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Routing in Modular Fault-Tolerant 
ultimocessor Svstems I ./ 

M. Sultan Alam and Rami G. Melhem, Member, IEEE Computer Society 

Abstract-In this paper, we consider a class of modular multi- 
processor architectures in which spares are added to each module 
to cover for faulty nodes within that module, thus forming a fault- 
tolerant basic block (FTBB). In contrast to reconfiguration tech- 
niques that preserve the physical adjacency between active nodes 
in the system, our goal is to preserve the logical adjacency 
between active nodes by means of a routing algorithm which 
delivers messages successfully to their destinations. We introduce 
two-phase routing strategies that route messages first to their 
destination FTBB, and then to the destination nodes within the 
destination FTBB. Such a strategy may be applied to a variety 
of architectures including binary hypercubes and three- 
dimensional tori. In the presence off faults in hypercubes and 
tori, we show that the worst case length of the message route is 
min {cr + f, (K + l)o} + c where cr is the shortest path in 
the absence of faults, K is the number of spare nodes in an FI’BB, 
and c is a small constant. The average routing overhead is much 
lower than the worst case overhead. 

Index TemzsSparing, modular multiprocessors, fault-tolerant 
routing, hypercube multicomputers, mesh connected processors. 

I. INTRODUCTION 

s the number of processors in a multiprocessor system 
increases, the complexity of the system increases, lead- 

ing to a possible high rate of both transient and permanent 
failures. The reliability of such systems can be improved by 
incorporating some type of fault tolerance. For instance, fault 
tolerance can be achieved by distributing the load of a faulty 
processor to other nonfaulty processors [3],  [7] ,  [13], and then 
using fault-tolerant routing to by-pass faults and deliver mes- 
sages to their destinations. Several fault-tolerant routing 
schemes have been proposed in the literature for general and 
specific architectures [5], [61, [9], [lo], 1121, 1181. In these 
schemes, different adaptive routing algorithms have been used 
to by-pass faulty nodes. Olson and Shin proposed a routing 
algorithm for hexagonal architecture for real-time systems 
(HARTS) which ensures the delivery of a message as long as 
there exists a path between the message source and its destina- 
tion [21]. Peleg and Simons [22] proposed fault-tolerant rout- 
ing schemes for several families of graphs, including all graphs 
of maximal degree less than C T Z ” ~ ,  for some c > 0 (a is the 
number of nodes in the graph). The distribution of the load of 
the faulty node in such schemes is a nontrivial problem and the 
performance degradation can be as high as 50% [3]. 
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An alternative approach to fault tolerance is to use spares. 
In this approach, the system performance degradation is 
minimized by allowing spare nodes to replace faulty ones. For 
applications where the topology of the underlying system is 
important, the adjacency relationship among the active nodes 
should be preserved after reconfiguration, where an active 
node is defined to be a nonfaulty primary node or a spare node 
that has replaced a faulty node. That is, if a spare s replaces a 
faulty node p, then, after reconfiguration, s should become a 
neighbor of all the neighbors of p .  Usually, hardware switches 
are used to preserve the adjacency relationship among the ac- 
tive nodes [l], [4], [8], [16], [20], [251, [30]. Note that in this 
approach, the routing algorithm does not need to be modified. 
In some systems, however, preserving the adjacency relation- 
ship among the active nodes may not be crucial because the 
applications may not assume any specific topology. In such 
systems, an alternative to preserving the physical adjacency is 
to modify the routing algorithm so that messages can bypass 
faulty nodes and be delivered to the destination node. 

In this paper, we assume that when a spare node replaces a 
primary node, it inherits its address. Thus, any message ad- 
dressed to the failed node should be delivered to its replace- 
ment spare. The sender of a message addresses the message to 
a logical destination, and does not need to know whether the 
destination is a primary node or a spare that has replaced a 
failed primary node. In other words, the burden of maintaining 
the logical interconnection among the active nodes is assigned 
to the routing algorithm. There is no need to preserve the 
physical adjacency between active nodes by setting up recon- 
figuration switches. Hence, recovery from faults is faster. 

We introduce a two-phase routing approach which is gen- 
eral in the sense that it can be applied to different architectures 
and to different spare allocation strategies. The routing algo- 
rithm is distributed and assumes total node failures in the sense 
that a failed node cannot be used to route messages. We give 
sufficient conditions for the two-phase routing algorithm to 
work correctly, and we show that these conditions can be sat- 
isfied in many well known architectures by properly connect- 
ing the spares to other nodes in the system. We also apply the 
routing algorithm to hypercube and toroidal systems and show 
that in these cases, only local fault knowledge is required. 

The rest of this paper is organized as follows: Section I1 de- 
scribes the two-phase routing approach and establishes its 
worst case performance. It also shows how to construct a 
modular fault-tolerant system in which two-phase routing may 
be used. The routing approach is then applied in Section I11 to 
spare-augmented binary hypercube systems and in Section IV 
to spare-augmented three-dimensional toroidal systems. Al- 
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though analytical results show that the worst case routing 
overhead is relatively high, simulation results show that, on the 
average, the routing overhead is low. 

11. Two PHASE ROUTING 

Multiphase routing algorithms have been extensively stud- 
ied in the literature, especially for binary hypercube architec- 
tures [23], [27], [28 ] ,  [29]. These studies, however, dealt with 
message permutation models in which each node needs to send 
a message to a destination node and the destination nodes are 
all different. The basic idea in these algorithms is to avoid 
message congestion by introducing randomness in the routing 
algorithm. Specifically, during the first phase, messages are 
routed to random destinations and then during subsequent 
phases they are routed to their correct destinations. In [12], the 
authors apply the idea of randomization to a hypercube routing 
algorithm that uses only local information to route messages in 
the presence of faults. They show that the probability of suc- 
cessful routing is high even for an exceedingly large number of 
faults. In [17], fault information within a specified radius from 
a node is used to calculate the routes of messages at that node. 
This idea is applied to faulty hypercubes and is shown to lead 
to an efficient distributed routing algorithm. 

The work presented in this paper is different from the work 
cited above because it assumes that the system contains spare 
nodes and that a spare node inherits the address of the faulty 
node it replaces. To the best of our knowledge, this work is the 
first in which the routing algorithm redirects the messages ad- 
dressed to a faulty node to the spare that replaces it. 

A. Routing in Modular Spare Augmented Systems 

Most common multiprocessor architectures are constructed 
from identical modules to achieve scalability as well as ease of 
maintenance and repair. Redundancy may be added to these 
systems by either adding spare modules or adding spare nodes 
in each module (or both [24]). We assume that the spare node 
approach is taken. Specifically, we assume that modules are 
identical and that each module consists of M primary nodes to 
which K spares are added to replace faulty primary nodes. The 
M primary nodes and the K spare nodes, thus, form a fault- 
tolerant basic block (FTBB) whose size is referred to as (M,  
K ) .  Two FTBBs are called neighbors if there is a link between 
a node in the first and a node in the second. An FTBB is called 
live if it contains at most K faulty nodes (primary or spares) 
and the system is called live if all its FTBBs are live. Note that 
after a fault, a system remains live if there is an available spare 
to cover for the fault. Otherwise, system failure is declared. 

