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Abstract

Recent research and development efforts show the
increasing importance of processing data streams,
not only in the context of sensor networks, but also
in information retrieval networks. With the ad-
vent of various mobile devices being able to par-
ticipate in ubiquitous (wireless) networks, a major
challenge is to develop data stream management
systems (DSMS) for information retrieval in such
networks. In this paper, we present the architec-
ture of ourStreamGlobeystem, which is focused
on meeting the challenges of efficiently querying
data streams in an ad-hoc network environment.
StreamGlobe is based on a federation of hetero-
geneous peers ranging from small, possibly mo-
bile devices to stationary servers. On this foun-
dation, self-organizing network optimization and
expressive in-network query processing capabili-
ties enable powerful information processing and
retrieval. Data streams in StreamGlobe are rep-
resented in XML and queried using XQuery. We
report on our ongoing implementation effort and
briefly show our research agenda.

Introduction

time, e.g., while moving across the area covered by the re-
spective network. Of course, this does not only hold for
the data delivering sensors, but also for the network nodes
that query the data streams within the ad-hoc network. In
the past, various approaches for finding information, i.e.,
documents, files, etc., in P2P networks have been stud-
ied, which has led to a number of topologies for P2P net-
works, one example being super-peer networks [28]. Deal-
ing with data streams, finding peers which deliver the re-
quired information is not the only task. Additionally, a
continuous data flow from data sources to consumers in
the network has to be established. An interesting challenge
arising in this highly dynamic environment is to develop
a distributed, self-organizing system for efficient routing
and in-network query processing. We pursue this goal with
our StreamGlobesystem which is based on its predeces-
sor ObjectGlobe [3]. StreamGlobe extends ObjectGlobe—
which is mainly focused on distributed query processing
for persistent data on the internet—by introducing query
processing capabilities on data streams in the network.
In our context, data streams are represented in XML and
queried (i.e., subscribed) using XQuery. While Stream-
Globe is not restricted to sensor networks, we use them as
a motivating example in the following.

Consider Figure 1 as an abstract example of a possible
application scenario for StreamGlobe. The depicted net-

In recent years, Peer-to-Peer (P2P) networks have gaina®ork contains four so-calleduper-peerSF, to SPs),

huge attention both in the media and the computer sciforming a stationary super-peer backbone network, and five
ence community. This is, on the one hand, due to thd0ssibly mobilethin-peers or peers for short,/ to F4)
stunning success of filesharing systems like, e.g., Napst@ionnected to the backbone. Peg¥s P, and P’; are a cell

and Gnutella. But on the other hand, it is also caused byphone, a laptop, and a PDA, respectively. These peers are
the degree of flexibility these networks provide. For ex-meant to register queries in the network and are therefore
ample, they can be used for setting up ad-hoc sensor nedt the receiving end of data streams. In contrast to that,
works where sensors can join and leave the network at anj€ersP’ and P, are sensors delivering their sensor data to

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Management for
Sensor Networks (DMSN 2004),

Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

the network in the form of XML data streams. Two ex-
amples for applications of similar real-life networks would
be satellite communication and weather observation. In
the former case, orbiting satellites would be the moving
sensors—or rather collections of sensors—streaming their
data to various receiving stations on the ground for evalu-



ation. In the latter case, the sensors would be attached to SP,
weather balloons or observation planes, delivering data like =
temperature, humidity, etc. to enable weather forecasts for s SP
different regions.

To illustrate some of the difficulties of query process-
ing in such networks and to motivate our approach, we P,
now introduce a rather simplified real-world example in a
little more detail. Let us assume th&j in Figure 1 de-
livers a data stream produced by special sensor suits worn
by firefighters in action. The sensors continuously deliver
sensor readings containing the corresponding firefighter’s
identity (id ), a timestampt{ime ), and the GPS coordinates
of the sensory, y), as well as information about the fire-
fighter's vital statistics and the environmental conditions. Figure 1: Example Scenario

We have exemplarily chosen to monitor body temperature ) ) .
(bt ), pulse ratedr ), and oxygen saturationg), as well needed (i.e. not subscribed) anywhere else in the network,

as environmental temperatuge §, carbon dioxide concen- €ading to a smaller data stream and reducing network traf-
tration (CO32, and sulfur dioxide concentratios©2). For fic. _The resul_tmg_ stream, containing the C(_)mblned infor-
brevity, we use the following simplified DTD to describe Mation for satisfying the queries ¢} and P, is routed to

the data stream, although StreamGlobe actually employS - Note that up to now, data needed by béthand P

I

XML Schema. has been routed as one single stream through the netw_ork.
At SP,, however, the stream has to be split into the—in
<IELEMENT reading (id, time, X, vy, our case—non-disjoint parts for the two receiving peers.
bt, pr, os, This involves replicating the stream and again filtering the
_ et, CO2, SO2)> two new streams, resulting in two streams which constitute
<!IELEMENT id (#PCDATA)> the final results for the two queries. These are eventually

routed toFP, and P, via S P, andS Py, respectively.

