
1206 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 11, NOVEMBER 1995

Routing in Modular Fault-Tolerant
ultimocessor Svstems I ./

M. Sultan Alam and Rami G. Melhem, Member, IEEE Computer Society

Abstract-In this paper, we consider a class of modular multi-
processor architectures in which spares are added to each module
to cover for faulty nodes within that module, thus forming a fault-
tolerant basic block (FTBB). In contrast to reconfiguration tech-
niques that preserve the physical adjacency between active nodes
in the system, our goal is to preserve the logical adjacency
between active nodes by means of a routing algorithm which
delivers messages successfully to their destinations. We introduce
two-phase routing strategies that route messages first to their
destination FTBB, and then to the destination nodes within the
destination FTBB. Such a strategy may be applied to a variety
of architectures including binary hypercubes and three-
dimensional tori. In the presence off faults in hypercubes and
tori, we show that the worst case length of the message route is
min {cr + f, (K + l)o} + c where cr is the shortest path in
the absence of faults, K is the number of spare nodes in an FI’BB,
and c is a small constant. The average routing overhead is much
lower than the worst case overhead.

Index TemzsSparing, modular multiprocessors, fault-tolerant
routing, hypercube multicomputers, mesh connected processors.

I. INTRODUCTION

s the number of processors in a multiprocessor system
increases, the complexity of the system increases, lead-

ing to a possible high rate of both transient and permanent
failures. The reliability of such systems can be improved by
incorporating some type of fault tolerance. For instance, fault
tolerance can be achieved by distributing the load of a faulty
processor to other nonfaulty processors [3], [7] , [13], and then
using fault-tolerant routing to by-pass faults and deliver mes-
sages to their destinations. Several fault-tolerant routing
schemes have been proposed in the literature for general and
specific architectures [5], [61, [9], [lo], 1121, 1181. In these
schemes, different adaptive routing algorithms have been used
to by-pass faulty nodes. Olson and Shin proposed a routing
algorithm for hexagonal architecture for real-time systems
(HARTS) which ensures the delivery of a message as long as
there exists a path between the message source and its destina-
tion [21]. Peleg and Simons [22] proposed fault-tolerant rout-
ing schemes for several families of graphs, including all graphs
of maximal degree less than C T Z ” ~ , for some c > 0 (a is the
number of nodes in the graph). The distribution of the load of
the faulty node in such schemes is a nontrivial problem and the
performance degradation can be as high as 50% [3].

Manuscript received Nov. 30,1992; revised Feb. 28, 1994.
M.S. Alam is with the AT&T Bell Laboratories, Red Hill, N.J.
R.G. Melhem is with the Department of Computer Science, University of

Pittsburgh, Pittsburgh, PA 15260; e-mail: melhem@cs.pitt.edu.
To order reprints of this article, e-mail: transactions@computer.org, and

reference IEEECS Log Number D95054.

An alternative approach to fault tolerance is to use spares.
In this approach, the system performance degradation is
minimized by allowing spare nodes to replace faulty ones. For
applications where the topology of the underlying system is
important, the adjacency relationship among the active nodes
should be preserved after reconfiguration, where an active
node is defined to be a nonfaulty primary node or a spare node
that has replaced a faulty node. That is, if a spare s replaces a
faulty node p, then, after reconfiguration, s should become a
neighbor of all the neighbors of p . Usually, hardware switches
are used to preserve the adjacency relationship among the ac-
tive nodes [l], [4], [8], [16], [20], [251, [30]. Note that in this
approach, the routing algorithm does not need to be modified.
In some systems, however, preserving the adjacency relation-
ship among the active nodes may not be crucial because the
applications may not assume any specific topology. In such
systems, an alternative to preserving the physical adjacency is
to modify the routing algorithm so that messages can bypass
faulty nodes and be delivered to the destination node.

In this paper, we assume that when a spare node replaces a
primary node, it inherits its address. Thus, any message ad-
dressed to the failed node should be delivered to its replace-
ment spare. The sender of a message addresses the message to
a logical destination, and does not need to know whether the
destination is a primary node or a spare that has replaced a
failed primary node. In other words, the burden of maintaining
the logical interconnection among the active nodes is assigned
to the routing algorithm. There is no need to preserve the
physical adjacency between active nodes by setting up recon-
figuration switches. Hence, recovery from faults is faster.

We introduce a two-phase routing approach which is gen-
eral in the sense that it can be applied to different architectures
and to different spare allocation strategies. The routing algo-
rithm is distributed and assumes total node failures in the sense
that a failed node cannot be used to route messages. We give
sufficient conditions for the two-phase routing algorithm to
work correctly, and we show that these conditions can be sat-
isfied in many well known architectures by properly connect-
ing the spares to other nodes in the system. We also apply the
routing algorithm to hypercube and toroidal systems and show
that in these cases, only local fault knowledge is required.

The rest of this paper is organized as follows: Section I1 de-
scribes the two-phase routing approach and establishes its
worst case performance. It also shows how to construct a
modular fault-tolerant system in which two-phase routing may
be used. The routing approach is then applied in Section I11 to
spare-augmented binary hypercube systems and in Section IV
to spare-augmented three-dimensional toroidal systems. Al-

1045-9219/95$04.00 0 1995 IEEE

mailto:melhem@cs.pitt.edu
mailto:transactions@computer.org

1207 ALAM AND MELHEM: ROUTING IN MODULAR FAULT-TOLERANT MULTIPROCESSOR SYSTEMS

though analytical results show that the worst case routing
overhead is relatively high, simulation results show that, on the
average, the routing overhead is low.

11. Two PHASE ROUTING

Multiphase routing algorithms have been extensively stud-
ied in the literature, especially for binary hypercube architec-
tures [23], [27], [28] , [29]. These studies, however, dealt with
message permutation models in which each node needs to send
a message to a destination node and the destination nodes are
all different. The basic idea in these algorithms is to avoid
message congestion by introducing randomness in the routing
algorithm. Specifically, during the first phase, messages are
routed to random destinations and then during subsequent
phases they are routed to their correct destinations. In [12], the
authors apply the idea of randomization to a hypercube routing
algorithm that uses only local information to route messages in
the presence of faults. They show that the probability of suc-
cessful routing is high even for an exceedingly large number of
faults. In [17], fault information within a specified radius from
a node is used to calculate the routes of messages at that node.
This idea is applied to faulty hypercubes and is shown to lead
to an efficient distributed routing algorithm.

The work presented in this paper is different from the work
cited above because it assumes that the system contains spare
nodes and that a spare node inherits the address of the faulty
node it replaces. To the best of our knowledge, this work is the
first in which the routing algorithm redirects the messages ad-
dressed to a faulty node to the spare that replaces it.

A. Routing in Modular Spare Augmented Systems

Most common multiprocessor architectures are constructed
from identical modules to achieve scalability as well as ease of
maintenance and repair. Redundancy may be added to these
systems by either adding spare modules or adding spare nodes
in each module (or both [24]). We assume that the spare node
approach is taken. Specifically, we assume that modules are
identical and that each module consists of M primary nodes to
which K spares are added to replace faulty primary nodes. The
M primary nodes and the K spare nodes, thus, form a fault-
tolerant basic block (FTBB) whose size is referred to as (M,
K) . Two FTBBs are called neighbors if there is a link between
a node in the first and a node in the second. An FTBB is called
live if it contains at most K faulty nodes (primary or spares)
and the system is called live if all its FTBBs are live. Note that
after a fault, a system remains live if there is an available spare
to cover for the fault. Otherwise, system failure is declared.

The address of a node, p , may be divided into two parts, one
identifying the FTBB, F, that contains p , and the other identi-
fying p within F. If no nodes in the system are faulty, then only
the primary nodes are active and thus have addresses. When a
primary node fails, a spare replaces that node by taking over
its computational tasks and inheriting its address. From that
point on, any message addressed to the failed node should be
delivered to the spare that replaced it. This is the responsibility
of the routing algorithm.