The address of a node, p ,  may be divided into two parts, one 
identifying the FTBB, F, that contains p ,  and the other identi- 
fying p within F. If no nodes in the system are faulty, then only 
the primary nodes are active and thus have addresses. When a 
primary node fails, a spare replaces that node by taking over 
its computational tasks and inheriting its address. From that 
point on, any message addressed to the failed node should be 
delivered to the spare that replaced it. This is the responsibility 
of the routing algorithm. 

Any efficient fault-tolerant routing algorithm should: 1) use 
the shortest path between two nodes when no faulty nodes are 
encountered, 2) exhibit graceful performance degradation with 
the number of faults, and 3) guarantee that a message does not 
cycle indefinitely in the system (a live-lock situation). The 
routing strategy suggested in this section leads to distributed 
algorithms in which the nodes in each FTBB do not need to 
have information about faults in other FTBBs. This avoids the 
need for a global controller and for storing global fault infor- 
mation in each node. In this strategy, a message is routed to its 
destination node, d, in two phases. First, the message is routed 
to the FTBB that contains d, and then to d or the spare node 
that replaces d. Once the message reaches the destination 
FTBB it does not leave that FTBB. The two-phase routing 
strategy can be described as follows (assume that the present 
routing node, p ,  is in FTBB Fp and that the destination node, d, 
is in FTBB Fd): 

1) While Fp # Fd send the message to some node, q, in a 
neighboring FTBB, F,, which is closer to Fd. 

2) Route the message to node d without leaving Fd. 

A key property of the two-phase routing is that it does not 
require any backtracking between FTBBs. Specifically, a mes- 
sage is always moved to an FTBB that is closer to its destina- 
tion. This leads to efficient and simple implementations. How- 
ever, without global fault knowledge, backtracking between 
FTBBs can be avoided only if the connectivity between any 
two neighboring FTBBs is rich enough to allow a message to 
be sent from one to the other in the presence of faults. The 
minimum connectivity that guarantees the success of two- 
phase routing is discussed in the next section. 

The details of each routing phase depend on the architec- 
ture. In fact, given a particular architecture, the choice of 
FTBB Fq in phase 1 is identical to the choice that a nonfault- 
tolerant routing algorithm would make for that architecture. 
With faulty nodes, however, it may not be possible to send a 
message from Fp to Fq using the same path that is used in the 
absence of faults. The message may have to take a longer path 
to get to Fq. Figs. 1 and 2 are used to explain this. The large 
circles and the small circles in these figures denote primary 
nodes and spare nodes, respectively, and a crossed out node 
denotes a faulty node. In Fig. 1,  a message is routed from node 
p to node d through the nodes q and y .  If node q, which is on 
the path of this message, fails, then in phase 1 of the algorithm, 
the message is routed to node q’ in FTBB F, (via p’) and then 
to node y” in FTBB Fy (via 4’3 and finally to node d”in FTBB 
Fd (see Fig. 2). The second phase of the algorithm starts after 
the message reaches node d”. Note that the route indicated in 
Fig. 2b is not the shortest route between p and d. 

B. Conditions for the Success of Two-phase Routing 
Given a distribution of faults in the system, call a communica- 
tion link healthy if it connects two nonfaulty nodes and call a 
path between two nonfaulty nodes healthy if it consists of 
healthy links. The two-phase routing strategy described in the 
previous section delivers messages correctly only if certain 
conditions are satisfied. For instance, phase 1 may fail if there 
are two adjacent FTBBs that are not connected by at least one 
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FTBB Fp FTBB Fq FTBB Fy 

Fig. 1. Two-phase routing with no faults. 

Fig. 2. Two-phase routing with faults at nodes q and y’. 

healthy link. Also, phase 2 may fail if there exists two nodes in 
an FTBB, F, that are not connected by a healthy path within F. 
In this context, a path within F is one that does not leave F. 
Therefore, the following two conditions are necessary for the 
two-phase routing strategy to be successful in a live system: 

1) For any two neighboring FTBBs, F and F”, any set of K 
or fewer faults in F and any set of K or fewer faults in F, 
there exists a healthy link between F and F’. 

2) For any set of K or fewer faults in an FTBB, any two non- 
faulty nodes in that FTBB are connected by a healthy path. 

0 0 

0 0 

0 0 

0 0 

0 0 

(a> 4=1 fb) 4=2 

Fig. 3. Required connectivity between neighboring FTBBs for the case IC = 3. 

These two conditions ensure that there exists a healthy path 
between any two nodes in a live system and that a two-phase 
routing strategy can route a message along that path. Thus, 
these conditions are sufficient for the two-phase strategy to be 
successful provided that suitable algorithms are designed to 
implement each of the two phases. Before discussing specific 
algorithms, we investigate further the first condition. For that 
condition to be satisfied between two neighboring FTBBs, F 
and F there should be more than K nodes in F that are con- 
nected to more than K nodes in F”. In order to be more specific 
about the connectivity requirement between F and F”, let 4 be a 
positive integer and let = {no, ..., nK+s-l} be the set of 

nodes in F that are connected to nodes in F”. Also, let q’ be a 
positive integer and let $F,,F = {mO, . . ., mK+,.-l} be the set of 

nodes in F’that are connected to nodes in F. Clearly, the worst 
scenario that can lead to disconnecting F from F is when the K 
faulty nodes in F are in $F,F,and the K faulty node in F” are in 

@F,,F. Assume that q = q’ and consider the following cases for 

4. 
The Case q = 1. In this case, a healthy link is guaranteed to 

exist between F and F for any K faults in F and K faults in F 
if each node in $F,Ft is connected to every node in $Ft,F This 
case is illustrated by an example in Fig. 3a, where K = 3. The 
figure shows the links between $F,Fr and $FF‘,F. 

The Case q = K c 1. For any K faults in F and K faults in 
F’, the existence of a healthy link from F to F’is guaranteed if 
the connection between the nodes in $F,F, and those in $FF‘,F 

is one-to-one. That is, up to the relabeling of nodes, each 
node n,, 0 5 i I 2  K, is connected to node m,. This case is 

illustrated by an example in Fig. 3d. 
The above two cases are special cases of the following 

Lemma. Fig. 3 clarifies the conditions of the lemma when K = 3 
and 4 = 1,2,3, and 4. 

LEMMA 1. For a given q, 1 I q I K + 1, and any K faults in 
F and Kfaults in F <  the existence of a healthy link from F 
to F‘is guaranteed if each node n,, in $FF,F, is connected to 
K +. 2 - q nodes in $FF’,F such that, up to the relabeling of 
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(a) (b) 
0 Primarynode Sparenode 

Fig. 4. Fault-tolerant meshes amenable to two-phase routing. 