The remaining elements have analogous DTD entries. Let Decisions such as where to execute which operators in
us now further assume th& and P, are devices used by the network and how to route the data streams are made

an emergency physician and the fire department, respeey the. StreamGlobe query optimizer. Additional difficu_l-
tively. The former should receive a notification on a cell fies arise by the fact that the network can change over time
phone whenever a firefighter’'s oxygen saturation reaches @y adding or deleting queries and data streams which re-
critical level. Therefore, the peer represented by the physidUires a strategy for continuous or periodic reoptimization.

cian’s cell phone registers the following XQuery. The distinguishing features (_)f StreamGIo_bt_a compared to
related systems are thereby its self-organizing network, in
for $m in stream("firefighters")/reading terms of continuous reactions to dynamic changes in reg-
where $m/os < 92 or $m/os > 98 istered data streams and queries, and its routing and op-
return timization approaches for query and network traffic opti-
<alert> _ mization in P2P networks.
gm;‘c‘g} {$m/time} {$m/x} {$mly} ~ The remainder of the paper is organized as follows. Sec-
<Jalert> tion 2 presents some related work. In Section 3 we give

an overview of the StreamGlobe system architecture. Sec-
The fire department wants to monitor the environmentation 4 deals with optimization and query processing in
conditions, e.g., to be able to issue a warning if the condiStreamGlobe. In Section 5 we present a brief report on
tions get critical for the firefighters on site or the residentsthe currentimplementation status of our StreamGlobe pro-

living nearby. Thus, it registers the following XQuery. totype. Finally, Section 6 concludes the paper and gives an
outlook on future work.
for $m in stream("firefighters")/reading

return 2 Related Work
<gas> . .
{$m/id} {$m/time} {$m/x} {$mly} In the following, we present an overview of some work re-
{$m/CO2} {$m/SO2} lated to our StreamGlobe system. In particular, we deal
<lgas> with work in the fields of data stream systems, query pro-

cessing, network architecture, and grid computing.
StreamGlobe will handle this scenario as follows. Suppos
we want to reduce network traffic. The dataZf will be
sent toS P; where it will be filtered, leaving only the ele- With StreamGlobe being a system that handles and pro-
mentsid , time , x, y, os, CO2andS0Oz2in the stream. The cesses data streams, it is worthwhile to take a look at other
elementsbt , pr andet can be removed as they are not recent approaches to building data stream systems.

%.1 Data Stream Systems



One important project is TelegraphCQ [7]. This is a sys-or documents, our system is able to perform expressive in-
tem that deals with continuously adaptive query processingetwork transformations of data streams. Therefore, it can
in a data stream environment. Cougar [30] tasks sensatynamically create appropriate data streams that best fit the
networks through declarative queries. Aurora [6] is a newqueries to be answered while at the same time reducing net-
DBMS for monitoring applications and constitutes a cen-work traffic.
tralized stream processor for dealing with streaming data. To achieve this goal, StreamGlobe uses clustering tech-
In [10] two complementary large-scale distributed streammiques to identify reusable existing data streams in the net-
processing systems, Aurora* and Medusa, are describedvork that fit newly registered queries. This approach has
Aurora* is a distributed version of Aurora with nodes be- similarly been applied in the world of persistent data where
longing to a common administrative domain. Medusaview materialization and view selection are used to im-
supports the federated operation of several Aurora nodgsrove the efficiency of query processing [21]. In [29], fur-
across administrative boundaries. STREAM [2] incorpo-ther algorithms for solving the view materialization prob-
rates its own declarative query language for continuousem are devised. Materialized view selection and mainte-
queries over data streams and relations. It handles streamance have also been examined using techniques of multi-
by converting them into relations using special windowingquery optimization [23].
operators and converting the query result back into a data As already mentioned, StreamGlobe uses XQuery to
stream if necessary. PIPES [20] is a recent public domaimuery XML data streams. In [11] an XQuery engine called
infrastructure for processing and exploring data streams. XQRL for processing XQueries on streaming XML data

