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Abstract

Molecular profiling of tumors promises to advance the clinical management of cancer, but the

benefits of integrating molecular data with traditional clinical variables have not been

systematically studied. Here we retrospectively predict patient survival using diverse molecular

data (somatic copy-number alteration, DNA methylation and mRNA, miRNA and protein

expression) from 953 samples of four cancer types from The Cancer Genome Atlas project. We

found that incorporating molecular data with clinical variables yielded statistically significantly

improved predictions (FDR < 0.05) for three cancers but those quantitative gains were limited

(2.2–23.9%). Additional analyses revealed little predictive power across tumor types except for

one case. In clinically relevant genes, we identified 10,281 somatic alterations across 12 cancer

types in 2,928 of 3,277 patients (89.4%), many of which would not be revealed in single-tumor

analyses. Our study provides a starting point and resources, including an open-access model

evaluation platform, for building reliable prognostic and therapeutic strategies that incorporate

molecular data.

Introduction

The Cancer Genome Atlas (TCGA) project has yielded many biological insights through

generating genomic, transcriptomic, epigenomic and proteomic data from a large number of

patient samples in many cancer types1–6. However, the potential clinical utility of these data

in aggregate remains largely unknown.

Large-scale molecular profiling data may be informative for multiple aspects of oncology

practice. One key application for patients with primary disease is accurate prognosis, which

helps stratify patients into different risk groups and choose both treatment and surveillance

strategies. Traditionally, prognosis is based on clinical variables such as age and tumor

stage. Recently, extensive efforts have been made to incorporate molecular information for

better prognosis. For example, ER, PR and HER2 protein levels and HER2 genomic

amplification are important biomarkers in breast cancer that have demonstrated high value

in clinical use7. However, owing to the high cost of molecular profiling on a large scale,

previous studies have either focused on a small number of selected genes or have employed

only single-platform genomic data (e.g., microarrays). By convention, such studies have

been limited to a single cancer lineage. Another important clinical application is to choose

targeted therapies based on the alteration spectrum in an individual patient’s tumor. Multiple

efforts have been initiated to apply high-throughput sequencing data in clinical strategies,8, 9

although alterations in clinically actionable genes have not been fully cataloged. Knowledge

of this catalog may inform target selection for drug development as well as clinical trial

design and identify patient populations that may benefit from emerging targeted

therapeutics.

The overall goal of this study was to address how and to what extent TCGA molecular data

could impact oncology practice. Thus, we evaluated two closely related but distinct aspects

of clinical utility—prognostic utility (that is, predicting patient survival using various types

of high-throughput molecular data across multiple tumor lineages) and therapeutic utility

(that is, identifying the spectrum of somatic alterations in clinically actionable genes, which
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in the future may inform treatment selection). First, we examined the performance of

molecular data (somatic copy number alteration (SCNA), DNA methylation and mRNA,

microRNA and protein expression) alone or in combination with clinical variables in

predicting censored or dichotomized patient survival data for four TCGA cancer types with

high-quality overall survival data. Furthermore, to facilitate a broader community effort, we

developed an open-access platform that allows researchers to build and evaluate survival

prediction models on these datasets. Here we did not intend to generate prognostic models

ready for clinical use, but rather we sought to provide insights into how to improve such

models by incorporating informative molecular data. Second, we investigated the current

spectrum of potentially clinically actionable alterations (somatic point mutations and small

insertions/deletions) across 12 TCGA tumor types. By analyzing molecular data from

multiple cancer types, we were able to evaluate prognostic models and identify alterations

that would not have been obtained with single-tumor datasets.

Results

Assessment of prognostic power of diverse molecular data

We focused on four TCGA cancer types: kidney renal clear cell carcinoma (KIRC)6,

glioblastoma multiforme (GBM)1, ovarian serous cystadenocarcinoma (OV)2 and lung

squamous cell carcinoma (LUSC)4. These cancer types were chosen because their TCGA

datasets included survival data with adequate follow-up time and sufficient samples

characterized by multiple types of molecular data. The TCGA cohorts have overall survival

patterns similar to those reported in previous publications10–13. For each cancer type, we

compiled a core sample set in which each sample has information available for the overall

survival time, clinical variables (e.g., gender, age, tumor stage and grade) and at least four

out of the five types of molecular data related to gene expression (SCNA: Affymetrix

Human SNP Array 6.0, ~100 arm or focal alterations; DNA methylation: Illumina DNA

Methylation microarray, ~20,000 genes; mRNA expression: Agilent 244K microarray or

Illumina mRNA-seq, ~20,000 genes; miRNA expression: Agilent Human miRNA-specific

microarray or Illumina miRNA-seq, >500 microRNAs; protein expression: Reverse Phase

Protein Array, ~170 proteins) (Table 1).