Any efficient fault-tolerant routing algorithm should: 1) use
the shortest path between two nodes when no faulty nodes are
encountered, 2) exhibit graceful performance degradation with
the number of faults, and 3) guarantee that a message does not
cycle indefinitely in the system (a live-lock situation). The
routing strategy suggested in this section leads to distributed
algorithms in which the nodes in each FTBB do not need to
have information about faults in other FTBBs. This avoids the
need for a global controller and for storing global fault infor-
mation in each node. In this strategy, a message is routed to its
destination node, d, in two phases. First, the message is routed
to the FTBB that contains d, and then to d or the spare node
that replaces d. Once the message reaches the destination
FTBB it does not leave that FTBB. The two-phase routing
strategy can be described as follows (assume that the present
routing node, p , is in FTBB Fp and that the destination node, d,
is in FTBB Fd):

1) While Fp # Fd send the message to some node, q, in a
neighboring FTBB, F,, which is closer to Fd.

2) Route the message to node d without leaving Fd.

A key property of the two-phase routing is that it does not
require any backtracking between FTBBs. Specifically, a mes-
sage is always moved to an FTBB that is closer to its destina-
tion. This leads to efficient and simple implementations. How-
ever, without global fault knowledge, backtracking between
FTBBs can be avoided only if the connectivity between any
two neighboring FTBBs is rich enough to allow a message to
be sent from one to the other in the presence of faults. The
minimum connectivity that guarantees the success of two-
phase routing is discussed in the next section.

The details of each routing phase depend on the architec-
ture. In fact, given a particular architecture, the choice of
FTBB Fq in phase 1 is identical to the choice that a nonfault-
tolerant routing algorithm would make for that architecture.
With faulty nodes, however, it may not be possible to send a
message from Fp to Fq using the same path that is used in the
absence of faults. The message may have to take a longer path
to get to Fq. Figs. 1 and 2 are used to explain this. The large
circles and the small circles in these figures denote primary
nodes and spare nodes, respectively, and a crossed out node
denotes a faulty node. In Fig. 1, a message is routed from node
p to node d through the nodes q and y . If node q, which is on
the path of this message, fails, then in phase 1 of the algorithm,
the message is routed to node q’ in FTBB F, (via p’) and then
to node y” in FTBB Fy (via 4’3 and finally to node d”in FTBB
Fd (see Fig. 2). The second phase of the algorithm starts after
the message reaches node d”. Note that the route indicated in
Fig. 2b is not the shortest route between p and d.

B. Conditions for the Success of Two-phase Routing
Given a distribution of faults in the system, call a communica-
tion link healthy if it connects two nonfaulty nodes and call a
path between two nonfaulty nodes healthy if it consists of
healthy links. The two-phase routing strategy described in the
previous section delivers messages correctly only if certain
conditions are satisfied. For instance, phase 1 may fail if there
are two adjacent FTBBs that are not connected by at least one

1208 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 1 1 , NOVEMBER 1995

FTBB Fp FTBB Fq FTBB Fy

Fig. 1. Two-phase routing with no faults.

Fig. 2. Two-phase routing with faults at nodes q and y’.

healthy link. Also, phase 2 may fail if there exists two nodes in
an FTBB, F, that are not connected by a healthy path within F.
In this context, a path within F is one that does not leave F.
Therefore, the following two conditions are necessary for the
two-phase routing strategy to be successful in a live system:

1) For any two neighboring FTBBs, F and F”, any set of K
or fewer faults in F and any set of K or fewer faults in F,
there exists a healthy link between F and F’.

2) For any set of K or fewer faults in an FTBB, any two non-
faulty nodes in that FTBB are connected by a healthy path.

0 0

0 0

0 0

0 0

0 0

(a> 4=1 fb) 4=2

Fig. 3. Required connectivity between neighboring FTBBs for the case IC = 3.

These two conditions ensure that there exists a healthy path
between any two nodes in a live system and that a two-phase
routing strategy can route a message along that path. Thus,
these conditions are sufficient for the two-phase strategy to be
successful provided that suitable algorithms are designed to
implement each of the two phases. Before discussing specific
algorithms, we investigate further the first condition. For that
condition to be satisfied between two neighboring FTBBs, F
and F there should be more than K nodes in F that are con-
nected to more than K nodes in F”. In order to be more specific
about the connectivity requirement between F and F”, let 4 be a
positive integer and let = {no, ..., nK+s-l} be the set of

nodes in F that are connected to nodes in F”. Also, let q’ be a
positive integer and let $F,,F = {mO, . . ., mK+,.-l} be the set of

nodes in F’that are connected to nodes in F. Clearly, the worst
scenario that can lead to disconnecting F from F is when the K
faulty nodes in F are in $F,F,and the K faulty node in F” are in

@F,,F. Assume that q = q’ and consider the following cases for

4.
The Case q = 1. In this case, a healthy link is guaranteed to

exist between F and F for any K faults in F and K faults in F
if each node in $F,Ft is connected to every node in $Ft,F This
case is illustrated by an example in Fig. 3a, where K = 3. The
figure shows the links between $F,Fr and $FF‘,F.

The Case q = K c 1. For any K faults in F and K faults in
F’, the existence of a healthy link from F to F’is guaranteed if
the connection between the nodes in $F,F, and those in $FF‘,F

is one-to-one. That is, up to the relabeling of nodes, each
node n,, 0 5 i I 2 K, is connected to node m,. This case is

illustrated by an example in Fig. 3d.
The above two cases are special cases of the following

Lemma. Fig. 3 clarifies the conditions of the lemma when K = 3
and 4 = 1,2,3, and 4.

LEMMA 1. For a given q, 1 I q I K + 1, and any K faults in
F and Kfaults in F < the existence of a healthy link from F
to F‘is guaranteed if each node n,, in $FF,F, is connected to
K +. 2 - q nodes in $FF’,F such that, up to the relabeling of

ALAM AND MELHEM: ROUTING IN MODULAR FAULT-TOLERANT MULTIPROCESSOR SYSTEMS 1209

(a) (b)
0 Primarynode Sparenode

Fig. 4. Fault-tolerant meshes amenable to two-phase routing.

Fig. 5. A fault-tolerant trees architecture'(a), the enhanced FTBB interconnections with q = 1 (b), and q = 2 (c).

nodes, ni is connected to m(i+u)mod(K+q), U = 0, . . ., K + 1 - q.
PROOF. Consider the worst case scenario in which K nodes in

$F,Ft are faulty and K nodes in $FF',F are faulty. Because $F,Ft

contains K + q nodes, there are q nonfaulty nodes in $F,F'

connected to nodes in @F',F. Let these nodes be
nia, a = 0, ..., q - 1 and assume that i, < Node nio is
connected to K + 2 - q nodes in @F,F Given the connectivity
specified in the hypothesis, no two nodes in @F,F* are con-
nected to the same set of nodes in $F,,F except when q = 1.
Hence, each nia, a > 0, is connected to at least one node in
$FF',F that is not connected to any previous node nib for b < a.
This means that there are at least K + 1 nodes in $F',F, that
are connected to the q nonfaulty nodes in @F,Ft. Thus, for any
K faults in $ F , , F , there will be a healthy link between a node

in F and a node in F'. 0
COROLLARY. For q > K + I, ifeach n,, 0 I i I K + q - 1, is

connected to m,, then there is a healthy link from F to F' for
any K faults in F and K faults in F'.

