and assign x′
i and x′

j to these two different
centroids to avoid violating the cannot-link constraint. Fig-
ure 3 shows the pseudo-code of our Pairwise Constrained
Spherical K-means (PCSKM) clustering algorithm.

Algorithm: The Pairwise Constrained Spherical K-means
(PCSKM) Clustering Algorithm

Input: Set of unit-length instances X ′ = {x′
i}

N′

1 , set of

corresponding weight W = {wi}
N′

1 , set of cannot-link con-
straints CCL = {(x′

i, x
′
j)}, and number of clusters K.

Output: K partitions of the instances.
Steps:

1. Initialize the K unit-length cluster centroids {µh}
K
h=1,

set t← 1

2. Repeat until convergence

For i = 1 to m

(a) For each instance x′
i which does not involve in any

cannot-link constraint, find the closest centroid

yn = arg maxk x′T
i µk ;

(b) For each pair of instances (x′
i, x

′
j) involved in

cannot-link constraint, find two different cen-

troids µk and µk′ which maximize wi · x
′T
i µk +

wj · x
′T
j µk′ ;

(c) For cluster k, let X ′
k

= {x′
i|yi = k}, the centroid

is estimated as µk =
P

x∈X ′

k
/‖

P

x∈X ′

k
‖ ;

3. t← t + 1 ;

Figure 3: The Pairwise Constrained Spherical K-
means Clustering Algorithm.

It is worth noting that our algorithm for semi-supervised
clustering differs from the one used in [5] in that we do
not consider the relative importance among cannot-link con-
straints, and we do not utilize pairwise constraints to su-
pervise the cluster centroids initialization. However, these
techniques can be easily incorporated into our algorithm.

Finally, an overview of our SCREEN method is shown in
Figure 4. Please note that since the pre-process step to the
pairwise constraints will shrink the original dataset, we need
to post-process the resultant K partitions (clusters) in order
to be in accordance with the original dataset.

3. EXPERIMENTAL RESULTS
In this section, we study the performance of the SCREEN

method. Specifically, we demonstrate: (1) the effectiveness
of constraint-guided feature projection, (2) the relative im-
pact of Must-link and Cannot-link constraints on the per-
formance of the SCREEN method, (3) the choice of reduced
dimensionality, (4) the computational performance of the
SCREEN method, and (5) the clustering performance of
SCREEN, compared with several existing semi-supervised
clustering algorithms.

Algorithm: SCREEN

Input: Set of unit-length instances X ′ = {xi}
N′

1 , set

of corresponding weight W = {wi}
N′

1 , set of cannot-link

constraints CCL = {(x′
i, x

′
j)}, and number of clusters K.

Output: K partitions of the instances.

Steps:

1. X ′ = SCREENPROJ (X ,W, CCL)

2. X ′
k

= PCSKM(X ′,W, CCL), where k = 1, . . . , K

3. post-process X ′
k

to be in accordance with the original
instances X

Figure 4: An Overview of the SCREEN Method.

3.1 The Experimental Setup
Experimental Datasets. Our experiments were per-

formed on a couple of real-world datasets from different ap-
plication domains. There are six UCI datasets 1[20], six
datasets derived from TREC collections 2 and nine datasets
constructed from 20-Newsgroup [18]. The descriptions of
these data sets are summarized as follows.

1. Six UCI datasets: balance-scale, ionosphere, iris, soy-
bean, vehicle, and wine. Those datasets have been used
in learning a distance metric [26] and the work on the
constrained feature projection via RCA [3]. We use
these relatively low-dimensional datasets to demon-
strate the performance of SCREENPROJ , in compari-
son with other dimensionality reduction methods such
as PCA and RCA.

2. Six data sets: tr11, tr12, tr23, tr31, tr41, and tr45 from
the TREC collection are used to compare the perfor-
mance of SCREENPROJ with PCA and RCA on high-
dimensional datasets. These datasets are available in
the CLUTO toolkit [17].

3. In order to evaluate the overall performance of our
SCREEN method, we also compare it with the state-
of-the-art, semi-supervised clustering algorithms in-
cluding the constrained metric learning method [26]
and the HMRF-Kmeans algorithm [4] on the nine datasets
of the 20-Newsgroup corpus. The 20-Newsgroup data
consists of approximately 20, 000 newsgroup articles
collected evenly from 20 different Usenet newsgroups.
Many of the newsgroups share similar topics and about
4.5% of the documents are cross-posted over different
newsgroups making the class boundary rather fuzzy.
We applied the same pre-processing steps as in [13],
i.e., removed stop words, ignored file headers, subject
line and selected the top 2000 words by mutual infor-
mation. Specific details of the datasets are given in
Table 2. The Bow [19] library is used in generating
those datasets from the 20-Newsgroup corpus.