All of these systems—more or less—focus on speciais introduced. In StreamGlobe, we use FluX [19], an-
aspects of (adaptive) query processing, load balancing, ather XQuery engine for efficiently processing XML data
quality-of-service management. The major contribution ofstreams. The query containment problem in the context of
StreamGlobe is that it does not only efficiently locate andXML queries, which is relevant for multi-query optimiza-
query data streams, but also employs in-network query prokion, has been addressed in [27].
cessing for adaptively optimizing data flow within the net- 23 Network Architecture
work. Thus, StreamGlobe pushes query processing from
subscribing clients towards data sources in the networkConsidering network architecture, a lot of work has been
The optimization is based on data stream clustering derivedone with respect to P2P, Publish&Subscribe, and ad-hoc
from clustering the queries in the system. NiagaraCQ [8networks.
intends to achieve a high level of scalability in continuous P-Grid [1] is a self-organizing, structured P2P system.
query processing by grouping continuous queries accordfhe notion of self-organization with respect to stream pro-
ing to similar structures. In StreamGlobe, we employ acessing and stream routing is also central to StreamGlobe.
similar multi-query optimization approach to reduce net-In [28] the concept of super-peer networks is introduced.
work traffic and to enable efficient query evaluation. These networks are meant to improve the scalability of
P2P networks by using a super-peer backbone network.
The super-peers usually are powerful servers. Less power-
With respect to query processing, works in the fields offul, possibly mobile thin-peers can register and deregister
multi-query optimization, as pointed out above, and conthemselves in the network via the super-peers.
tinuous queries are related to StreamGlobe. Multi-query HyperCuP [25] is an approach that uses hypercubes as
optimization (MQO) has been addressed in [26]. It pur-a network topology in P2P networks. It thereby achieves a
sues the goal of processing multiple queries all at once intogarithmic upper bound for the number of hops needed to
stead of one query at a time. The main optimization poget from one super-peer in the network to any other super-
tential lies in the fact that queries may share a considerablgeer. This topology is used in [5] to deal with distributed
amount of common—or at least similar—input data thatqueries and query optimization in P2P systems.
can be reused for more than one query. Obviously, Strearrb—
Globe in general has to deal with a set of queries simul-™
taneously, thus rendering multi-query optimization an ap-StreamGlobe builds on and extends the Open Grid Services
plicable and suitable optimization approach. Also, queriesArchitecture (OGSA) and its reference implementation, the
in StreamGlobe are usually continuous queries over dat&lobus Toolkit [14] by adding data stream processing capa-
streams. Efficient processing of such queries has been ekilities to the grid computing domain. A related approach,
amined in [22]. Query processing in sensor networks haslso building on Globus, is described in [9]. However, this
been explicitly addressed in [31]. alternative approach concentrates mainly on data stream

Multicast in IP, ad-hoc and sensor networks, describedinalysis and quality-of-service aspects in data stream de-
for example in [15], routes data towards receiving ends idivery whereas we primarily focus on self-organization, dis-
a way that reduces network traffic by transmitting the samdributed in-network query processing and optimization.
message or document only once for all recipients instead of Another system building on the Open Grid Services Ar-
multiple transmissions, one for each recipient. It is impor-chitecture is OGSA-DAI (Open Grid Services Architecture
tant to point out that our work differs from these approachedata Access and Integration) [24]. As the name suggests,
in a major way. Instead of only reusing existing messageshis project is concerned with constructing a middleware to

2.2 Query Processing

4 Grid Computing



enable the access and integration of data from distributed XQuery

- . : L Subscriptions Data Sources
data sources via the grid. It also contains a distributed
query processor called OGSA-DQP. In contrast to Stream-
Globe, OGSA-DAI has no special focus on data streams. 5

3 StreamGlobe Architecture Overview SRR OEEEETELEELEEEE:
' Data Stream Processing

StreamGlobe

=

Q
StreamGlobe constitutes a federation of servers (i.e., peers) oI s &
which carry out query processing tasks according to their . 1 XSAG: | FluX "c% §°
capabilities. The basic architecture of a peer is depicted P2P Overlay Network gg
in Figure 2. The various layers of this architecture will be
sketched in the following. Dashed lines mark layers whose OGSA (Globus Toolkit)
presence depends on the capabilities of the respective peer.
3.1 Open Grid Services Architecture Figure 2: Architecture Overview

The StreamGlobe architecture is based on grid standards.
Grid computing [13] and the associated Open Grid Serneighbors. A peer only interacts with its neighbors, i.e., no
vices Architecture (OGSA) [12] have gained considerabledirect communication takes place between two peers not
attention recently. Grid computing denotes a distributedoeing neighbors. If data has to be transferred between two
computing infrastructure where computers can exchanggndom peers, eute between these two peers has to be
data and perform large-scale resource sharing over the grig@stablished such that two successive peers on this route are
To achieve this, an architecture for integrating heterogeneighbors and the starting point and the end point of the
neous dynamic services while guaranteeing certain qualityroute are the source peer and the destination peer, respec-
of-service requirements is needed. For this purpose, thévely. For the implementation of this overlay network, pre-
Open Grid Services Architecture has been developed. ~ vious work on P2P network topologies can be employed,
Despite the growing importance of the grid standards€.9-, @ structured approach based on Cayley graphs as used
data stream processing in the grid computing context hai the HyperCuP [25] topology. Since a major goal is build-
hardly been investigated so far. We have decided to iming a network with highly heterogeneous peers with respect
plement our StreamGlobe prototype as an extension of thé® computing power—ranging from small, mobile devices
Globus Toolkit for grid computing [14]. Globus is a refer- to stationary workstations or servers—, we have to classify
ence implementation of the Open Grid Services ArchitecPeers according to their capabiliti€ghin-peersare devices
ture. Our goal is to use existing Globus techniques for ouwith low computational power, like sensor devices, PDAs,
purposes where possible and to integrate the StreamGlots€ll phones, etc., which are not able to carry out complex
system and its functionality into the toolkit as an extensionquery processing tasks. In contrastper-peersre station-
of Globus for data stream processing. ary workstations or servers providing enough resources for
The main aspects of Globus that will be used in StreameXtensive query processing. These super-peers establish a
Globe are communication mechanisms aatvice datael- backbone taking over query processing tasks which cannot
ements Service data elements can be associated with anfye performed by other peers. Thus, they constitute a super-
service in the grid. They are essentially XML documentsPeer backbone network similar to that in [28].
satisfying a given XML Schema and_ describing properties; 3 client Interface
of the service they are associated with. In our context, ser-
vice data elements will be used for describing data streamdser interaction in StreamGlobe is depicted at the top layer