For any given modular architecture in which each module
contains K spares, the above lemma may be used to establish
the connections between the spare nodes and the other nodes

in the system, in a way that allows for the design of two-phase
routing algorithms. For example, consider the interstitial mesh
architecture proposed in [25]. In Fig. 4, we show two different
ways for enhancing the interconnections in that architecture to
allow for successful two-phase routing. In this figure, every
four nodes and a spare form an FTBB with K = 1. FTBBs are
enclosed in dashed boxes and the mesh interconnections are
highlighted in bold lines. The enhanced connectivity among
FTBBs in Fig. 4a and 4b satisfy Lemma 1 with q = 2 and q = 1,
respectively.

Another example is the fault-tolerant tree architecture [26]
shown in Fig. 5a. Given that K = 1 for this architecture, we
show, in Fig. 5b and 5c two ways for enhancing the connectiv-
ity between neighboring FTBBs to satisfy Lemma 1.

Lemma 1 may be applied to other architectures such as
k-ary trees, Cube Connected Cycles, hypercubes, and tori. In
the rest of this paper, however, we will restrict our attention to
a class of modular architectures that exhibit a strong inter-
module connection as described in the following section.

C. Routing in Architectures with Strong FTBB Inter-
connections

Given two neighboring FTBBs, these FTBBs are called
strong neighbors if each node in one FTBB is a neighbor of

1210 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 11, NOVEMBER 1995

exactly one node in the other. Using the notation of the last
section, if F and F’are strong neighbors, then, @F,F, contains
all the nodes of F and $ F , , F . contains all the nodes of F‘.

Consider two live FTBBs, F and F’ of size (M, K). From
Lemma 1 and its corollary, if F and Flare strong neighbors, then
there is always a healthy link between them if M > K. A routing
algorithm can send a message from any node p in F to some
node in F‘if it sends the message along a path, X, in F , which
starts at p and passes through at least K other nonfaulty nodes. If
each node on rc, tries to send the message to F’, then one node
will be successful because there are at most K faults in F‘. The
following theorem states the conditions for the existence of such
a path and provides for a uniform implementation of a two-phase
routing algorithm at any node in the system.

THEOREM 1. For a modular system constructedfrom FTBBs of
size (M, K) such that any two neighboring FTBBs are
strong neighbors, a two-phase routing algorithm may be
designed for that system @

1) M > K, and
2) The minimum bisection width of the nodes in an FTBB is

K + 1. That is, after the removal of any K nodes @om an
FTBB, the remaining M nodes are still connected.

Moreover, in the presence off faults, the routing algorithm will
route a message in at most min { (T + 2f, (2K + l)o} + 2M - 1
steps, where o is the minimum number of routing steps in the
absence of faults.

PROOF. Let F and F’ be two neighboring FTBBs and let S be
the set of M active nodes in F. From Lemma 1, the first
condition of the theorem guarantees that there is a healthy
link between any two neighboring FTBBs. The second
condition of the theorem guarantees that all the nodes in S
are connected. Hence, the conditions for successful two-
phase routing are satisfied.

In order to design the routing algorithm, construct a cycle
A that passes through the M nodes in S. Such a cycle always
exists because we can, in the most general case, construct a
spanning tree of the nodes in S and then obtain A by a pre-
order traversal of the spanning tree. Clearly A does not visit
each node more than twice. Moreover, for any node p on A,
the node following p on A is uniquely determined by the
node preceding p . Hence, A is specified unambiguously,

For the first phase of the routing algorithm, a message
can be routed from a node p in S to some node in F’ by
sending the message along A. Given that A passes through
at least K + I distinct nodes and that there can be at most
K faults in F‘, then one of the nodes on A will be able to
send the message to F’. Moreover, given that A visits each
node at most twice, the message will reach F‘, in at most
2(K + 1) steps. For the second phase of the routing algo-
rithm, the message is sent along A, and in less than 2M - 1
steps, the message will reach its destination.

To compute the routing overhead, consider two nodes s
and d and assume that, in the absence of spares (and faults),
o is the length of the shortest path from s to d. In the pre-
sense of faults, the FTBBs will be crossed in the same order
but to move between two FTBBs it may take up to 2(K + 1)

steps. Moreover, in the destination FTBB, the message may
need up to 2M - 1 steps. Hence, in the worst case, the mes-
sage may need 2(K + 1) (T + 2M - 1 routing steps from s to
d. Note that to cross from FTBB F to FTBB F’, if the mes-
sage is at a node p in F, then it is sent to the next node on A
only if the neighbor of p in F’is faulty. Thus, the number of
extra nodes visited in F while crossing to F’cannot exceed
the number of faults in the system. Thus, the number of
routing steps from s to d is at most (T + 2f + 2M - 1. 0
The worst case routing performance given in Theorem 1

may be reduced by a factor of almost two if the cycle A used in
the proof of Theorem 1 is Hamiltonian, that is, if A visits each
node in S exactly once. Constructing Hamiltonian cycles or
checkmg if one exists in a graph is an NP complete problem.
However, for small M and K, finding such a cycle may be
possible. In fact, as shown in the following theorem, a condi-
tion which is slightly less restrictive than having a Hamiltonian
cycle in S is enough to obtain the factor of 2 improvement in
the worst case routing. This condition will be used in the
routing algorithm given in Section IV.
THEOREM 2. IJ in addition to thefirst condition in Theorem I ,

the following is true:
For any subset, S, of M nodes in an FTBB, there is a simple
cycle, A, connecting at least K + 1 nodes from S such that any
node in S is either on A or is connected to a node on A,

then, a two-phase routing algorithm will route a message in at
most min{o + f, (K + 1) o} + M steps, where (T is the minimum
number of routing steps in the absence of faults and f is the
number of faults.

PROOF. For routing a message from a node p in an FTBB, F to
a neighboring FTBB, we find a simple path, n, starting at p
and passing through K other nodes in S. If p is on A, then, 7c
consists of K + 1 consecutive nodes on A. If p is not on A,
then it is directly connected to a node, U , on A and thus the
path .n consists of p , U, and K - 1 other consecutive nodes in
A. Given that .n is a simple path (visits a node at most once),
it is clear that the first phase of the routing algorithm will
take at most min{o + f, (K + 1)o) steps.

For the second phase, a message at a node p is routed
along A (if p is not on A, then it is connected to a node on
A). Each node that receives the message checks if the mes-
sage is for it or if it is for a node connected to it. If not, it
sends the message to the next node on A. The message will
reach its destination before visiting any node twice after at

In the following, we give pseudocode for a two-phase rout-
ing algorithm that can be used whether the conditions of Theo-
rem 1 or Theorem 2 are satisfied. The algorithm is executed at
a node p in FTBB F, and assumes that AF is a cycle (not nec-
essarily simple) that passes through at least K + 1 of the M
active nodes in F. The active nodes of F that are not on AF are
assumed to be directly connected to a node on AF. One of the
directions on the cycle AF is defined as positive and the op-
posite direction is defined as negative. If p is on AF, then
next’(p)and next-(p) are defined to be the nodes that follow
p on AF in the positive and negative directions, respectively.

most M steps. U

1211 ALAM AND MELHEM: ROUTING IN MODULAR FAULT-TOLERANT MULTIPROCESSOR SYSTEMS

We will use next(p) to indicate next+@). If p is not on AF,

then let next(p) be a node on AF that is connected to p . With
this, the general form of the routing algorithm at node p is:

Algorithm Two-Phase Route

the current FTBB, then
Phase I . If the destination, d, is in an FTBB different from

1) compute the next FTBB, F'to which the message is to be

2) If the neighbor, p', of p in F'is active, then send the mes-
sent.

sage top', else send the message to next (p).

Phase 2. If d is in the current FTBB, then

1) if d = p , keep the message,
2) elseif p is directly connected to d, then send the message

to d,
3) elseif the message was received from a node not on A,,

then chose a direction dir and send the message to
nextdfr(p>,

4) else send the message to nextdfr(p), where dir is the di-
rection opposite to the one from which the message was
received.