Evaluation Measures. In this paper, we use normal-
ized mutual information (NMI) as the clustering validation
measure. NMI, an external validation metric, estimates the
quality of clustering with respect to the given true labels of

1http://www.ics.uci.edu/∼mlearn/MLRepository.html
2http://trec.nist.gov



Table 2: Nine Datasets from the 20-Newsgroup Corpus.

Dataset Newsgroup included Group doc. Tot. doc.
Binary1,2,3 talk.politics.mideast, talk.politics.misc 250 500
Multi51,2,3 comp.graphics, rec.motorcycles,

rec.sports.baseball, sci.space,

talk.politics.mideast

100 500

Multi101,2,3 alt.atheism, comp.sys.mac.hardware,

misc.forsale, rec.autos,

rec.sport.hockey, sci.crypt,

sci.electronics, sci.med,

sci.space, talk.politics.gun

50 500
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Figure 5: The clustering performance on six UCI datasets with different numbers of constraints (N : size of
dataset; C: number of clusters; D: dimensionality of original data; d: reduced dimensionality after projection).

the datasets [24]. If Ẑ is the random variable denoting the
cluster assignments of the instances and Z is the random
variable denoting the underlying class labels, then NMI is
defined as

NMI =
I(Ẑ; Z)

(H(Ẑ) + H(Z))/2
(8)

where I(Ẑ; Z) = H(Z)−H(Z|Ẑ) is the mutual information

between the random variables Ẑ and Z, H(Z) is the Shan-

non entropy of Z, and H(Z|Ẑ) is the conditional entropy of

Z given Ẑ [11]. The range of NMI values is 0 to 1. In gen-
eral, the larger the NMI value is, the better the clustering
quality is. NMI is better than other external clustering vali-
dation measures such as purity and entropy, since it does not
necessarily increase when the number of clusters increases.

Finally, we implemented the SCREEN algorithm in Mat-
lab and conducted our experiments on a machine with 4 Intel
Xeon 2.8 GHz CPUs and 2G main memory running under
the GNU/Linux operating system. For each test dataset, we

repeated experiments for 20 trials. For the UCI datasets, we
randomly generated 100 pairwise constraints in each trial.
For the Trec datasets and data sets from the 20-Newsgroup
collection, we randomly generated 500 pairwise constraints
from half of the dataset, and tested the performance on the
whole dataset. Also, the final result is the average of the
results from the 20 trials.

3.2 The Effectiveness of SCREENPROJ

In this section, we compare SCREENPROJ with some ex-
isting dimensionality reduction methods such as PCA and
RCA3. In order to do a thorough comparison, we used both
relatively low-dimensional datasets from the UCI repository
and high-dimensional datasets from the Trec corpus. For
the low-dimensional UCI datasets, we used the standard K-
means algorithm as the baseline clustering algorithm. For

3Thanks to the authors for providing their code on-line at
http://www.cs.huji.ac.il/∼tomboy/code/RCA.zip for [3]
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Figure 6: Clustering performance on 6 Trec datasets with different numbers of constraints.

the high-dimensional Trec datasets, we chose the spherical
K-means algorithm [14] instead.

For six UCI datasets, Figure 5 shows the clustering perfor-
mance of standard K-means applied to the original as well as
projected data by different dimension reduction algorithms
with different numbers of pairwise constraints. As can be
seen, RCA performs well on low-dimensional data. Also, the
performance of RCA significantly improves as the number
of available constraints increases. However, we can also ob-
serve that the performance of RCA can be worse than that
of PCA when there is a small number of constraints in the
datasets such as Vehicle and Wine (we know that PCA is
unsupervised and does not use any pairwise constraints). In
contrast, the performance of SCREENPROJ is always com-
parable to, or better than that of PCA. Finally, we observe
that the performance of SCREENPROJ is comparable to
that of RCA on Soybean and Iris datasets.