and properties like bandwith of network connections, pro-of Figure 2. StreamGlobe enables clients to spesif-
cessing capabilities of peers, etc. scription rulesfor information processing and retrieval us-

ing the XQuery language. Subscription rules are registered
3.2 Network Topology at certain peers, i.e., normally at the devices users are work-
In the OGSA framework, direct communication betweening with, e.g., their laptops, PDAs, cell phones, etc. In our
all participating grid services is allowed. However, this be-context, subscriptions are transforming queries and not just
havior is not the normal way of communication in networks queries for retrieving matching files or documents. In fact,
including mobile devices. It might not even be desirableStreamGlobe enables expressive transformations of data
in a scenario that tries to reduce network traffic as in ourstreams according to registered subscription rules. Thus,
case. For instance, mobile sensors will normally commuit allows clients to flexibly tailor data streams to their indi-
nicate via some kind of access point they are connected tidual requirements.
Hence, in StreamGlobe we establish a logical P2P overlay Similarly, data sources also register the provided data
network constituting a federation of heterogeneous peerstreams at a certain peer within the StreamGlobe system.
Developing a research platform, we do not restrict our-Data streams can be registered in two ways. A data source
selves to employing a special P2P network topology formay register its data stream as an individual stream, which
StreamGlobe at the moment. The P2P network consisthen is published using a unique identifier. Another possi-
of a set ofpeers Each peer has a set of other peers adility is registering a data stream as part ofigual data



stream which again is accessible using a unique identi- £

fier and multiplexes all the data of the participating data%)<

sources into one single stream. This technique is used i
the introductory example to merge the sensor data of aIE
firefighters. The schema of the data streams is specified us-
ing XML Schema. Streams are fed into StreamGlobe using
wrappers which are running on corresponding peers and
transform the data into a suitable format, e.g., by convert-
ing raw sensor data to XML.

3.4 Peer Architecture

A more detailed view of the peer architecture is depicted
in Figure 3. It basically reflects the structure sitting on top
of the P2P network layer of Figure 2. The various com-
ponents are implemented as cooperating grid services in
the OGSA framework. The individual peers exchange con-
trol information, e.g., registration of new neighbors, sub-
scriptions, etc., via a top-level interface service, which dis-
patches the messages to corresponding subsidiary Stream-
Globe services, e.g., the optimization or the query engine
service. The communication of these services is conducted
via the RPC mechanisms of the Globus Toolkit. All ser-
vices marked by solid rectangles are mandatory for every e
peer. Dashed boxes mark services that vary between dif-
ferent peers according to their functionality, as mentioned
earlier. For example, thin-peers do not incorporate a com-
plete optimization and query execution unit, but only pro-
vide basic functionality. A cell phone might for instance
only provide functionality for receiving and displaying data
streams and a sensor device might only be able to transmit
its measurement data.

The metadata management component, which will be
discussed further in the next section, interacts with each
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Figure 3: Peer Architecture

Subscriptions: All subscription rules and registered
data sources are recorded. For each registered data
source, the schema of the data stream is stored.
Schemas of data streams are specified using the XML
Schema language.

Optimization: The metadata management main-
tains information needed for optimizing the network.
Among others, it maintains properties of network con-
nections, like bandwith and current amount of net-
work traffic. It also maintains the computational capa-
bilities of the peers and statistics of the data streams,
i.e., size and cardinality of the elements of a data
stream. The statistics can be provided either by the
data source itself or by computing them online as
the corresponding wrapper feeds the data stream into
StreamGlobe.