Fig. 5. A fault-tolerant trees architecture'(a), the enhanced FTBB interconnections with q = 1 (b), and q = 2 (c). 

nodes, ni is connected to m(i+u)mod(K+q), U = 0, . . ., K + 1 - q. 
PROOF. Consider the worst case scenario in which K nodes in 

$F,Ft are faulty and K nodes in $FF',F are faulty. Because $F,Ft 

contains K + q nodes, there are q nonfaulty nodes in $F,F' 

connected to nodes in @F',F.  Let these nodes be 
nia, a = 0, ..., q - 1 and assume that i, < Node nio is 
connected to K + 2 - q nodes in @F,F Given the connectivity 
specified in the hypothesis, no two nodes in @F,F* are con- 
nected to the same set of nodes in $F,,F except when q = 1. 
Hence, each nia, a > 0, is connected to at least one node in 
$FF',F that is not connected to any previous node nib for b < a. 
This means that there are at least K + 1 nodes in $F',F, that 
are connected to the q nonfaulty nodes in @F,Ft. Thus, for any 
K faults in $ F , , F ,  there will be a healthy link between a node 

in F and a node in F'. 0 
COROLLARY. For q > K + I, ifeach n,, 0 I i I K + q - 1, is 

connected to m,, then there is a healthy link from F to F' for 
any K faults in F and K faults in F'. 

For any given modular architecture in which each module 
contains K spares, the above lemma may be used to establish 
the connections between the spare nodes and the other nodes 

in the system, in a way that allows for the design of two-phase 
routing algorithms. For example, consider the interstitial mesh 
architecture proposed in [25]. In Fig. 4, we show two different 
ways for enhancing the interconnections in that architecture to 
allow for successful two-phase routing. In this figure, every 
four nodes and a spare form an FTBB with K = 1. FTBBs are 
enclosed in dashed boxes and the mesh interconnections are 
highlighted in bold lines. The enhanced connectivity among 
FTBBs in Fig. 4a and 4b satisfy Lemma 1 with q = 2 and q = 1, 
respectively. 

Another example is the fault-tolerant tree architecture [26] 
shown in Fig. 5a. Given that K = 1 for this architecture, we 
show, in Fig. 5b and 5c two ways for enhancing the connectiv- 
ity between neighboring FTBBs to satisfy Lemma 1. 

Lemma 1 may be applied to other architectures such as 
k-ary trees, Cube Connected Cycles, hypercubes, and tori. In 
the rest of this paper, however, we will restrict our attention to 
a class of modular architectures that exhibit a strong inter- 
module connection as described in the following section. 

C. Routing in Architectures with Strong FTBB Inter- 
connections 

Given two neighboring FTBBs, these FTBBs are called 
strong neighbors if each node in one FTBB is a neighbor of 
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exactly one node in the other. Using the notation of the last 
section, if F and F’are strong neighbors, then, @F,F,  contains 
all the nodes of F and $ F , , F .  contains all the nodes of F‘. 

Consider two live FTBBs, F and F’ of size (M,  K). From 
Lemma 1 and its corollary, if F and Flare strong neighbors, then 
there is always a healthy link between them if M > K. A routing 
algorithm can send a message from any node p in F to some 
node in F‘if it sends the message along a path, X, in F , which 
starts at p and passes through at least K other nonfaulty nodes. If 
each node on rc, tries to send the message to F’, then one node 
will be successful because there are at most K faults in F‘. The 
following theorem states the conditions for the existence of such 
a path and provides for a uniform implementation of a two-phase 
routing algorithm at any node in the system. 

THEOREM 1. For a modular system constructedfrom FTBBs of 
size (M,  K )  such that any two neighboring FTBBs are 
strong neighbors, a two-phase routing algorithm may be 
designed for  that system @ 

1) M > K, and 
2)  The minimum bisection width of the nodes in an FTBB is 

K + 1. That is, after the removal of any K nodes @om an 
FTBB, the remaining M nodes are still connected. 

Moreover, in the presence off faults, the routing algorithm will 
route a message in at most min { (T + 2f, (2K + l)o} + 2M - 1 
steps, where o is the minimum number of routing steps in the 
absence of faults. 

PROOF. Let F and F’ be two neighboring FTBBs and let S be 
the set of M active nodes in F. From Lemma 1, the first 
condition of the theorem guarantees that there is a healthy 
link between any two neighboring FTBBs. The second 
condition of the theorem guarantees that all the nodes in S 
are connected. Hence, the conditions for successful two- 
phase routing are satisfied. 

In order to design the routing algorithm, construct a cycle 
A that passes through the M nodes in S. Such a cycle always 
exists because we can, in the most general case, construct a 
spanning tree of the nodes in S and then obtain A by a pre- 
order traversal of the spanning tree. Clearly A does not visit 
each node more than twice. Moreover, for any node p on A, 
the node following p on A is uniquely determined by the 
node preceding p .  Hence, A is specified unambiguously, 

For the first phase of the routing algorithm, a message 
can be routed from a node p in S to some node in F’ by 
sending the message along A. Given that A passes through 
at least K + I distinct nodes and that there can be at most 
K faults in F‘, then one of the nodes on A will be able to 
send the message to F’. Moreover, given that A visits each 
node at most twice, the message will reach F‘, in at most 
2(K + 1) steps. For the second phase of the routing algo- 
rithm, the message is sent along A, and in less than 2M - 1 
steps, the message will reach its destination. 

To compute the routing overhead, consider two nodes s 
and d and assume that, in the absence of spares (and faults), 
o is the length of the shortest path from s to d. In the pre- 
sense of faults, the FTBBs will be crossed in the same order 
but to move between two FTBBs it may take up to 2(K + 1) 

steps. Moreover, in the destination FTBB, the message may 
need up to 2M - 1 steps. Hence, in the worst case, the mes- 
sage may need 2(K + 1) (T + 2M - 1 routing steps from s to 
d. Note that to cross from FTBB F to FTBB F’, if the mes- 
sage is at a node p in F, then it is sent to the next node on A 
only if the neighbor of p in F’is faulty. Thus, the number of 
extra nodes visited in F while crossing to F’cannot exceed 
the number of faults in the system. Thus, the number of 
routing steps from s to d is at most (T + 2f + 2M - 1. 0 
The worst case routing performance given in Theorem 1 

may be reduced by a factor of almost two if the cycle A used in 
the proof of Theorem 1 is Hamiltonian, that is, if A visits each 
node in S exactly once. Constructing Hamiltonian cycles or 
checkmg if one exists in a graph is an NP complete problem. 
However, for small M and K, finding such a cycle may be 
possible. In fact, as shown in the following theorem, a condi- 
tion which is slightly less restrictive than having a Hamiltonian 
cycle in S is enough to obtain the factor of 2 improvement in 
the worst case routing. This condition will be used in the 
routing algorithm given in Section IV. 
THEOREM 2. IJ in addition to thefirst condition in Theorem I ,  

the following is true: 
For any subset, S, of M nodes in an FTBB, there is  a simple 
cycle, A, connecting at least K + 1 nodes from S such that any 
node in S is either on A or is connected to a node on A, 

then, a two-phase routing algorithm will route a message in at 
most min{o + f, (K + 1) o} + M steps, where (T is the minimum 
number of routing steps in the absence of faults and f is the 
number of faults. 