However, our experiments on six high-dimensional Trec
data sets show that the performance of RCA heavily de-
pends on the dimensionality of the original data. Also, it is
computationally expensive to directly apply RCA to high-
dimensional datasets. Indeed, for data sets with extremely
high dimensions, we need to first reduce their dimension to
a lower level before applying the RCA method. Therefore,
for the purpose of a fair comparison, we first used PCA to
project the original data into a 100-dimensional space, and
then applied the different algorithms to further reduce the
dimensionality to 30. Figure 6 shows the results of this ex-
periment on six Trec datasets. In the figure, we observe that
SCREENPROJ nearly always achieves the best performance
on all six test datasets. In contrast, although we first reduce
the dimension of six data sets to 100 using PCA, the perfor-
mance of RCA is still the worst among all the algorithms. In
other words, RCA may not be a good dimension reduction
method for high-dimensional data.

3.3 Must-link vs. Cannot-link
Here, we compare the relative impact of must-link and

cannot-link constraints on the performance of the SCREEN
method. In this experiment, we incorporate a parameter β
to the objective function in Equation (3) to adjust the rela-
tive impact between must-link and cannot-link constraints:

f = (1 − β) ·
X

(x1,x2)∈CCL

‖F T (x1 − x2)‖
2

−β ·
X

(x1,x2)∈CML

‖F T (x1 − x2)‖
2 (9)

From Equation (9), we observe that β = 0 is equivalent
to only using cannot-link constraints in finding the optimal
feature projection matrix. When β = 1, we only use must-
link constraints to perform the feature projection. In our
experiments, we varied the value of β in steps of 0.1 from 0 to
1. The clustering results, as measured by NMI, are plotted
in Figure 7 with respect to different values of β. In the figure,
the x-axis denotes the different values of parameter β and
the y-axis denotes the clustering performance measured by
NMI.

As can be seen in Figure 7, there is no significant difference
on the clustering performance when β is in the range of 0.1 to
0.9. However, when using only must-link constraints (β = 1)
the clustering performance deteriorates sharply. This indi-
cates that the cannot-link constraints are more important
than the must-link constraints in guiding the feature pro-
jection to get meaningful representation for each instance in
the low-dimensional space.

3.4 The Choice of Dimension k

In this section, we empirically evaluate the impact of dif-
ferent number of reduced dimension k on the performance of
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the SCREEN method. Specifically, we test the performance
of SCREEN in terms of NMI with respect to different values
of k varing from 10 to 100. Given a specified k, we repeat ex-
periments 20 times. In each trial, we randomly generate 250
pairwise constraints as additional information. The experi-
mental results on the datasets from 20-Newsgroup and Trec
collections are shown in Figure 8 as four boxplots, which cor-
responds to the experimental results on sub-datasets from
Binary, Multi5, Multi10, and Trec.

There are three sub-datasets: Binary1, Binary2, and
Binary3 from the Binary data collection. The Binary box-
plot shows the k values when SCREEN achieves the best
clustering performance on these three sub-datasets. Also,
the Multi5 boxplot shows the k values when SCREEN has
the best clustering performance on three sub-datasets: Multi51,
Multi52, Multi53. In addition, the Multi10 boxplot presents
the k values for the case that SCREEN has the best cluster-
ing performance on three sub-datasets: Multi101, Multi102,
Multi103. Finally, there are six sub-datasets: tr11, tr12,
tr23, tr31, tr41, and tr45 from the Trec corpus. The Trec
boxplots shows six k values which lead to the best clustering
performance of SCREEN on these datasets.

In Figure 8, we observe that SCREEN achieves the best
performance at different k values for different datasets. How-
ever, we notice that the clustering performance is maximized
when the median of k values is between k = 20 and k = 40.
In all our experiments, we use this as a guideline for the
choice of k values.

3.5 Computational Performance
In the following two subsections, we evaluate the overall

computational and clustering performance of our SCREEN
method. The benchmark algorithms are listed as follows.

• SPKM: the standard spherical K-means algorithm [14]
which does not use pairwise constraints. It is worth
noting that the method proposed in this paper is tai-
lored for high-dimensional sparse data with directional
characteristics, which mainly stem from text docu-
ments represented by the vector space model (VSM) [6].
The most relevant work in this application domain
is SPKM, which adapts the standard K-means algo-
rithm to cluster the normalized unit-length instances
by using the cosine similarity as the proximity func-
tion. Hence, we chose SPKM as the baseline;

• PCSKM: the pairwise constrained spherical K-means
algorithm described in Figure 3, which can be regarded
as another implementation of semi-supervised, con-
strained K-means described in [25];

• PCSKM+M: the pairwise constrained spherical K-means
algorithm preceded by an additional metric learning to
get an adaptive distance between instances, which is
proposed by Xing et al. [26];

• MPCSKM: the HMRF-Kmeans algorithm proposed by
Basu et al [5]. This algorithm unifies the metric learn-
ing and constrained clustering into a general proba-
bilistic framework4.