We can identify two methods for routing messages along the
nodes on AF without keeping global information about active
nodes. One method is to compute AF distributively for every
message through a backtracking algorithm similar to the one
described in [6]. In such a method, a stack of nodes visited so far
should be kept in the message to prevent looping. This implies
that the message needs to be updated at each node that it visits
resulting in slower message delivery. Moreover, the size of the
message grows at every visited node. In some cases, however, it
may be possible to carefully design the distributive algorithm in
a way that prevents looping without updating the message [2].

An alternative method is for each node p in F to compute
AF after each fault in F and keep the values of next'@) and
next -(p). In general, the computation of AF may require that
each node knows about the active nodes in its own FTBB.
With this knowledge, the complexity of the algorithm to com-
pute AF is either exponential in M or linear in M , depending on
whether a simple AF is to be found (if one exists), or a non-
simple AF is to be found, respectively. As discussed in Theo-
rems 1 and 2, a simple AF reduces the routing overhead by
almost one half. Hence, especially for small values of M and
K , the complexity of finding a simple AF is justified. Moreo-
ver, in regular architectures, such as the hypercubes discussed
in the next section, it may be possible to compute AF off-line
and devise simple rules by which any node p determines the
next node on AF by having only local information about its
own neighbors.

The bounds given in Theorems 1 and 2 for the number of
routing steps do not reduce to (T in the absence of faults. This
is because in the second phase of routing, a conservative ap-
proach is taken to guarantee that messages will not cycle in-
definitely. The number of routing steps may be reduced to (T in
the absence of faults if the routing in phase 2 of the algorithm
does not follow A, but rather routes the message directly to the
destination using some information about the active nodes in

the destination FTBB. For small size FTBBs like the ones de-
scribed in Sections I11 and IV, only local information is
enough to design phase 2 efficiently such that the routing al-
gorithm takes o steps in the absence of faults.

D. Constructing Architectures Amenable to Two-Phase
Routing

A fault-tolerant architecture that is amenable to two-phase
routing may be constructed as the Cartesian product [111, [29]
of an FTBB which satisfies the conditions of Theorem 1 with
any connected graph, G. Specifically, each node, v in G is re-
placed by a copy of the FTBB and each edge, <vl, v2>, in G is
replaced by K + M communication links connecting the K + M
nodes in the FTBB that replaces v1 with the K + M nodes in the
FTBB that replaces v2. Clearly, the FTBBs in the resulting
system will satisfy the strong neighbors property. Hypercubes,
meshes, and tori are examples of Cartesian product networks.
For instance, an n-dimensional binary hypercube is the carte-
sian product of an m-dimensional hypercube, 0 < m < n, with
an (n - m)-dimensional hypercube. A mesh is the Cartesian
product of two linear arrays, and a torus is the Cartesian prod-
uct of two rings.

Two important issues that arise during the above construc-
tion are the choice of the graph, G, and the choice of the
FTBB. The graph, G, should be chosen such that an efficient
routing algorithm exists for routing in G in the absence of
faults. This is important since the interconnection between
FTBBs follows G, and in the first phase of the routing algo-
rithm of Section II.A, a message should be routed to an FTBB
which is closer to the destination node.

The choice of the number of primary nodes, M, and the
number of spare nodes, K in each FTBB depends on the reli-
ability requirements of the system, but should satisfy M > K
(the first condition of Theorem 1). Given, M and K, the choice
of the interconnections within the M + K nodes in the FTBB
should satisfy the second condition of Theorem 1. Efficient
(polynomial time) algorithms for checking this condition exist
based on network flow techniques [14], [19]. Moreover, for
small M + K , the verification of this condition may be done
exhaustively, especially when the interconnections within the
FTBB is symmetric. For example, it is easy to verify that each
of the FTBBs in Fig. 6 remains connected when any K = 2
nodes are removed. The value of M is 6, 8, and 10 in the hy-
percube of Fig. 6a, the Petersen graph of Fig. 6b [I l l , [31],
and the chordal ring of Fig. 6c, respectively. To clarify the
verification procedure, we consider the Petersen graph of
Fig. 6b. Because of symmetry, connectivity should be verified
for only seven cases. Namely, the removal of the following
pairs of nodes: (1, 2), (1, 3), (6, 7), (6, S), (1, 61, (1, 71, or
(1, 8). Checking connectivity for each of these cases is
straightforward. Note that none of the FTBBs in Fig. 6 satis-
fies the conditions of Theorem 1 when K = 3. For example, for
the FTBB of Fig. 6b, the removal of nodes 3, 5 , and 9 will
leave node 4 isolated from the remaining nodes.

The more restrictive conditions of Theorem 2 are also sat-
isfied in the FTBBs shown in Fig. 6. Specifically, after the
removal of any K = 2 nodes, we can always find a cycle such

1212 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO 11, NOVEMBER 1995

that each of the remaining M nodes either lie on the cycle or is
directly connected to the cycle. Again, the verification proce-
dure can be easily performed when M + K is small and the
FTBB is symmetric. For example, when nodes 1 and 2 are
removed from the FTBB of Fig. 6b, the cycle is formed by the
nodes 6, 8, 10,7, 9, and the nodes 3 ,4 , and 5 are directly con-
nected to the cycle.

Another way to construct an FTBB is to start from a known
module with M nodes, add K spares, K < M , to the module,
and connect the K nodes in the E B B in a way that satisfies
Theorems 1 or 2. For example, for M = 4 and K = 1, we may
start from a 4-node ring (a two-dimensional hypercube), and
add one spare. The conditions of Theorem 1 will be satisfied if
we connect the spare to at least two of the four nodes, and the
conditions of Theorem 2 will be satisfied if we connect the
spare to at least three of the four nodes. In Section IV.A, we
will show that a simple two phase routing can be obtained
when symmetry is preserved by connecting the spare to all the
nodes in the module as shown in Fig. 7a.

In Fig. 7b, we show an FTBB constructed by adding K = 4
spares, sl, s2, s3, and s4, to a three-dimensional hypercube
module with M = 8 nodes. The spares are added to four faces
of the cube such that each spare can replace any of the four
nodes in its face. Links are added between each spare and the
four primary nodes that it can replace. Specifically, using the
notation in Fig. 7b, spare s1 can replace any of the nodes 000,
001, 101,or 100. Spareszcanreplaceanyof 100, 101, 111,or

1

110. Spare s3 can replace any of 110, 111, 011, or 010, and
spare s4 can replace any of 010, 011, 001, or 000. It is shown
in [2] that this spare allocation strategy maximizes the reliabil-
ity under certain hardware restrictions.

The FTBB shown in Fig. 7b does not satisfy the conditions
of Theorem I for M = 8 and K = 4. For instance, the removal
of &e four nodes 000, 001, 110, and 111 disconnects the
FTBB into two disjoint components. The connectivity of the
FTBB after the removal of any four nodes may be preserved if
we add four links to connect the spares as shown in Fig. 7c. In
fact, it will be shown in Section III.B, that the FTBB of Fig. 7c
satisfies the more restricted conditions of Theorem 2.

In the next section, we will use the two FTBBs depicted in
Fig. 7a and 7c to build fault-tolerant systems, and we will
show that efficient two-phase routing algorithms may be de-
signed for those systems.

m. APPLICATION TO BINARY HYPERCUBES

Hypercubes are very modular systems. An n-dimensional
binary hypercube, which has 2" nodes and n2"-' links can be
viewed as 2"-m modules each containing 2m nodes, for any
0 I m I n. Each node, p , is given an n bit address,
p("-') . . . ~('1, such that the addresses of neighboring nodes
differ in exactIy one bit. Communication between nodes is
done via message passing; If the destination address is

(a)M=6,K=2. (6) M=8, K=2.