PROOF. For routing a message from a node p in an FTBB, F to 
a neighboring FTBB, we find a simple path, n, starting at p 
and passing through K other nodes in S. If p is on A, then, 7c 
consists of K + 1 consecutive nodes on A. If p is not on A, 
then it is directly connected to a node, U ,  on A and thus the 
path .n consists of p ,  U, and K - 1 other consecutive nodes in 
A. Given that .n is a simple path (visits a node at most once), 
it is clear that the first phase of the routing algorithm will 
take at most min{o + f, (K + 1)o) steps. 

For the second phase, a message at a node p is routed 
along A (if p is not on A, then it is connected to a node on 
A). Each node that receives the message checks if the mes- 
sage is for it or if it is for a node connected to it. If not, it 
sends the message to the next node on A. The message will 
reach its destination before visiting any node twice after at 

In the following, we give pseudocode for a two-phase rout- 
ing algorithm that can be used whether the conditions of Theo- 
rem 1 or Theorem 2 are satisfied. The algorithm is executed at 
a node p in FTBB F,  and assumes that AF is a cycle (not nec- 
essarily simple) that passes through at least K + 1 of the M 
active nodes in F. The active nodes of F that are not on AF are 
assumed to be directly connected to a node on AF. One of the 
directions on the cycle AF is defined as positive and the op- 
posite direction is defined as negative. If p is on AF, then 
next’(p)and next-(p) are defined to be the nodes that follow 
p on AF in the positive and negative directions, respectively. 

most M steps. U 
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We will use next(p) to indicate next+@). If p is not on AF, 

then let next(p) be a node on AF that is connected to p .  With 
this, the general form of the routing algorithm at node p is: 

Algorithm Two-Phase Route 

the current FTBB, then 
Phase I .  If the destination, d, is in an FTBB different from 

1) compute the next FTBB, F'to which the message is to be 

2) If the neighbor, p', of p in F'is active, then send the mes- 
sent. 

sage top', else send the message to next (p). 

Phase 2. If d is in the current FTBB, then 

1) if d = p ,  keep the message, 
2) elseif p is directly connected to d, then send the message 

to d, 
3) elseif the message was received from a node not on A,, 

then chose a direction dir and send the message to 
nextdfr(p>, 

4) else send the message to nextdfr(p), where dir is the di- 
rection opposite to the one from which the message was 
received. 

We can identify two methods for routing messages along the 
nodes on AF without keeping global information about active 
nodes. One method is to compute AF distributively for every 
message through a backtracking algorithm similar to the one 
described in [6]. In such a method, a stack of nodes visited so far 
should be kept in the message to prevent looping. This implies 
that the message needs to be updated at each node that it visits 
resulting in slower message delivery. Moreover, the size of the 
message grows at every visited node. In some cases, however, it 
may be possible to carefully design the distributive algorithm in 
a way that prevents looping without updating the message [2]. 

An alternative method is for each node p in F to compute 
AF after each fault in F and keep the values of next'@) and 
next -(p). In general, the computation of AF may require that 
each node knows about the active nodes in its own FTBB. 
With this knowledge, the complexity of the algorithm to com- 
pute AF is either exponential in M or linear in M ,  depending on 
whether a simple AF is to be found (if one exists), or a non- 
simple AF is to be found, respectively. As discussed in Theo- 
rems 1 and 2, a simple AF reduces the routing overhead by 
almost one half. Hence, especially for small values of M and 
K ,  the complexity of finding a simple AF is justified. Moreo- 
ver, in regular architectures, such as the hypercubes discussed 
in the next section, it may be possible to compute AF off-line 
and devise simple rules by which any node p determines the 
next node on AF by having only local information about its 
own neighbors. 

The bounds given in Theorems 1 and 2 for the number of 
routing steps do not reduce to (T in the absence of faults. This 
is because in the second phase of routing, a conservative ap- 
proach is taken to guarantee that messages will not cycle in- 
definitely. The number of routing steps may be reduced to (T in 
the absence of faults if the routing in phase 2 of the algorithm 
does not follow A, but rather routes the message directly to the 
destination using some information about the active nodes in 

the destination FTBB. For small size FTBBs like the ones de- 
scribed in Sections I11 and IV, only local information is 
enough to design phase 2 efficiently such that the routing al- 
gorithm takes o steps in the absence of faults. 

D. Constructing Architectures Amenable to Two-Phase 
Routing 

A fault-tolerant architecture that is amenable to two-phase 
routing may be constructed as the Cartesian product [ 111, [29] 
of an FTBB which satisfies the conditions of Theorem 1 with 
any connected graph, G. Specifically, each node, v in G is re- 
placed by a copy of the FTBB and each edge, <vl, v2>, in G is 
replaced by K + M communication links connecting the K + M 
nodes in the FTBB that replaces v1 with the K + M nodes in the 
FTBB that replaces v2. Clearly, the FTBBs in the resulting 
system will satisfy the strong neighbors property. Hypercubes, 
meshes, and tori are examples of Cartesian product networks. 
For instance, an n-dimensional binary hypercube is the carte- 
sian product of an m-dimensional hypercube, 0 < m < n, with 
an (n - m)-dimensional hypercube. A mesh is the Cartesian 
product of two linear arrays, and a torus is the Cartesian prod- 
uct of two rings. 

Two important issues that arise during the above construc- 
tion are the choice of the graph, G, and the choice of the 
FTBB. The graph, G, should be chosen such that an efficient 
routing algorithm exists for routing in G in the absence of 
faults. This is important since the interconnection between 
FTBBs follows G, and in the first phase of the routing algo- 
rithm of Section II.A, a message should be routed to an FTBB 
which is closer to the destination node. 

The choice of the number of primary nodes, M, and the 
number of spare nodes, K in each FTBB depends on the reli- 
ability requirements of the system, but should satisfy M > K 
(the first condition of Theorem 1). Given, M and K, the choice 
of the interconnections within the M + K nodes in the FTBB 
should satisfy the second condition of Theorem 1. Efficient 
(polynomial time) algorithms for checking this condition exist 
based on network flow techniques [14], [19]. Moreover, for 
small M + K ,  the verification of this condition may be done 
exhaustively, especially when the interconnections within the 
FTBB is symmetric. For example, it is easy to verify that each 
of the FTBBs in Fig. 6 remains connected when any K = 2 
nodes are removed. The value of M is 6, 8, and 10 in the hy- 
percube of Fig. 6a, the Petersen graph of Fig. 6b [ I l l ,  [31], 
and the chordal ring of Fig. 6c, respectively. To clarify the 
verification procedure, we consider the Petersen graph of 
Fig. 6b. Because of symmetry, connectivity should be verified 
for only seven cases. Namely, the removal of the following 
pairs of nodes: (1, 2), (1, 3), (6, 7), (6, S), (1, 61, (1, 71, or 
(1, 8). Checking connectivity for each of these cases is 
straightforward. Note that none of the FTBBs in Fig. 6 satis- 
fies the conditions of Theorem 1 when K = 3. For example, for 
the FTBB of Fig. 6b, the removal of nodes 3, 5 ,  and 9 will 
leave node 4 isolated from the remaining nodes. 