of the components and provides information needed for
network management, optimization, and query execution. All metadata is stored locally at a peer in the form of
Peers exchange XML data streams representing user da@lobus service data elements. For being able to optimize
over their data ports. The XML data streams are initiallythe network, special speaker-peers, which will be intro-
parsed by the wrappers and represented as a sequencedofced in Section 3.6, will need to have more global infor-
SAX events. Special events are interspersed within thesmation about a special set of peers (a certain subnet). In this
streams which are used for internal purposes. For examplease, those special peers maintain additional information,
synchronization marks are generated whenever the systeelg., the graph of the network topology of the respective set
restructures the data flow to synchronize all affected peersf peers, or are able to request the desired information from
for the change in query execution. Since the Globus Toolkithe corresponding peers, e.g., statistics of a certain data
currently does not provide suitable techniques for transmitstream. To maintain a consistent state, peers have to notify
ting data streams, we use our own protocol based on TCEhe speaker-peer of changes, e.g., if a peer joins or leaves
connections for this purpose. the network, new subscriptions or data streams are regis-
tered or existing subscriptions or data streams are deregis-
tered, etc. Therefore, MDVs of peers register themselves
As Figures 2 and 3 suggest, metadata is needed in all layees notification sinks or notification sources at the MDV of
of the StreamGlobe architecture. The metadata manageheir speaker-peer using the notification mechanism of the
ment (MDV) is based on the distributed metadata manageSlobus Toolkit.
ment of ObjectGlobe [16] and forms a backbone that peer
exchange metadata with. In particular, the metadata mar-
agement component records the following information:  In Section 1, we have briefly introduced our approach of
optimizing the data flow in the network using in-network
e Network: The metadata management records theguery processing. In the following, we give an overview
neighborhood relationships between peers needed f@f the optimization and evaluation strategy we employ in
establishing the P2P overlay network. StreamGlobe.

3.5 Metadata Management

.6 Optimization and Evaluation Strategy



Optimization in a distributed architecture implies sev- using special filtering techniques such as XSAGs [18].
eral challenges. In order to perform optimization, someMore details will be presented in Section 4.
metadata about the network—as described in the previous Of course, optimization is a continuous process which
section—has to be available. In a distributed system, thereeoptimizes the system on-the-fly as peers come and go,
are basically three approaches for performing optimizatiordata sources and subscription rules are registered and
using such metadata: deregistered, and data streams change over time.

1. A single optimizing component has global knowl- 4 Optimization and Query Processing
edge of all metadata and performs optimization with a,

| In this section, we describe some of our approaches to opti-
global view of the network. PP P

mizing network traffic and performing efficient query pro-

2. Every peer has only local knowledge of its own meta-cessing in StreamGlobe. This substantiates the strategy in-
data (including that its neighbors can be asked for theitroduced in the previous section.
metadata) and tries to optimize the network by making4 1 Optimization
locally optimal decisions. ' P

3. A hybrid approach, in which special peers have globalI'St: We address the key ideas for achieving the three op-
knowledge of (small) subnets which are individually timization goals stated at the end of Section 3.6. The

optimized by the responsible peer. f!rst goal is.achieved by appropriately. pushing subscrip-
tion evaluation into the network. This is done by execut-

Since we assume a large, distributed environment, a cenrg the subscription as a whole or in part at one or more
tralized optimization component as in the first method isappropriate peers on a route from the data sources to the
infeasible. The second approach fits quite nicely into gpeer where the subscription was registered. An appropriate
distributed P2P network, but it seems unlikely that it will peer is a peer that is able to process the subscription, i.e.,
deliver acceptable results. Hence, we focus on the hybrithas sufficient computing power and is selected by the query
approach: A selected super-peer, calipdaker-peeiisre-  optimizer, taking into account optimization goals such as,
sponsible for optimizing a certain subnet of the network.e.g., reducing network traffic. In order to support power-
Of course, this subnet may include other super-peers thdtl subscription rules, the concept ofobile codeis em-
will not actively participate in optimizing this part of the ployed. Besides peers providing a basic set of functionality,
network. With peers joining and leaving subnets, a speakemsers are enabled to include user-defined code in subscrip-
peer might decide that a subnet is getting too big (or todion rules, e.g., predicates, aggregation operators, etc. This
small). In this case, the subnet is split into two new sub-user-defined code is subsequently instantiated at the peer
nets and for each new subnet a responsible speaker-peerigcessing the corresponding part of the subscription.
elected among the super-peers (or analogously a subnet is The second goal is accomplished by using two tech-
merged with a neighboring subnet if it is getting too small). niques complementing each other. The first technique is
Additionally, by varying the maximum size of a subnet op- filtering of data streams. Filtering is achieved by using
timized by a speaker-peer, the approaches (1) and (2) cagither projection (called structural filtering) or selection
be simulated, which enables an evaluation of all three apfcalled content-based filtering) or both on the elements of a
proaches in terms of optimization quality. data stream—as described in the example scenario in Sec-

Basically, optimization in StreamGlobe determines thetion 1—and is performed bfjitering operators These fil-
peers at which (at least parts of) the subscriptions are exering operators are executed at peers on the route of the
ecuted and decides how to route the data streams in th#ata stream as close to the source of the stream as possi-
network. Optimization has three major goals: ble. Thus, the amount of data that has to be transmitted