Fig. 6. Examples of FTBBs that satisfy Theorems I and 2.

110

(e) M=10, K=2.

111

(a) M=4, K = l (b) M=X, K=4 (c} adding links to satisfy Theorem

Fig. 7. R B B s obtained by adding spares to two- and tkree-dimensional hypercubes.

ALAM AND MELHEM: ROUTING IN MODULAR FAULT-TOLERANT MULTIPROCESSOR SYSTEMS 1213

OOo** 001 ** 010** 01 1 **

Fig. 8. The augmented hypercube, BH-I.

a = d(n-1) . . . d(0) then the present routing node,
= p("-') e p(O), executes the following routing algorithm

(d') is the exclusive or of d'" and P (~)) :

IF (xol = 0, for all 0 5 j < n) then send the message to the local
processor.
ELSE route the message along dimension j , where j is the larg-
est integer such that xol = 1

We will discuss two schemes for adding spares to modules
in hypercubes. In the first scheme, denoted BH-I, we will gen-
eralize the FTBB of Fig. 7a such that a spare is added to each
m-dimensional subcube in the system, m 2 2 (m = 2 in the
FTBB of Fig. 7a). Although this scheme is simple and results
in an efficient routing algorithm, it has very little flexibility for
fault coverage. Specifically, more than one failure in an FTBB
results in system failure. In order to improve the reliability, the
second scheme, BH-11, uses the FTBB shown in Fig. 7c in
which more than one spare is added to each module. Both
schemes are amenable to efficient fault-tolerant routing algo-
rithms that adapt to faults gracefully and reduce to the usual
hypercube routing in the absence of faults.

A. BH-I: An Architecture with a Single Spare in Each
FTBB

As mentioned before, an n-dimensional hypercube is the
Cartesian product of an m-dimensional hypercube (an FTBB)
with an (n- m)-dimensional hypercube. A spare node is added

loo** 101 ** 110** 111**

to each FTBB and is connected to the 2" primary nodes in the
FTBB. As a result of taking the Cartesian product of the result-
ing FTBB with an (n - m)-dimensional hypercube, the
2"" spare nodes become interconnected as a binary hypercube
structure of dimension n - m , which is called the spare cube.
Thus, 2"" spares and 2" + (n - m) 2"-"-' links are added to the
original hypercube architecture. For clarity, we use the term
primary cube to refer to the binary hypercube formed by the
2" primary nodes. Each node in the primary cube has an
n bit address and all the primary nodes in an FTBB have n - m
identical most significant address bits. These n - m bits are
used to identify the FTBB. For example in Fig. 8, n = 5 , m = 2
and an FTBB consists of a column of four primary nodes and a
spare node (the same FTBB shown in Fig. 7a).

Clearly, BH-I leads to single fault-tolerant systems since the
failure of any two nodes in the same FTBB leads to system
failure. The 2" active nodes in an FTBB, F, may be connected
by a cycle, AF which, in the absence of faults in F, results from
a Gray code embedding of a ring in the 2m-node subcube [151.
If F contains a fault, then this fault may be bypassed in AF
using the spare node. Thus, the conditions of Theorems 1 and
2 are satisfied. The hypercube bit-wise routing algorithm is
converted into a two-phase algorithm in order to route mes-
sages around faulty nodes. Specifically, a message addressed
to some node d = &-1) ... d(0) is routed to FTBB
d("-') . . . d("-m) first, and then is routed within that FTBB to

1214 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 11, NOVEMBER,1995

the destination node. If the primary node d("-') ... d(O) is not
faulty, then it is the destination node. Otherwise, the spare
node in FTBB &-I) . . . d(n-") is the destination node because
it is the only spare that can cover for the fault. The proposed
routing algorithm that achieves this goal is completely distrib-
uted and only requires that the neighbors of a failing node
know about the failure.

The routing algorithm is described at a node
p = p(n-l) . . . p(O) in FTBB F. Node p computes the next di-
mension j to be crossed and tries to send the message to e,@),
the neighbor of p across dimension j . If that node is faulty,
then the message is sent to next@), the next node on A,
Algorithm ROUTEH-I

1) If p = the destination node, keep the message;
2) Find the largest j such that dJ xor pJ = 1;
3) If j > m, I* Phase 1 *I

If CJ@) is active, then send the message to Cj@)
else send the message to next (p)

If p is a spare node, then send the message to the
destination node.
elseif C,@) is active, then send the message

else send the message to the spare node connected top .

Given that K = 1 , only two nodes need to be tried in Phase 1
before a message is sent to the next FTBB. Phase 2 of
ROUTEH-I is different from the general algorithm, Two-
phase Route. Specifically, in the absence of faults, it does not
send messages along AF but rather uses the usual hypercube
routing. With this change, the routing overhead is eliminated
when the system does not contain any faulty nodes. The number
of routing steps is, thus, bounded by min{ 2 o + m, o +f), where
CY is the shortest path between the source and the destination in
the absence of faults, andfis the number of faults in the system.

B. BH-11: A Double Fault-Tolerant Architecture

In this scheme, we construct the augmented n-dimensional
hypercube system by taking the Cartesian product of the FTBB
shown in Fig. 7c with an (n - 3) dimensional hypercube. Each
FTBB is a three-dimensional hypercube augmented with four-
spares, and the spare allocation strategy is such that each spare
may replace any of four primary nodes and each primary node
is covered by two spares The total number of spares in the
system is thus 2"'. Although that number is equal to the num-
ber of spares in the BH-I scheme with m = 1, each spare is
shared by four nodes rather than two nodes. This improves the
reliability of the system primarily because any two faults can
be tolerated in BH-11, while some two-fault configurations in
BH-I with m = 1 cannot be tolerated [2].

Dimensions n - 1, n - 2, and n - 3 are chosen to span each
module, and thus the eight primary nodes in each FTBB have
n - 3 identical high order bits. These are used to identify the
FTBB. As a result of the Cartesian product construction, the
spare nodes are interconnected as a hypercube of dimension
n - 1, which we call the spare cube. The total number of links

4) else I* Phase 2 *I

to C,(P,

added to the nonfault-tolerant system is (n - 1)2n-2 + 4 x 2"-'
The architecture of a system composed of two such FTBBs is
shown in Fig. 9.

Fig. 9. A four-dimensional augmented hypercube.

In order to show that the FTBB of Fig. 7c satisfies the
condition of Theorem 2, we consider the cycle r shown in
Fig. loa. Using the notation of Fig. 7b, r is the sequence of
nodes OOO, 001, sl, 101, 100, s2, 110, 111, s3 , 011, 010, s4,
OOO. This cycle spans the 12 nodes in the FTBB and may be
used as the basis for defining a cycle A that spans any eight
active nodes in the FTBB.

Let r.next(p) and I-. next-' (p) be the nodes following and pre-

ceding p in r and let r .nex tJ(p) be the node following

r.next-'-'(p) in r for j > 1. Recall that a nonactive node is a
faulty node or a spare node that is not used to replace any primary
node. Recall also that the spare allocation policy allows a faulty
primary node to be replaced only by one of the two spares con-
nected to it. Th~s restriction prevents any four consecutive nodes
on r to be nonactive. In fact, it allows three consecutive nodes, pI,
s, pz, on to be nonactive only if p 1 and pz are primary nodes and
s is a spare node. With this observation, given any four nonactive
nodes in an FTBB, A may be defined as follows:

Case 1. If no two nonactive nodes are consecutive in r, then
A is the eight node cycle defined by specifying for each active
node, p , the node next@), which follows p on A as follows:

r.next(p) if F.next(p)is active
r. next2 (p) otherwise

next@) =

An example of this case is given in Fig. 1Oc where the nodes
s,, 100, 111, and s4 are nonactive (designated by x in the fig-

ure). If the four spares are not active, then the cycle A is the
gray code embedding of a ring in a three-dimensional cube
shown in Fig. lob. This cycle is denoted by A*.