The more restrictive conditions of Theorem 2 are also sat- 
isfied in the FTBBs shown in Fig. 6. Specifically, after the 
removal of any K = 2 nodes, we can always find a cycle such 
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that each of the remaining M nodes either lie on the cycle or is 
directly connected to the cycle. Again, the verification proce- 
dure can be easily performed when M + K is small and the 
FTBB is symmetric. For example, when nodes 1 and 2 are 
removed from the FTBB of Fig. 6b, the cycle is formed by the 
nodes 6, 8, 10,7, 9, and the nodes 3 ,4 ,  and 5 are directly con- 
nected to the cycle. 

Another way to construct an FTBB is to start from a known 
module with M nodes, add K spares, K < M ,  to the module, 
and connect the K nodes in the E B B  in a way that satisfies 
Theorems 1 or 2. For example, for M = 4 and K = 1, we may 
start from a 4-node ring (a two-dimensional hypercube), and 
add one spare. The conditions of Theorem 1 will be satisfied if 
we connect the spare to at least two of the four nodes, and the 
conditions of Theorem 2 will be satisfied if we connect the 
spare to at least three of the four nodes. In Section IV.A, we 
will show that a simple two phase routing can be obtained 
when symmetry is preserved by connecting the spare to all the 
nodes in the module as shown in Fig. 7a. 

In Fig. 7b, we show an FTBB constructed by adding K = 4 
spares, sl, s2, s3, and s4, to a three-dimensional hypercube 
module with M = 8 nodes. The spares are added to four faces 
of the cube such that each spare can replace any of the four 
nodes in its face. Links are added between each spare and the 
four primary nodes that it can replace. Specifically, using the 
notation in Fig. 7b, spare s1 can replace any of the nodes 000, 
001, 101,or 100. Spareszcanreplaceanyof 100, 101, 111,or 

1 

110. Spare s3 can replace any of 110, 111, 011, or 010, and 
spare s4 can replace any of 010, 011, 001, or 000. It is shown 
in [2] that this spare allocation strategy maximizes the reliabil- 
ity under certain hardware restrictions. 

The FTBB shown in Fig. 7b does not satisfy the conditions 
of Theorem I for M = 8 and K = 4. For instance, the removal 
of &e four nodes 000, 001, 110, and 111 disconnects the 
FTBB into two disjoint components. The connectivity of the 
FTBB after the removal of any four nodes may be preserved if 
we add four links to connect the spares as shown in Fig. 7c. In 
fact, it will be shown in Section III.B, that the FTBB of Fig. 7c 
satisfies the more restricted conditions of Theorem 2. 

In the next section, we will use the two FTBBs depicted in 
Fig. 7a and 7c to build fault-tolerant systems, and we will 
show that efficient two-phase routing algorithms may be de- 
signed for those systems. 

m. APPLICATION TO BINARY HYPERCUBES 

Hypercubes are very modular systems. An n-dimensional 
binary hypercube, which has 2" nodes and n2"-' links can be 
viewed as 2"-m modules each containing 2m nodes, for any 
0 I m I n. Each node, p ,  is given an n bit address, 
p("-') . . . ~('1, such that the addresses of neighboring nodes 
differ in exactIy one bit. Communication between nodes is 
done via message passing; If the destination address is 

(a)M=6,K=2. (6) M=8, K=2. 

Fig. 6. Examples of FTBBs that satisfy Theorems I and 2. 

110 

(e) M=10, K=2. 

111 

(a) M=4, K = l  (b) M=X, K=4 (c} adding links to satisfy Theorem 

Fig. 7. R B B s  obtained by adding spares to two- and tkree-dimensional hypercubes. 
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OOo** 001 ** 010** 01 1 ** 

Fig. 8. The augmented hypercube, BH-I. 

a = d(n-1) . . . d(0)  then the present routing node, 
= p("-') e p(O), executes the following routing algorithm 

(d') is the exclusive or of d'" and P ( ~ ) ) :  

IF (xol = 0, for all 0 5 j < n) then send the message to the local 
processor. 
ELSE route the message along dimension j ,  where j is the larg- 
est integer such that xol = 1 

We will discuss two schemes for adding spares to modules 
in hypercubes. In the first scheme, denoted BH-I, we will gen- 
eralize the FTBB of Fig. 7a such that a spare is added to each 
m-dimensional subcube in the system, m 2 2 (m = 2 in the 
FTBB of Fig. 7a). Although this scheme is simple and results 
in an efficient routing algorithm, it has very little flexibility for 
fault coverage. Specifically, more than one failure in an FTBB 
results in system failure. In order to improve the reliability, the 
second scheme, BH-11, uses the FTBB shown in Fig. 7c in 
which more than one spare is added to each module. Both 
schemes are amenable to efficient fault-tolerant routing algo- 
rithms that adapt to faults gracefully and reduce to the usual 
hypercube routing in the absence of faults. 

A. BH-I: An Architecture with a Single Spare in Each 
FTBB 

As mentioned before, an n-dimensional hypercube is the 
Cartesian product of an m-dimensional hypercube (an FTBB) 
with an (n- m)-dimensional hypercube. A spare node is added 

loo** 101 ** 110** 111** 

to each FTBB and is connected to the 2" primary nodes in the 
FTBB. As a result of taking the Cartesian product of the result- 
ing FTBB with an (n - m)-dimensional hypercube, the 
2"" spare nodes become interconnected as a binary hypercube 
structure of dimension n - m , which is called the spare cube. 
Thus, 2"" spares and 2" + (n - m) 2"-"-' links are added to the 
original hypercube architecture. For clarity, we use the term 
primary cube to refer to the binary hypercube formed by the 
2" primary nodes. Each node in the primary cube has an 
n bit address and all the primary nodes in an FTBB have n - m 
identical most significant address bits. These n - m bits are 
used to identify the FTBB. For example in Fig. 8, n = 5 , m = 2 
and an FTBB consists of a column of four primary nodes and a 
spare node (the same FTBB shown in Fig. 7a). 