) ) o through the network is reduced. The second technique is

1. Enable users to register arbitrary subscriptions at anyjaia stream clustering This term denotes the combina-
(suitable) device regardiess of its processing capabilition of several similar or equal data streams in the network
ties. to form one single stream that serves multiple recipients.
2. Achieve a good distribution of data streams in the net-Data stream clustering in StreamGlobe works as follows.
work without congesting it with redundant transmis- During the registration of a new query, the system parses

sions. the query, identifies its properties and stores them in a suit-
3. Optimize the evaluation of a large number of subscrip-able data structure. In our case, this will be a Globus ser-
tion rules by means of multi-query optimization. vice data element. The properties of a query include the

data streams needed to answer the query (content aspect),

The goals (1) and (3) are accomplished by pushinghe operations, e.g., projections, selections, joins, etc., used
guery execution into the network. Subscription rules, i.e.to transform these input streams (structural aspect) and the
XQueries, are evaluated using the FluX query engine [19tonditions needed for these operations, e.g., projection at-
that was developed in cooperation with our group. The sectributes, selection and join predicates, etc. All transformed

ond goal is achieved by placirfdtering operatorson the  data streams in the system, that where generated by a query,
routes of data streams. These filtering operators are also eare equally represented by their respective properties. Ini-

ecuted by FluX. They could alternatively be implementedtial data streams, registered at a super-peer by some data



Forwarding
Projection
Projection and Selection

FluX Subscription Evaluation

Figure 4: Query Evaluation Plan for the Example Scenario

source, are represented by a unique id. The reason faran be reused to compute more common aggregates similar
choosing this properties approach is to get one level of abto the roll up and the cube operations in data warehousing.
straction higher compared to the schema representation of Figure 4 shows the query evaluation strategy using the
data streams, thus facilitating the comparison of streamexample scenario from Section 1. The symbols at the net-
and the search for reusable data streams in the network. work connections represent groups of elements. The dia-
During the actual data stream clustering stage, thenond represents the elemenmts, pr, andet, the circle
speaker-peer of the affected subnet looks up all relerepresentss, the triangle represen@2andS0O2 and the
vant metadata (i.e. service data elements) of existing dateectangle represenis , time , x, andy. Projections cause
streams in its subnet and compares their properties to thosgymbols to disappear as their corresponding elements are
of the newly registered query. In a first simple greedy ap-iltered out of the stream. Selections remove certain in-
proach, the speaker-peer selects those data streams as inptances of elements that do not fulfill the selection predi-
streams for the new query that contain the necessary infocates which is depicted as dotted symbols. An exclamation
mation for answering the query, contain the least amounmark denotes a change in data representation, e.g., the in-
of unnecessary information, and have to be routed througtroduction of thealert element atS P, in the result for the
the minimum number of peers to get to the recipient. Ofquery atP,. In our example, the introduction of tlgas
course, the decision where to execute certain query opelement in the answer for the query /&t is supposed to
erators, e.g., joins, in the network has also to be maddake place at?, itself and therefore does not show up in
This, along with more sophisticated methods for searchthe network. The decision whether to perform the FluX
ing reusable streams and routing them to recipients, is theubscription evaluation &, SP;, or SP, is made by the
subject of future research and will be based on an approsptimizer and is based on factors like computational power
priate cost model. Furthermore, we also intend to investiand current load factor of peers.
gate strategies for reorganizing the network in order to keep The sample query evaluation plan in Figure 4 depicts
the system globally effective even if local evolutions due tothe situation after the data stream and the two queries of
network and/or subscription changes lead to a deterioratio8ection 1 have been registered in the network of Figure 1.
of global system performance. Furthermore, the query optimizer has already optimized the
Data stream clustering as described above also corgueries and integrated them into the system. First, the el-
tributes to fulfilling the third goal of effective multi-query ementsbt , pr, andet are removed from the stream by
optimization. In every subnet, the speaker-peer analyzea projection operator. To reduce network traffic, the opti-
the registered subscriptions and identifies common subexwizer chooses to install the mobile code of the appropriate
pressions. These common subexpressions are evaluatptbjection operator as close to the data source as possible.
once in this subnet by executing a subscription rule corSince the data sourcg, is a simple sensor without query
responding to a common subexpression at a suitable pegrocessing capabilities and is therefore not able to perform
Rather than individually evaluating this subexpression inthe projection by itself, the projection operator has to be
each of the original subscriptions, the subscriptions arénstalled and executed in the network at super-peEs.
rewritten to utilize the newly generated and specialized datd he resulting data stream is routed only once (as one data
stream stemming from the common subexpression. Bestream cluster) t& P, although it is needed twice in the
sides reducing the workload of the affected peers, networkystem. Therefore, the optimizer decides to replicate the
traffic might be further reduced. For instance, a commordata stream a$ P, to obtain two identical versions of the
task will be aggregating sensor data. Instead of transmitstream. The decision of how to route and where to replicate
ting the whole dataset to every peer performing the saméhe stream is simply made by pursuing the goal of mini-
aggregation, it will be executed near the data source anthizing the number of hops each stream has to go from its
only the aggregated results, which will constitute a smallersource to its recipient in the network. Of course, more so-
data volume, will be delivered to the respective peers. Furphisticated optimization goals and routing strategies can be
thermore, existing aggregated data streams in the systeemployed here. We will examine this in future work. At