Case 2. If three nonactive nodes, pl, s, p2, are consecutive on
r, then p1 and p2 are primary nodes and s is a spare. A is thus,
the eight node cycle specified at each active node, p , as follows.

I-. next(p) if r. next@) is active
if r. next(p) is not active and
r. next2 (p) is active

r. next' (p)

r.next4(p) otherwise .

ALAM AND MELHEM: ROUTING IN MODULAR FAULT-TOLERANT MULTIPROCESSOR SYSTEMS 1215

An example of this case is given in Fig. 10d where the nodes
001, sl, 101, and 110 are not active.

Case 3. Only two of the four nonactive nodes are consecu-
tive on r, while each of the other two is preceded and followed
by active nodes. The latter two nodes can be bypassed in r as
in case 1. If the two consecutive nodes are primary nodes, say
p1 and p2, then they are preceded and followed in r by spare
nodes. Namely r.next- '(p,) and r.next(p,). These two
spares may be directly connected, thus bypassing p1 and pz
Finally, if the two nonactive consecutive nodes include a
spare, s, then these two nodes should be among three consecu-
tive nodes p1, s, and p z on r. In this case it is possible to by-
pass all of the three nodes by connecting directly r. next-' (PI)
and r.next(p,). For example, if 001 and sI or s1 and 101 are
not active, then the three nodes 001, sI, and 101 can be by-
passed by making next (000) = 100 in A (see Fig.lOe). Note
that this is a case where an active node is excluded from A, but
is connected to a node on A.

Case 4. If two of the nonactive nodes are consecutive
and the other two are also consecutive. Each two consecu-
tive nodes may be dealt with by a bypass as in case 3 (see
Fig. 10e). This is always possible except for one case de-
scribed next.

Case 5. If in a sequence pl, sl, p2, p3 , s2, and p4 of consecu-
tive nodes on r, the primary nodes p I and p4 and the spare
nodes s1 and s2 are not active. In this case it is not possible to
bypass all of the six nodes. It is possible, however, to bypass
the four nonactive nodes using links not originally on r. Spe-
cifically, it is possible to go from r.next-'(p,) to r.next(p,)

via p 3 then p2. An example is given in Fig. 10f where the nodes
001, SI, SI, and 110 are not active. Note that because of the
spare allocation policy, only two of sI, 101, 100, and s2 may be
nonactive.

The computation of A may be entirely distributed. Specifi-
cally, each node, p needs only to compute and store next@)
Given the sequence r, which is independent of the active node
configuration, node p may compute next@) by only knowing
the status of its own neighbors. For cases 1-2 above, p needs
to know only which of its neighbors is not active. However, to
handle all five cases, p needs also to know if an active neigh-
bor is r-isolated, which is defined as follows.
DEFINITION. For any active node q, a node e is called inac-

cessible from q if e is not a neighbor of q or if e is not ac-
tive. The node q is called r-isolated if the nodes

0
With this definition and from the discussion of the five possible

cases for the distribution of the four nonactive nodes in the FlBB,
the computation of next@) at any active node p is given by:

1) If r.next(p) is active and is not r-isolated, then next@)

2) elseif rnex?(p) is active then, next@) = r.nextz(p),
3) elseif l7.ne.d (p) is active then, next(p) = r.next3(p),
4) elseif r.next4 @) is active then, next@) = r.next4(p),
5) else next (PI = r.next-' (P).

The requirement, in step 1, that r.next@) is not r-isolated
is needed to implement case 3 and ensure that if rnext2@) and
r.nex? (p) are not active, then r.next(p) is also excluded from
A. Step 5 , then ensures that the function next is defined for
any active node that is excluded from A. This same step also
ensures that case 5 is handled properly.

r .next j (q) , j = 1,2,3,4 are inaccessible from q.

'

= r.next(p),

(4
Fig. 10. (a) r, and (b - f) A for different configurations of active nodes.

1216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 6, NO 11, NOVEMBER 1995

With the above specification of A, two-phase routing may
be applied with the first phase being identical to that of
Route-BH-I. The second phase of RotlteBH-I, however,
was specific to scheme BH-I. For scheme BH-II, the second
phase of the general algorithm Two-Phase Route may be ap-
plied. This phase starts at the first node visited by the message
in the destination FTBB or at the source node, if the source
and destination are in the same FTBB. This node is called the
entry node. If the entry node is on A, then the direction of
routing on A may be chosen to guarantee that, in the absence
of faults, the message will follow the shortest path to the desti-
nation, d. Specifically, the second phase of the routing algo-
rithm at a node, p , may be described as follows:

Phase 2. If d is in Fp, then

1) if d = p keep the message,
2) elseif p is directly connected to d, then route to d,
3) elseif p is the entry node and p is on A, then route to

nex t f (p) or next-(p) depending on which one is closer
to d,

4) elseif p is the entry node, then route to next@),
5) else route to nextdzr(p), where dir is the direction op-

posite to the one from which the message was received.

Note that in the absence of faults, A = Ag (see Fig. 10b).
Sending the message to the node on Ag closer to d ensures that
the message will follow the shortest route to d. For example,
assume that a message is to be sent from 001 to 111 (see
Fig. 7b). If 001 sends the message to 101, then 101 will send
the message to 11 1 because it is directly connected to it (step 2
of Phase 2). In other words, in the absence of faults the two-
phase routing reduces to the usual cube routing and in the
presence off faults, the number of routing steps is bounded by
min(5o + 4, o + f } , where o is the shortest path between the
source and the destination in the absence of faults.

C. Experimental Analysis

The upper bounds on the number of routing steps in BH-I
and BH-I1 assume a very pessimistic distribution of faults in
the system. The probabilities of such distributions is very
small, and the average number of routing steps is much less
than this worst case bound. In order to backup this claim, a
simulation software tool was designed and used to determine
the routing performance. For a given dimension, n, and node
reliability r = e-”, where h is the fault rate, the simulation
software generates a set of faults FS such that the system is
alive, i.e., all the nodes in a FS can be replaced by available
spare nodes. The software generates a total of 1,000 different
FSs. For each FS, 1,000 messages with random sources and
destinations are generated. These messages are then routed
from their sources to their respective destinations using the
two-phase routing algorithm, and the total number of steps,
ts, is determined. Also, the minimum number of steps, ts‘,
that is required to route these messages in a fault-free system
using the usual bitwise cube routing is calculated. The
overall routing overhead is determined as the average of
(ts - ts’) / ts’ .

The routing performance of the algorithms in BH-I and
BH-II are shown in Fig. I1 for n = 7. Obviously, the overheads
are very small compared to the theoretical overheads of ap-
proximately 100% and 400% for BH-I and BH-11, respec-
tively. The routing overhead increases with the number of
faults in the system, which is expected.

Routing overhead
I
I

10% 1

/

ht

0.0 0.02 0.04 0.06 0.08 0.1
0%

Fig. 11. Average routing overhead.

In Table I, we summarize the characteristics of the two
schemes BH-I (M = 4 and K = 1) and BH-I1 (M = 8 and
K = 1). The first two columns in the table give the total num-
ber of nodes and links in the system. The following three
columns give the worst and average routing performance when
kt = 0.1. Given that the total number of nodes in the two sys-
tems is different, we show in the last column the number of
faulty nodes when kt = 0.1.