Clearly, BH-I leads to single fault-tolerant systems since the 
failure of any two nodes in the same FTBB leads to system 
failure. The 2" active nodes in an FTBB, F, may be connected 
by a cycle, AF which, in the absence of faults in F, results from 
a Gray code embedding of a ring in the 2m-node subcube [ 151. 
If F contains a fault, then this fault may be bypassed in AF 
using the spare node. Thus, the conditions of Theorems 1 and 
2 are satisfied. The hypercube bit-wise routing algorithm is 
converted into a two-phase algorithm in order to route mes- 
sages around faulty nodes. Specifically, a message addressed 
to some node d = &-1) ... d(0) is routed to FTBB 
d("-') . . . d("-m) first, and then is routed within that FTBB to 
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the destination node. If the primary node d("-') ... d(O) is not 
faulty, then it is the destination node. Otherwise, the spare 
node in FTBB &-I) . . . d(n-") is the destination node because 
it is the only spare that can cover for the fault. The proposed 
routing algorithm that achieves this goal is completely distrib- 
uted and only requires that the neighbors of a failing node 
know about the failure. 

The routing algorithm is described at a node 
p = p(n-l)  . . . p(O) in FTBB F. Node p computes the next di- 
mension j to be crossed and tries to send the message to e,@), 
the neighbor of p across dimension j .  If that node is faulty, 
then the message is sent to next@), the next node on A, 
Algorithm ROUTEH-I 

1) If p = the destination node, keep the message; 
2) Find the largest j such that dJ xor pJ = 1; 
3) If j > m, I* Phase 1 *I 

If CJ@) is active, then send the message to Cj@) 
else send the message to next (p) 

If p is a spare node, then send the message to the 
destination node. 
elseif C,@) is active, then send the message 

else send the message to the spare node connected top .  

Given that K = 1 , only two nodes need to be tried in Phase 1 
before a message is sent to the next FTBB. Phase 2 of 
ROUTEH-I is different from the general algorithm, Two- 
phase Route. Specifically, in the absence of faults, it does not 
send messages along AF but rather uses the usual hypercube 
routing. With this change, the routing overhead is eliminated 
when the system does not contain any faulty nodes. The number 
of routing steps is, thus, bounded by min{ 2 o + m, o +f), where 
CY is the shortest path between the source and the destination in 
the absence of faults, andfis the number of faults in the system. 

B. BH-11: A Double Fault-Tolerant Architecture 

In this scheme, we construct the augmented n-dimensional 
hypercube system by taking the Cartesian product of the FTBB 
shown in Fig. 7c with an (n - 3) dimensional hypercube. Each 
FTBB is a three-dimensional hypercube augmented with four- 
spares, and the spare allocation strategy is such that each spare 
may replace any of four primary nodes and each primary node 
is covered by two spares The total number of spares in the 
system is thus 2"'. Although that number is equal to the num- 
ber of spares in the BH-I scheme with m = 1, each spare is 
shared by four nodes rather than two nodes. This improves the 
reliability of the system primarily because any two faults can 
be tolerated in BH-11, while some two-fault configurations in 
BH-I with m = 1 cannot be tolerated [2]. 

Dimensions n - 1, n - 2, and n - 3 are chosen to span each 
module, and thus the eight primary nodes in each FTBB have 
n - 3 identical high order bits. These are used to identify the 
FTBB. As a result of the Cartesian product construction, the 
spare nodes are interconnected as a hypercube of dimension 
n - 1, which we call the spare cube. The total number of links 

4) else I* Phase 2 *I 

to C,(P, 

added to the nonfault-tolerant system is (n  - 1)2n-2 + 4 x 2"-' 
The architecture of a system composed of two such FTBBs is 
shown in Fig. 9. 

Fig. 9. A four-dimensional augmented hypercube. 

In order to show that the FTBB of Fig. 7c satisfies the 
condition of Theorem 2, we consider the cycle r shown in 
Fig. loa. Using the notation of Fig. 7b, r is the sequence of 
nodes OOO, 001, sl, 101, 100, s2, 110, 111, s3 , 011, 010, s4, 
OOO. This cycle spans the 12 nodes in the FTBB and may be 
used as the basis for defining a cycle A that spans any eight 
active nodes in the FTBB. 

Let r.next(p) and I-. next-' ( p )  be the nodes following and pre- 

ceding p in r and let r .nex tJ(p)  be the node following 

r.next-'-'(p) in r for j > 1. Recall that a nonactive node is a 
faulty node or a spare node that is not used to replace any primary 
node. Recall also that the spare allocation policy allows a faulty 
primary node to be replaced only by one of the two spares con- 
nected to it. Th~s restriction prevents any four consecutive nodes 
on r to be nonactive. In fact, it allows three consecutive nodes, pI, 
s, pz, on to be nonactive only if p 1  and pz are primary nodes and 
s is a spare node. With this observation, given any four nonactive 
nodes in an FTBB, A may be defined as follows: 

Case 1. If no two nonactive nodes are consecutive in r, then 
A is the eight node cycle defined by specifying for each active 
node, p ,  the node next@), which follows p on A as follows: 

r.next(p) if F.next(p)is active 
r. next2 ( p )  otherwise 

next@) = 

An example of this case is given in Fig. 1Oc where the nodes 
s,, 100, 111, and s4 are nonactive (designated by x in the fig- 

ure). If the four spares are not active, then the cycle A is the 
gray code embedding of a ring in a three-dimensional cube 
shown in Fig. lob. This cycle is denoted by A*. 

Case 2. If three nonactive nodes, pl, s, p2, are consecutive on 
r, then p1 and p2 are primary nodes and s is a spare. A is thus, 
the eight node cycle specified at each active node, p ,  as follows. 

I-. next(p) if r. next@) is active 
if r. next(p) is not active and 
r. next2 ( p )  is active 

r. next' ( p )  

r.next4(p) otherwise . 
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An example of this case is given in Fig. 10d where the nodes 
001, sl, 101, and 110 are not active. 

Case 3. Only two of the four nonactive nodes are consecu- 
tive on r, while each of the other two is preceded and followed 
by active nodes. The latter two nodes can be bypassed in r as 
in case 1. If the two consecutive nodes are primary nodes, say 
p1 and p2, then they are preceded and followed in r by spare 
nodes. Namely r.next- '(p,)  and r.next(p,). These two 
spares may be directly connected, thus bypassing p1 and pz 
Finally, if the two nonactive consecutive nodes include a 
spare, s, then these two nodes should be among three consecu- 
tive nodes p1, s, and p z  on r. In this case it is possible to by- 
pass all of the three nodes by connecting directly r. next-' (PI ) 
and r.next(p,). For example, if 001 and sI or s1 and 101 are 
not active, then the three nodes 001, sI, and 101 can be by- 
passed by making next (000) = 100 in A (see Fig.lOe). Note 
that this is a case where an active node is excluded from A, but 
is connected to a node on A. 

Case 4. If two of the nonactive nodes are consecutive 
and the other two are also consecutive. Each two consecu- 
tive nodes may be dealt with by a bypass as in case 3 (see 
Fig. 10e). This is always possible except for one case de- 
scribed next. 