S P, the stream with destinatioR,, which is the fire de- then split the stream & P, routing Ps’s part directly to
partment, is again reduced by a projection operator removFs. The remaining stream for pe&s could then be routed
ing element 0s. The remaining stream is forwarded@®3o to SP;, where the join processing could take place. But if
via the shortest path, in this case o¥&P;. The rest of the the join is known to produce a relatively small result com-
guery evaluation, consisting of the introduction of thees  pared to the input streams, it would probably be better in
element, is performed &, itself. The stream with destina- terms of network traffic to process the join alreadysdt,
tion P, is also filtered atS P, this time using a projection and then route the result 18, via SP;. This is an exam-
and a selection as demanded by the respective query. Alsple of a more difficult decision that has to be made by the
the newalert element in the query result is already intro- StreamGlobe query optimizer.
duced e_ttSPg_. The resulting stream _is t_hen forwarded to 4 5 Query Processing
Py, again using the shortest path which is $i&;. In gen- . ) .
eral, the shortest path is not unique and depends on the uk€t us now outline some basic concepts used for in-network
derlying network topology. In the case of multiple shortestduery processing. Query execution in StreamGlobe focuses
paths, one appropriate path among them is chosen. on processing streaming data and therefore empags-
Continuing our example from Section 1, we now take basgdevaluatmn strategies—in contrast to traditional query
a look at a more complicated situation. Let us assumé&ngines where data is normally “pulled” from subordinate
that peerP; represents a collection of weather sensorsoPerators, e.g., by using the iterator model.
delivering a virtual data stream registered at super-peer First, we will explain how filtering operators are exe-
SPy. Each sensor reading contains the identifier of thecuted. As outlined before, filtering operators perform a
corresponding sensoid(), a timestampt{me ), the GPS  Projection of a data stream on the requwed parts of the
coordinates of the sensox,(y), and measurements for €ntire schema and a selection according to predicates of
wind (wind ), temperaturetémp ), humidity (um), and air @ subscription rule. Smce the baS|c_ scher_na of _the origi-
pressure dp). Sensor readings for wind consist of wind Nal data stream remains the sér(imeSIdes discarding un-
strength §trength ) and wind direction direction ).  hecessary information), projection can be done on-the-fly

DTD. forming selections is somewhat more difficult, because in
the worst case data cannot be propagated before the predi-

<IELEMENT reading (id, time, X, VY, cate is evaluated, which renders buffering inevitable. Thus,

wind, temp, hum, ap)> we restrict filtering operators to only employ predicates re-

<IELEMENT id (#PCDATA)> ferring to a single data object of the data stream. There-

with, at most the current data object has to be buffered for
being able to propagate the filtered data stream. Hence, we
can implement these operators scalably and efficiently us-
ing automata-based techniques as described in [18] or the
new FluX query engine which was developed in coopera-

We now further assume that the fire departmenateg-  tion with our group and will be sketched in the remainder
isters a new query a§ P, in addition to the one already ©Of this section. o

registered in Section 1. This new query requires the data In order to evaluate subscription rules on data
from P, to be joined with data fronP,. The fire depart- Streams, we employ novel optimization techniques, called
ment is interested in finding out how strong and from whichFluX [19], for minimizing memory buffer consumption
direction the wind blew at the point in time and at the placeduring the execution of XQueries on streaming data. FluX
a gas concentration was measured. Therefore, it joins th§ an intermediate language extending the XQuery syntax
data of the gas sensors frof with that of the weather by event-based processing instructions which enables con-
sensors fromP,. The join tries to find for each measured Scious handling of main memory buffers. The key idea of
gas concentration a sensor reading for wind strength ante FIuX query language is the noyebcess-strearstate-
direction that was close to the gas measurement in terms &fent { ps $z: ¢ } for event-based (streaming) pro-
both, the point in time the respective sensor readings whergessing of a substream assigned to a variéible It pro-
created and the geographical location at which the correcesses the data stream by means of a lisiveht-handlers
sponding sensors where located. This can be achieved Ky Each event handler is of one of the two forms

using the bestmatch join operator [17].

One possibility to compute the join would be to filter
Py’s data stream accordingly &P, and route the result- @ on-first past( S) retun  «
ing stream directly te5 P;, where the join processing takes
place and the result gets deliveredita This would prob-
ably be the best solution if no data from pd@ris needed
anywhere else in the network. However, whnalso re-
guests data fron’;, it might be better to route a data stream
with the data for bott, and P; from S P, to S P, first and 1in particular, the order of elements is preserved.