TABLE I
COMPARJSON OF BH-I (M= 4 AMD K = 1) WITH BH-I1 (M = 8 AND K = 4)

5 0 + 4

N. APPLICATION TO THREE-DIMENSIONAL
TOROIDAL SYSTEMS

Consider an nl x n2 x n3 three-dimensional torus. The ad-
dress of a node, p , in the torus is denoted by
[p‘l), ~ (~ ’ 1 , where p‘j) , 0 < p (j) < n J , is the coordinate of
a node along dimension j . The architecture of a 5 x 4 x 5 torus
is shown in Fig. 12. In this figure, the wraparound connections
along dimensions 1 and 3 are not shown. The links in this ar-
chitecture are bidirectional. The positive direction along di-
mension j from a node with jth coordinate p‘’ is towards the

ALAM AND MELHEM: ROUTING IN MODULAR FAULT-TOLERANT MULTIPROCESSOR SYSTEMS 1217

6, = <

d(J) - p m

n, -

if Id(’) - p (~) J <n, - I&) - p (]) l
if Id(’) - p (~) l 2 n, - Id(’) - p (’) \

and (p t J) > d’))
-p(’)J

-(n, -Id(’) - p (~) l) if Id(’) - p (J) l > n, - Id(’) -p(’)l

and (p (’) < d‘”)

for any faulty node or unused spare node, the input and output
links across dimension 3 are directly connected. Therefore, the
active nodes in an FTBB are always connected as a ring across
dimension 3, which is the cycle A used in the implementation
of the two-phase routing algorithm. If a node p fails and a
spare node s replaces p , then p is shorted and s is brought into
the system and inherits p’s address.

Fig. 12. A 5 x 4 x 5 torus.

primary nodes spare nodes

Fig. 13. A 5 x 4 x 6 torus augmented with 20 spare nodes.

A two-phase routing algorithm can be designed to route a
message around the faulty nodes and deliver it to the destina-
tion. In the first phase, a node first tries to route the message to
a neighboring FTBB F along dimension 1 or 2 provided that F
is closer to the destination FTBB. If the message cannot be
sent to such an FTBB, then the message is sent to a node in the
FTBB of the current node. The message does not leave that
FTBB until it can be sent to an FTBB that is closer to the des-

1218 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 11, NOVEMBER 1995

10% -

tination FTBB. As in the routing for BH-11, the entry node in
the destination FTBB determines the direction of routing in the
second phase. The message is routed along that direction until
it reaches the destination node. The entry node chooses the
routing direction as follows: If the entry node is a spare node,
then the message is routed along the positive direction of di-
mension 3, otherwise the message is routed along dir3. The
choice in the case of a primary entry node ensures that the
shortest path is followed in the absence of faults. In the case of
a spare entry node, however, a fixed direction is always chosen
(the positive) since the address of an active spare node is not
ordered with respect to the other nodes in A.

In order to formally describe the routing algorithm at a node
p, let prev-dim be the dimension from which p received the
message. When p receives a message destined to d, it executes
the following algorithm:

Algorithm ROUTE-T

if p = d then keep the message, else

Phase 1:
1) compute a,, &, and 4,
2) if (61 f 0 and nextYq (p) is not faulty) then route the

message to next? (p)

3) elseif (6, f 0 and next? (p) is not faulty) then route the
message to next? (p)

4) elseif (61 f 0 or S, f 0) then route the message to
next: (PI

Phase 2:
5) elseif @rev-dim1 # 3) then /* entry node */

if (p is a spare node) then route the message to nex t l (p)
else route the message to next? (p)

6) else route the message in the direction opposite to the
one from which it is received.

In a fault free system, the distance between the source node of
a message and its destination node is given by A, + A2 + A3,
where Aj = 4 is calculated at the source node. In the presence of

-

Routing overhead

0.0 0.02 0.04 0.06 0.08 0.1

(a) 12x12~15 toi-us withK=3

faults, it is straightforward to show that algorithm ROUTE-T
routes a message to its destination through a cycle free path in at
most (K + l)(A1 + A2) + (n3 - 1) steps. Although this worst case
message path seems to be almost K + 1 times that of the shortest
path, it can be shown that the probability that a message is
routed through the worst case path is low.

If messages are considered to be random (i.e., not local),
then in the absence of faults, a message travels, on the average,

c j = l ~ 3
steps. For example, an average random message for

the fault-tolerant 12 x 12 x (12 + 3) torus travels 18 steps.
Messages can also be local, where the locality of a message is
defined in terms of the distance it has to travel. Local messages
have A,s bounded by A, I L, for some 1 < L 4 n, . For nl = n2
= n3. the worst case routing overhead for an average random
message or a local message can be computed to be approxi-
mately 5 K.

A simulation study similar to the one described in the last
section was used to estimate the average routing overhead.
Different simulations were conducted for random and local
messages. Random messages were generated by randomly
selecting a source node and a destination node while local
messages were generated by randomly selecting a source node
and a destination node such that AI i 2, for 1 4 j 53 .

The results of the simulations are plotted in Fig. 14. These
results show that the routing overhead for local messages is
higher than that of random messages. This is because the effect
of the inefficient second phase (relative to the first phase) of
the routing algorithm is dominant for local messages. The av-
erage routing overheads are much less than the 5 K worst case
overhead.

V. CONCLUSION

A fault-tolerant routing approach is proposed for modular
multiprocessor systems that utili7e spare nodes to achieve fault
tolerance. Routing is performed in two phases. In the first
phase, the message is routed to the destination FTBB, and in

Routing overhead

local messages
random messages

0.0 0.02 0.04 0.06 0.08 0.1

(b) 10xlOx11 torus with K=l

Fig. 14. Routing overhead for ROUTE-T

1219 ALAM AND MELHEM: ROUTING IN MODULAR FAULT-TOLERANT MULTIPROCESSOR SYSTEMS

the second phase the message is routed to the destination node
within the destination FTBB. This approach ensures that in a
live system messages are delivered to their destinations and
never circulate in loops indefinitely. The simplicity and effi-
ciency of the two-phase routing are mainly due to the restric-
tions implicitly imposed on the fault distribution in the system.
Specifically, the modular architecture allows spares to only
replace faults within their own modules.

The contribution of this paper is two-fold. First, it provides a
general framework for adding fault tolerance to modular multi-
processor architectures in a way that is amenable to two-phase
routing. Specifically, given a nonfault-tolerant modular architec-
ture which satisfies the strong neighboring property, Theorem 1
indicates the maximum number of spares that can be added to
each module. The connectivity of the nodes in each module is
enhanced to satisfy Theorems 1 or 2, and the spares in different
modules are connected such that the strong neighbor property is
preserved. The second contribution of the paper is a detailed
study of specific two-phase routing algorithms for certain spare-
augmented hypercube and tori architectures.

Two fault-tolerant schemes that use the two-phase routing
strategy in spare-augmented hypercube architectures are pro-
posed. The first scheme applies a straightforward reconfigura-
tion technique and a fairly simple routing algorithm. It suffers,
however, from rapid reliability degradation when the number
of faults increases. This rapid degradation is avoided in the
second scheme by allowing any of two spare nodes to replace
a primary node. The routing algorithms are particularly attrac-
tive because, in the absence of faults, they degenerate to the
ordinary bit-wise algorithm used in nonfault-tolerant hyper-
cubes. The systematic routing strategy presented in this paper
is simpler and more general than the routing strategy suggested
in [2] for modular hypercubes.

Two-phase routing is also applied to three-dimensional tor-
oidal systems that are augmented with spares. The hypercube
and the torus architectures are only two examples that demon-
strate the applicability of the technique to modular fault-
tolerant architectures. In addition to its adaptability to different
architectures and its use of only local fault knowledge, the
proposed routing approach is relatively easy to develop and
results in a low average routing overhead.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation under Grant No. 891 1303. A preliminary version
of this paper appeared in the Proceedings of the 22nd Fault-
Tolerant Computing Symposium.