Case 5. If in a sequence pl, sl, p2, p3 ,  s2, and p4 of consecu- 
tive nodes on r, the primary nodes p I  and p4 and the spare 
nodes s1 and s2 are not active. In this case it is not possible to 
bypass all of the six nodes. It is possible, however, to bypass 
the four nonactive nodes using links not originally on r. Spe- 
cifically, it is possible to go from r.next-'(p,) to r.next(p,) 

via p 3  then p2. An example is given in Fig. 10f where the nodes 
001, SI, SI, and 110 are not active. Note that because of the 
spare allocation policy, only two of sI, 101, 100, and s2 may be 
nonactive. 

The computation of A may be entirely distributed. Specifi- 
cally, each node, p needs only to compute and store next@) 
Given the sequence r, which is independent of the active node 
configuration, node p may compute next@) by only knowing 
the status of its own neighbors. For cases 1-2 above, p needs 
to know only which of its neighbors is not active. However, to 
handle all five cases, p needs also to know if an active neigh- 
bor is r-isolated, which is defined as follows. 
DEFINITION. For any active node q, a node e is called inac- 

cessible from q if e is not a neighbor of q or if e is not ac- 
tive. The node q is called r-isolated if the nodes 

0 
With this definition and from the discussion of the five possible 

cases for the distribution of the four nonactive nodes in the FlBB, 
the computation of next@) at any active node p is given by: 

1) If r.next(p) is active and is not r-isolated, then next@) 

2) elseif rnex?(p) is active then, next@) = r.nextz(p), 
3) elseif l7.ne.d (p) is active then, next(p) = r.next3(p), 
4) elseif r.next4 @) is active then, next@) = r.next4(p), 
5 )  else next (PI = r.next-' (P). 

The requirement, in step 1, that r.next@) is not r-isolated 
is needed to implement case 3 and ensure that if rnext2@) and 
r.nex? (p) are not active, then r.next(p) is also excluded from 
A. Step 5 ,  then ensures that the function next is defined for 
any active node that is excluded from A. This same step also 
ensures that case 5 is handled properly. 

r .next j (q) ,  j = 1,2,3,4 are inaccessible from q. 

' 

= r.next(p), 

(4 
Fig. 10. (a) r, and (b - f) A for different configurations of active nodes. 
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With the above specification of A, two-phase routing may 
be applied with the first phase being identical to that of 
Route-BH-I. The second phase of  RotlteBH-I, however, 
was specific to scheme BH-I. For scheme BH-II, the second 
phase of the general algorithm Two-Phase Route may be ap- 
plied. This phase starts at the first node visited by the message 
in the destination FTBB or at the source node, if the source 
and destination are in the same FTBB. This node is called the 
entry node. If the entry node is on A, then the direction of 
routing on A may be chosen to guarantee that, in the absence 
of faults, the message will follow the shortest path to the desti- 
nation, d. Specifically, the second phase of  the routing algo- 
rithm at a node, p ,  may be described as follows: 

Phase 2. If d is in Fp, then 

1) if d = p keep the message, 
2)  elseif p is directly connected to d, then route to d, 
3) elseif p is the entry node and p is on A, then route to 

nex t f (p )  or next-(p) depending on which one is closer 
to d,  

4) elseif p is the entry node, then route to next@), 
5) else route to nextdzr(p),  where dir is the direction op- 

posite to the one from which the message was received. 

Note that in the absence of faults, A = Ag (see Fig. 10b). 
Sending the message to the node on Ag closer to d ensures that 
the message will follow the shortest route to d. For example, 
assume that a message is to be sent from 001 to 111 (see 
Fig. 7b). If 001 sends the message to 101, then 101 will send 
the message to 11 1 because it is directly connected to it (step 2 
of Phase 2). In other words, in the absence of faults the two- 
phase routing reduces to the usual cube routing and in the 
presence off faults, the number of routing steps is bounded by 
min(5o + 4, o + f } ,  where o is the shortest path between the 
source and the destination in the absence of faults. 

C. Experimental Analysis 

The upper bounds on the number of routing steps in BH-I 
and BH-I1 assume a very pessimistic distribution of faults in 
the system. The probabilities of such distributions is very 
small, and the average number of routing steps is much less 
than this worst case bound. In order to backup this claim, a 
simulation software tool was designed and used to determine 
the routing performance. For a given dimension, n, and node 
reliability r = e-”, where h is the fault rate, the simulation 
software generates a set of faults FS such that the system is 
alive, i.e., all the nodes in a FS can be replaced by available 
spare nodes. The software generates a total of 1,000 different 
FSs. For each FS, 1,000 messages with random sources and 
destinations are generated. These messages are then routed 
from their sources to their respective destinations using the 
two-phase routing algorithm, and the total number of steps, 
ts, is determined. Also, the minimum number of steps, ts‘, 
that is required to route these messages in a fault-free system 
using the usual bitwise cube routing is calculated. The 
overall routing overhead is determined as the average of 
(ts - ts’) / ts’ . 

The routing performance of the algorithms in BH-I and 
BH-II are shown in Fig. I1  for n = 7. Obviously, the overheads 
are very small compared to the theoretical overheads of ap- 
proximately 100% and 400% for BH-I and BH-11, respec- 
tively. The routing overhead increases with the number of  
faults in the system, which is expected. 

Routing overhead 
I 
I 

10% 1 

/ 

ht 

0.0 0.02 0.04 0.06 0.08 0.1 
0% 

Fig. 11. Average routing overhead. 

In Table I, we summarize the characteristics of the two 
schemes BH-I (M = 4 and K = 1) and BH-I1 (M = 8 and 
K = 1). The first two columns in the table give the total num- 
ber of nodes and links in the system. The following three 
columns give the worst and average routing performance when 
kt = 0.1. Given that the total number of nodes in the two sys- 
tems is different, we show in the last column the number of 
faulty nodes when kt = 0.1. 

TABLE I 
COMPARJSON OF BH-I (M= 4 AMD K = 1) WITH BH-I1 (M = 8 AND K = 4) 

5 0 + 4  

N. APPLICATION TO THREE-DIMENSIONAL 
TOROIDAL SYSTEMS 

Consider an nl x n2 x n3 three-dimensional torus. The ad- 
dress of a node, p ,  in the torus is denoted by 
[p‘l), ~ ( ~ ’ 1 ,  where p‘j) ,  0 < p ( j )  < n J ,  is the coordinate of 
a node along dimension j .  The architecture of a 5 x 4 x 5 torus 
is shown in Fig. 12. In this figure, the wraparound connections 
along dimensions 1 and 3 are not shown. The links in this ar- 
chitecture are bidirectional. The positive direction along di- 
mension j from a node with jth coordinate p‘’ is towards the 
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6, = <  

d(J) - p m  

n, - 

if Id(’) - p ( ~ ) J  <n, - I&) - p ( ] ) l  
if Id(’) - p ( ~ ) l  2 n, - Id(’) - p ( ’ ) \  

and ( p t J )  > d’)) 
-p(’)J 

-(n, -Id(’) - p ( ~ ) l )  if Id(’) - p ( J ) l  > n, - Id(’) -p(’)l 

and ( p ( ’ )  < d‘”) 

for any faulty node or unused spare node, the input and output 
links across dimension 3 are directly connected. Therefore, the 
active nodes in an FTBB are always connected as a ring across 
dimension 3, which is the cycle A used in the implementation 
of the two-phase routing algorithm. If a node p fails and a 
spare node s replaces p ,  then p is shorted and s is brought into 
the system and inherits p’s address. 