<IELEMENT wind (strength, direction)>
<IELEMENT strength (#PCDATA)>
<I[ELEMENT direction (#PCDATA)>

e on a as $y return «

with « being an arbitrary subexpressianbeing the la-
bel of a tag, ands' being a set of labels of XML tags. An
“on «" handler is executed if an opening tag labeled
encountered in the stream $f. The subsequent elements




of the data stream are labeled as a substrégand used 5 Implementation Status

to evaluate the subexpressian(which may in turn be a As of the writing of this paper, we have implemented

prosess_—strear;n stateme_nt or tradmo_nal XQuery). The la the basic infrastructure of StreamGlobe, building on the
ter “on-first handler is executed if no more elements

labeleds with s ¢ S will be encountered in the stream be- Globus Toolkit, and we are able to establish an overlay P2P

ing currently processed and triggers the evaluation.dh network between peers. We have also completed a proto-

general, an arbitrary query cannot be evaluated purely o type implementation of the FluX streaming query engine

the-fly without buffering, e.g., if the sequence of elementg‘or evaluating subscription rules. This query engine is cur-

in the query is different from that in the input data stream.rently being integrated into the StreamGlobe system. At

' : the moment, the optimization techniques of Section 4 are
Hence, a FluX query consists of a purely streaming part us-,

ing our novel syntax and of embedded traditional XQuery,deve'c’ped and implemented. A first prototype system of

e . StreamGlobe including all the basic features presented in
which is evaluated on previously buffered parts of the datelhiS paper will be operational by the end of the year
stream. The main challenge is to rewrite an XQuery into a '

corresponding FluX query which evaluates th?s queryusingg Conclusion and Future Work

as many of the event-based methods as possible and thereby i )

minimizing buffer usage. In [19], an algorithm which uti- In'this paper, we have described the ongoing development

lizes order constraints on the elements imposed by the DTH our StreamGlobe system. StreamGlobe is focused on

of the data stream is presented to achieve this goal. meeting the challenges that arise in processing data streams
Rewriting XQuery into FIuX is based on generating in an ad-hoc P2P network scenario. It differs from other

a safe FluX query. That is, an XQuery subexpression data stream systems in not only efficiently locating and

of a FluX query operating on buffered data must onlydU€'ying data streams, but also optimizing the data flow
in the network using expressive in-network query process-

reference—e.g., by path expressions or other variables— techni This is basicall hieved b hi
parts of the data stream which will not be encountered an)'/]g echniques. This IS basically achieved by pushing op-
ators for query processing into the network. Continuous

more after this expression has been evaluated. Thus, g &10rs Tor ¢ ) A

query engine can easily populate buffers with the neede optimization leads to an adaptive and self-opt!m|2|ng sys-
parts of the data stream and provide these buffers for th m Wh'(.:h enables USers to carry out power_ful information
execution of the buffer-based parts of the FIuX query. The’r0C€SSing and retrieval. StreamGlobe builds on and ex-

d f | : ina the qi DTI:SendS the_ Globu_s Toolkit, a reference implemenpation of the
\?v%?ﬁg bgLig\rzri(:teonuirn?ga'l:rrur;(eazcglwli\r/l/(;usmg egiven Open Grid Services Architecture (OGSA) for grid comput-

ing, and serves as a research platform for our future work.
Future research will cover further topics in query pro-
cessing on streaming data, optimization methods for dis-
tributed data stream processing, load balancing and quality-
of-service aspects [4] in a distributed data stream manage-

{ps stream(“firefighters™)
on reading as $m return
{ps $m:
on-first past() return <gas>;

on id as $id return {$id): ment system. In detail, this will include augmenting the
on x as $x return {$x}; FluX query engine to support windowing operators like ag-
on y as $y return {$y}; gregations and joins. It will also comprise improving the
on CO2 as $CO2 return {$CO2}; optimization component by taking into account reorgani-
on SO2 as $S02 return {$S02}; sation issues to keep the system effective as well as syn-
on-first past( *) return </gas>; } } chronization aspects, e.g. for distributed join processing on

various streaming inputs. Furthermore, we will continue to
This FluX query is purely event-based (outputting the val-examine routing approaches for our hierarchical network
ues of the substreams in then” handlers can be done on- organisation and conduct advanced research concerning the
the-fly) and hence needs no buffering at albn-first combination of multiple query processing operators, predi-
past( *)” is a shortcut for the se$ containing all possi- cate comparisons in the context of query clustering, and the
ble labels in this substream and is therefore executed afinimization of memory requirements during query eval-
ter all other elements have been written. More detailglation. Eventually, support for content-based query sub-
on FluX together with an experimental evaluation can bescriptions will be added to StreamGlobe.
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