REFERENCES

[l] M. Alam and R. Melhem, “Channel multiplexing in modular fault-
tolerant multiprocessors,” J. Parallel and Distributed Computing, vol.
24, no. 2, pp. 115-131, 1995.
M.S. Alam and R.G. Melhem, “An efficient modular spare allocation
scheme and its application to fault-tolerant binary hypercubes,” IEEE
Trans. Parallel and Distributed Systems, vol. 2, no. 1, pp. 117-125, Jan.
1991.

[2]

[3] C. Aykanat and F. Ozguner, “A concurrent error detecting conjugate-
gradient algorithm on a hypercube multiprocessor,” Proc. 17th Int’l
Symp. Fault-Tolerant Computing, pp. 204-209, Pittsburgh, Penn., July
1987.
K. Belkhale and P. Banerjee, “Reconfiguration strategies for V U 1 proc-
essor arrays and trees using a modified Diogenes approach,” IEEE
Trans. Computers, vol. 41, no. 1, pp. 83-96, 1992.
D. Blight and R. McLeod, “Non-deterministic adaptive routing tech-
niques for WSI processor arrays,” Proc. IEEE Int ’1 Workshop Defect
and Fault Tolerance in VLSISystems, pp. 177-186, 1992.
D. Blough and N. Bagherzadeh, “Near-optimal message routing and
broadcasting in faulty hypercubes,” Int’l J . Parallel Programming,

J. Bruck, R. Cypher, and D. Soroker, “Tolerating faults in hypercubes
using subcube partitioning,” IEEE Trans. Computers, vol. 41, no. 5, pp.

S . 4 . Chau and A.L. Liestman, “A proposal for a fault-tolerant binary
hypercube architecture,” Proc. Int’l Symp. Fault-Tolerant Computing,
pp. 323-330, June, 1989.
M. Lchen and K. Shin, “Depth-first search approach for fault-tolerant
routing in hypercube multicomputers,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 1, no. 2, pp. 152-159, Apr. 1990.

[lo] E. Chow, H. Madan, and J. Peterson, “An adaptive message routing
network for the hypercube computer,” Proc. 15th Symp. Computer Ar-
chitecture, pp. 90-99, 1988.

[1 11 S. Ohring and S. Das, “The folded Petersen cube networks: New com-
petitors for the hypercube” Proc. Fijth IEEE symp. Parallel and Dis-
tributed Computing, 1993.

[12] J. Gordon and Q. Stout, “Hypercube message routing in the presence of
faults,” Proc. Third Con$ Hypercube Concurrent Computers and Ap-
plications, vol. 1, pp. 318-327, 1988.

[13] J. Hastad, T. Leighton, and M. Newman, “Reconfiguring a hypercube in
the presence of faults,” Proc. Symp. Theory of Computation, pp. 274-
284, May 1987.

[I41 M. Garey and D. Johnson, Computers and Intractability, A Guide to the
Theory of’ NP-Completeness. San Fransisco, Calif.: W.H. Freeman,
1979.

[151 S.L. Johnsson, “Communication efficient basic linear algebra computa-
tions on hypercube architecures,” J. Parallel and Distributed Comput-
ers, vol. 4, pp. 133-172, 1987.

[16] S.Y. Kung, S.N. Jean, and C.W. Chang, “Fault-tolerant array processors
using single-track switches,” IEEE Trans. Computers, vol. 38, pp. 501-
514, Apr. 1989.

[17] T. Lee and J. Hayes, “Routing and broadcasting in faulty hypercube
computers,” Proc. Third Conf: Hypercube Concurrent Computers and
Applications, vol. 1, pp. 346-354, 1988.

[18] D. Linder and J. Harden, “An adaptive and fault tolerant routing strat-
egy for k-ary n-cubes,” IEEE Trans. Computers, vol. 40, no. 1, pp. 2-12,
1991.

[19] U. Manber, Introduction to Algorithms, A Creative Approach. Addison-
Wesley, 1989.

[20] R. Negrini, R. Stefanelli, and M.G. Sami,” Time redundancy in WSI
arrays of processing elements,” Proc. Int’l Conj: Supercomputing Sys-
tems, pp. 429-438, 1985.

[21] A. Olson and K.G. Shin, “Message routing in HARTS with faulty com-
ponents,” Proc. 19th Int’l symp. Fault-Tolerant Computing Systems,

[22] D. Peleg and B. Simons, “On fault-tolerant routing in general net-
works,” Proc. Principles of Database Cant , pp. 98-107, 1986.

[23] M. Rabin, “Efficient dispersal of information for security, load balanc-
ing, and fault tolerance,” J. ACM, vol. 36, no. 2, pp. 335-348, 1989.

[24] D.A. Rennels, “On implementing fault-tolerance in binary hypercubes,”
Proc. IEEE Fault Tolerant Computing, pp. 344-349, 1985.

[25] A. Singh, “Interstitial redundancy: An area efficient fault-tolerant
scheme for large area VLSI processor arrays” IEEE Trans. Computers,
vol. 37, no. 11, pp. 1,398-1,410, 1988.

[26] A. Singh, “A reconfigurable modular fault-tolerant binary tree architec-
ture,” Proc. 17th Int’l Symp. Fault-Tolerant Computing, pp. 298-304,
June 1987.

[4]

[5]

[6]

vol. 19, pp. 405-423, 1991.
[7]

599-605, 1992.
[8]

[9]

pp. 331-338, 1989.

1220 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 6, NO. 11, NOVEMBER 1995

[27] L. Valient and G. Brebner, “Universal schemes for parallel communica-
tion,” Proc. ACM Symp. Theory of Computing, pp. 263-277, 1981.

[28] L. Valiant, “A scheme for fast parallel communication,” Siam J. on
Computing, vol. 11, no. 2, pp. 350-361, 1982.

[29] L. Valiant, “Optimality of a two-phase routing in interconnection net-
works,” IEEE Trans. Computers, vol. 32, no. 9, pp. 861-863, 1983.

[30] M. Wang, M. Cutler, and S . Su, “Reconfiguration of VLSWSI mesh
arrays with two-level redundancy,” IEEE Trans. Computers, pp. 547-
554, Apr. 1989.

[31] G. Chartrand and R. Wilson, “The Petersen graph,” Graphs and Appli-
culions, F. Harary and J. Maybee, eds., 1985.

M. Sultan Alam graduated from the University of
Petroleum and Minerals, Dhahran, Saudi Arabia
with a bachelors degree in computer science and
engineering in 1985. Alam completed his Masters
and PhD degrees at the University of Pittsburgh in
1987 and 1991, respectively. Currently, he is a
member of the technical staff at AT&T Bell Labora-
tories, Red Hill, New Jersey. He has worked as a
performance and reliability consultant for different
projects within AT&T. He is currently involved in
designing highly available software systems to sur-

veil and monitor the AT&T Bell Laboratories switching network. His research
interests are in parallel processing, fault tolerance, and software reliability
engineering.

Rami G. Melhem received his BE in electrical
engineering from Cairo University in 1976; an MA
degree in mathematics and an MS degree in com-
puter science from the University of Pittsburgh in
1981; and a PhD degree in computer science from
the University of Pittsburgh in 1983. He is a profes-
sor of computer science at the University of Pitts-
burgh. Previously, he was an assistant professor at
Purdue University and an assistant and associate
professor at the University of Pittsburgh. He has
wblished numerous uaoers in the areas of svstolic

architectures, parallel computing, fault tolerance, and optical computing. Dr.
Melhem has served on several program committees for conferences and work-
shops; he is on the editorial board of IEEE Transactions on Computers. He
was guest editor for a special issue of the Joumal of Parallel and Distributed
Computing on Optical Computing and Interconnection Systems. Dr. Melhem
is a member of the IEEE Computer Society, the Association for Computing
Machinery, and the International Society for Optical Engineering.