First, we evaluate the computational performance of the
semi-supervised clustering algorithms on the selected 20-
Newsgroup datasets with respect to different numbers of
pairwise constraints. Due to the space limit, for each cat-
egory of the datasets we only give out one result since the
datasets from the same category usually lead to similar out-
puts. The experimental results are summarized in Figure 9,
where the x-axis denotes the number of pairwise constraints
and the y-axis denotes the elapsed running time in log scale.
Please note that since the MPCSKM algorithm is not im-
plemented in Matlab, we did not include this algorithm for
this comparison.

As demonstrated in Figure 9, the execution time of SPKM
is consistently the lowest among all the methods since it does
not perform extra work in addition to enforcing the clus-
tering process based on the pairwise constraints. The PC-
SKM+M algorithm via metric learning method is always the
slowest when compared to other methods. This is because
the metric learning method has to learn a different weight
for each individual dimension. When the dimensionality is
very high, the cost of metric learning will be very high com-
pared to the constraint-guided feature projection. In Fig-
ure 9, we can see that the SCREEN method, which utilizes
the feature projection method, is only slightly slower than
the PCSKM algorithm due to the extra work on the super-
vised dimensionality reduction, but much faster than that
of PCSKM+M algorithm. This is because it only involves
an eigen value decomposition of a covariance matrix formed
by cannot-link constraints, which can be implemented ef-
ficiently by Singular Value Decomposition (SVD). In addi-
tion, one can still explore some iterative methods, such as
4Thanks to the authors for putting their implementation
on-line at http://www.cs.utexas.edu/users/ml/risc/ for [5].
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Figure 9: A Comparison of Computational performance using 20-Newsgroup datasets.
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Figure 10: A Comparison of Clustering performance using 20-Newsgroup datasets.

EM algorithm for PCA [23] or Nystrom method [9], to fur-
ther improve the efficiency.

3.6 A Comparison of Clustering Performance
Here, we compare the clustering performance of various

semi-supervised clustering algorithms. The results are shown
in Figure 10, where the x-axis denotes the number of pair-
wise constraints, and the y-axis denotes the clustering per-

formance in terms of NMI. We have tested various values
of k - the number of reduced dimension. Due to the space
limit, we select k = 30 to report the results.

In general, it is clear that on most datasets, the cluster-
ing performance of all algorithms constantly improve with
the increase of the number of pairwise constraints. How-
ever, the clustering performance of the SCREEN method
is more stable compared to the other methods, and always



outperforms the PCSKM+M algorithm via metric learning
and MPCSKM algorithm via HMRF model. This is mainly
due to the fact that constraint-guided feature projection can
easily produce more condensed and meaningful representa-
tions for each instance. In addition, PCSKM+M is not much
better than the PCSKM algorithm except for the Multi10
dataset. This is because it is a big challenge for metric learn-
ing to learn a reasonable distance measure between any pair
of sparse instances in the original high-dimensional space.

4. RELATED WORK
The related literature on semi-supervised clustering can

be grouped into three categories: constraint-based methods,
distance-based methods, and a combination of constraint-
based and distance-based methods.

For constraint-based methods, the cop-kmeans algorithm [25]
guides the cluster allocation process by a constraint moti-
vated heuristic objective function. However, this algorithm
strictly enforces the clustering process such that any vio-
lation of the given pairwise constraints is forbidden, which
limits its use, especially in a noisy environment. In con-
trast, our version of semi-supervised clustering algorithm
allows some relaxation of the pairwise constraints. Also,
Basu et al. [4] proposed a seeded K-means which tries to get
better initial cluster centroids from the labeled instances in
addition to constraining the clustering process, while their
supervised cluster initialization is based on the labeled in-
stances instead of pairwise constraints.

For distance-based methods, Cohn et al. [10] used gradi-
ent descent for weighted Jensen-Shannon divergence in the
context of EM clustering. Xing et al. [26] combined the
Newton Raphson method and iterative projection together
to learn a Mahalanobis distance for K-means clustering. De
Bie et al. [8] proposed a more efficient algorithm for learn-
ing the distance metric with side information, which uti-
lized Canonical Correlation Analysis (CCA) to approximate
LDA. In general, the metric learning used in the distance-
based method, which is equivalent to learning an adaptive
weight for each dimension, is either based on iterative al-
gorithms, such as gradient descent and Newton’s method,
or involves some matrix operations. However, the distance-
based method has high computational cost when applied to
the high-dimensional data. Indeed, data represented in ma-
trix is often singular when the sparsity of the data is high.
This makes some matrix operations, such as inversion, com-
putationally intractable.