Fig. 12. A 5 x 4 x 5 torus. 

primary nodes spare nodes 

Fig. 13. A 5 x 4 x 6 torus augmented with 20 spare nodes. 

A two-phase routing algorithm can be designed to route a 
message around the faulty nodes and deliver it to the destina- 
tion. In the first phase, a node first tries to route the message to 
a neighboring FTBB F along dimension 1 or 2 provided that F 
is closer to the destination FTBB. If the message cannot be 
sent to such an FTBB, then the message is sent to a node in the 
FTBB of the current node. The message does not leave that 
FTBB until it can be sent to an FTBB that is closer to the des- 
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10% - 

tination FTBB. As in the routing for BH-11, the entry node in 
the destination FTBB determines the direction of routing in the 
second phase. The message is routed along that direction until 
it reaches the destination node. The entry node chooses the 
routing direction as follows: If the entry node is a spare node, 
then the message is routed along the positive direction of di- 
mension 3, otherwise the message is routed along dir3. The 
choice in the case of a primary entry node ensures that the 
shortest path is followed in the absence of faults. In the case of 
a spare entry node, however, a fixed direction is always chosen 
(the positive) since the address of an active spare node is not 
ordered with respect to the other nodes in A. 

In order to formally describe the routing algorithm at a node 
p, let prev-dim be the dimension from which p received the 
message. When p receives a message destined to d, it executes 
the following algorithm: 

Algorithm ROUTE-T 

if p = d then keep the message, else 

Phase 1: 
1) compute a,, &, and 4, 
2) if (61 f 0 and nextYq ( p )  is not faulty) then route the 

message to next? ( p )  

3) elseif (6, f 0 and next? (p )  is not faulty) then route the 
message to next? ( p )  

4) elseif (61 f 0 or S, f 0) then route the message to 
next: (PI 

Phase 2: 
5) elseif @rev-dim1 # 3) then /* entry node */ 

if (p is a spare node) then route the message to nex t l (p )  
else route the message to next? ( p )  

6) else route the message in the direction opposite to the 
one from which it is received. 

In a fault free system, the distance between the source node of 
a message and its destination node is given by A, + A2 + A3, 
where Aj = 4 is calculated at the source node. In the presence of 

- 

Routing overhead 

0.0 0.02 0.04 0.06 0.08 0.1 

(a) 12x12~15 toi-us withK=3 

faults, it is straightforward to show that algorithm ROUTE-T 
routes a message to its destination through a cycle free path in at 
most ( K  + l)(A1 + A2) + (n3 - 1) steps. Although this worst case 
message path seems to be almost K + 1 times that of the shortest 
path, it can be shown that the probability that a message is 
routed through the worst case path is low. 

If messages are considered to be random (i.e., not local), 
then in the absence of faults, a message travels, on the average, 

c j = l ~  3 
steps. For example, an average random message for 

the fault-tolerant 12 x 12 x (12 + 3) torus travels 18 steps. 
Messages can also be local, where the locality of a message is 
defined in terms of the distance it has to travel. Local messages 
have A,s bounded by A, I L, for some 1 < L 4 n, . For nl = n2 
= n3. the worst case routing overhead for an average random 
message or a local message can be computed to be approxi- 
mately 5 K. 

A simulation study similar to the one described in the last 
section was used to estimate the average routing overhead. 
Different simulations were conducted for random and local 
messages. Random messages were generated by randomly 
selecting a source node and a destination node while local 
messages were generated by randomly selecting a source node 
and a destination node such that AI i 2, for 1 4 j 53 .  

The results of the simulations are plotted in Fig. 14. These 
results show that the routing overhead for local messages is 
higher than that of random messages. This is because the effect 
of the inefficient second phase (relative to the first phase) of 
the routing algorithm is dominant for local messages. The av- 
erage routing overheads are much less than the 5 K worst case 
overhead. 

V. CONCLUSION 

A fault-tolerant routing approach is proposed for modular 
multiprocessor systems that utili7e spare nodes to achieve fault 
tolerance. Routing is performed in two phases. In the first 
phase, the message is routed to the destination FTBB, and in 

Routing overhead 

local messages 
random messages 

0.0 0.02 0.04 0.06 0.08 0.1 

(b) 10xlOx11 torus with K=l  

Fig. 14. Routing overhead for ROUTE-T 
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the second phase the message is routed to the destination node 
within the destination FTBB. This approach ensures that in a 
live system messages are delivered to their destinations and 
never circulate in loops indefinitely. The simplicity and effi- 
ciency of the two-phase routing are mainly due to the restric- 
tions implicitly imposed on the fault distribution in the system. 
Specifically, the modular architecture allows spares to only 
replace faults within their own modules. 

The contribution of this paper is two-fold. First, it provides a 
general framework for adding fault tolerance to modular multi- 
processor architectures in a way that is amenable to two-phase 
routing. Specifically, given a nonfault-tolerant modular architec- 
ture which satisfies the strong neighboring property, Theorem 1 
indicates the maximum number of spares that can be added to 
each module. The connectivity of the nodes in each module is 
enhanced to satisfy Theorems 1 or 2, and the spares in different 
modules are connected such that the strong neighbor property is 
preserved. The second contribution of the paper is a detailed 
study of specific two-phase routing algorithms for certain spare- 
augmented hypercube and tori architectures. 

Two fault-tolerant schemes that use the two-phase routing 
strategy in spare-augmented hypercube architectures are pro- 
posed. The first scheme applies a straightforward reconfigura- 
tion technique and a fairly simple routing algorithm. It suffers, 
however, from rapid reliability degradation when the number 
of faults increases. This rapid degradation is avoided in the 
second scheme by allowing any of two spare nodes to replace 
a primary node. The routing algorithms are particularly attrac- 
tive because, in the absence of faults, they degenerate to the 
ordinary bit-wise algorithm used in nonfault-tolerant hyper- 
cubes. The systematic routing strategy presented in this paper 
is simpler and more general than the routing strategy suggested 
in [2] for modular hypercubes. 

Two-phase routing is also applied to three-dimensional tor- 
oidal systems that are augmented with spares. The hypercube 
and the torus architectures are only two examples that demon- 
strate the applicability of the technique to modular fault- 
tolerant architectures. In addition to its adaptability to different 
architectures and its use of only local fault knowledge, the 
proposed routing approach is relatively easy to develop and 
results in a low average routing overhead. 
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