For hybrid methods, Basu et al. [5] introduced a general
probabilistic framework which unifies the constraint-based
and distance-based method into the Hidden Markov Random
Field (HMRF). The proposed HMRF-EM algorithm can in-
terweave the constrained clustering and distance learning
interactively in the process of semi-supervised clustering.

Also, the related literature on feature reduction includes
Principle Component Analysis (PCA) [22] which tries to find
a low rank approximation to represent the high-dimensional
data, and Fisher’s Linear Discriminant Analysis (LDA) [15]
which tries to find one or more directions along which differ-
ent classes can be best separated while the variance of each
class is minimized given the label for each instance. The
PCA method works in an unsupervised manner where the
class information is not available, which makes the reduced
dataset incapable of capturing the original class informa-
tion. In contrast, the LDA method needs to know the exact

information in order to calculate the between/within-class
scatter matrix. Our constraint-guided feature projection
method differs from the traditional LDA method in that we
incorporate a more general supervision in the form of pair-
wise constraints instead of the complete class information
which may be unavailable in certain application domains.
To the best of our knowledge, the most related work is the
Relevant Component Analysis (RCA) algorithm [3], which
is based only on must-link constraints and tries to learn a
Mahalanobis distance using Whitening transform [16].

In this paper, our major focus is to provide an alter-
native way to improve the semi-supervised clustering for
high-dimensional sparse data by constraint-guided feature
projection instead of metric learning. Existing approaches
for clustering high-dimensional data usually involve the use
of feature projection and feature selection. Feature projec-
tion techniques, as we described above, attempt to repre-
sent a dataset by its latent variables which are usually much
fewer than the number of original features. Feature selec-
tion methods select only the most relevant dimensions from
a dataset to summarize its instances. The typical algorithms
of feature selection include “wrapper methods” and “filter
methods”. The recently proposed subspace clustering algo-
rithm [21] can be regarded as an extension to the feature
selection methods which attempts to find clusters in differ-
ent subspaces of the same datasets. Existing subspace clus-
tering algorithm can be grouped into two categories: the
top-down method such as projected clustering [1] and the
bottom-up method such as CLIQUE [2] etc. An excellent
survey on techniques of subspace clustering is available in
[21]. It is worth noting that the recently proposed method
on semi-supervised projected clustering [27] utilized the lim-
ited supervision in the form of labeled instance in subspace
clustering. The motivation of this work is to find a more
compact representation for each cluster to efficiently repre-
sent the instances within it. Also, they used feature selection
instead of feature projection in applying the supervision in
each cluster. This is different from our method.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a Semi-supervised Clustering

method based on spheRical K-mEans via fEature projec-
tioN (SCREEN), which is tailored for handling sparse, high-
dimensional, data. Specifically, the SCREEN method first
uses the constraint-guided feature projection to reduce the
dimensionality and then applies the constrained spherical
K-means algorithm to cluster data with reduced dimension.

In the development of the SRCEEN method, we formu-
late the problem of constraint-guided feature projection as
an optimization problem. The goal is to find a feature pro-
jection matrix based on the pairwise instance constraints,
and give an analytical solution which can be implemented
without too much effort. In addition, for the constrained
spherical K-means algorithm, we introduce a heuristic solu-
tion to loosely enforce the pairwise constraints, which enable
it to be applied in much wider application domains.

Finally, we have compared the SCREEN method with ex-
isting semi-supervised clustering methods using real-world
datasets. The experimental results indicate that SCREEN
can achieve a better clustering performance with a smaller
computational cost. We also studied the relative impact of
must-link and cannot-link constraints in guiding the cluster-
ing process. Our analysis shows that the cannot-link con-



straints are more important than the must-link constraints
in providing meaningful class information.

There are several potential directions for future research.
First, we are interested in automatically identifying the right
number for the reduced dimensionality based on the back-
ground knowledge other than providing a pre-specified value.
Second, we plan to explore alternative methods to employ
supervision in guiding the unsupervised clustering, e.g., su-
pervised feature clustering.
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