For each core sample set, we applied an approach of Monte Carlo cross-validation and

assessed the predictive power of individual molecular data types or clinical variables using

the concordance index (C-index)14. The C-index is a non-parametric measure to quantify the

discriminatory power of a predictive model: C-index = 1 indicates perfect prediction

accuracy and C-index = 0.5 is as good as a random guess (Online Methods). We compiled

candidate features from molecular data or clinical data for each cancer type and randomly

split the core set into training and test sets 100 times (Fig. 1a). We built the predictive

models from the training set using two well-established, but highly complementary methods:

(i) Cox, the multivariate Cox proportional hazards model with L1 penalized log partial

likelihood (LASSO)15 for feature selection, and (ii) random survival forest (RSF)16.

For each cancer type, the clinical-variable-only models showed substantial predictive power,

with C-indexes significantly higher than 0.5 (range: 0.624–0.754; P = 0) (Fig. 1b–e and

Supplementary Figure 1). In 9 out of 18 cases, the models built from individual molecular
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data sets alone showed statistically significant predictive power (Supplementary Figure 1),

but in only one case, the model built from LUSC protein expression data had predictive

power similar to that of the corresponding clinical-variable-only model (Fig. 1e, C-index

0.632 vs. 0.626, P = 0.40, Wilcoxon signed rank test). The relative predictive power of

individual molecular datasets strongly depended on the cancer type: for example, the

prognostic power was much higher for KIRC than for the other three cancer types. In

general, the trends observed with the Cox models were similar to those observed using the

RSF models.

To examine whether genomic and proteomic data can provide additional prognostic power

when used with clinical variables, we built predictive models by integrating clinical

variables with each type of molecular data (both gene-level features and molecular subtype

features) (Online Methods). Notably, the integrated models resulted in statistically

significantly improved predictive power compared to those clinical-variable-only models in

three cancer types, including mRNA, microRNA and protein expression in KIRC, miRNA

expression in OV and protein expression in LUSC (one-sided Wilcoxon signed rank test,

KIRC clinical + mRNA: P < 3.3×10−3, FDR < 0.035; clinical + miRNA: P < 1.2×10−4, FDR

< 2.1×10−3; clinical + protein: P < 8.4×10−5, FDR < 2.1×10−3; OV clinical + miRNA: P <

7.0×10−5, FDR < 2.1×10−3; LUSC clinical + protein: P < 7.9×10−4, FDR < 0.011) (Fig. 1b–

e). However, in terms of quantitative gain (i.e., the median value of Somers’ D14 across the

100 splits, a measurement for C-index change), the increase was limited (KIRC clinical +

mRNA: 4.0%, clinical + miRNA: 7.4%, clinical + protein: 2.2%; OV clinical + miRNA:

13.7%; LUSC clinical + protein: 23.9%). In addition, we examined the effects of machine

learning algorithms, feature selection and sample size of the training set on model

performance (Supplementary text and Supplementary Figs 2–4).

To facilitate a broader community effort for such modeling, we developed an open-access

platform that allows researchers to evaluate and submit survival prediction models in a

“collaborative competition” research framework (Supplementary Fig. 5). The homepage of

the TCGA Pan-Cancer Survival Prediction challenge can be accessed in Synapse (doi:

10.7303/syn1710282). The site contains all models used in this study, including provenance

records and transparent source code that allows each model to be inspected, rerun, or

improved upon. Each model is linked to a standard set of meta-data annotations that provide

online querying capability (e.g., corresponding to the cancer type or learning algorithm),

allowing for the comparison of models based on user-defined criteria. The C-index scores

for each model, as reported here, are displayed in the form of a real-time leaderboard.

Biological insights from top-performing prognostic models

For the top prognostic models highlighted in Figure 1, we further examined important

molecular features included in each model to gain some mechanistic insights. The LUSC

protein expression model is the only case where the molecular data alone showed a

performance similar to that of the clinical-variable-only model. Features in the model with

high predictive ability16 were dominated by proteins involved in DNA repair and

microsatellite instability (e.g., MSH2) and metabolism (e.g., ACC1) (Supplementary Table

1).
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As shown in Figure 1, molecular data in five integrative models conferred additional

prognostic power given clinical variables. Notably, in four of these models, the only

contributing molecular feature was the molecular subtype derived from the corresponding

expression data (through consensus nonnegative matrix factorization (NMF)17). Molecular

subtypes can be regarded as higher-level assembles of individual gene features and therefore

may act as a more robust predictor than an individual marker or small marker sets. Indeed,

the NMF subtypes (derived from OV miRNA expression, LUSC protein expression and

KIRC mRNA and protein expression data, respectively) showed distinct survival patterns in

the respective cancer types(log-rank test, Fig. 2c, P < 0.043; Fig. 2e, P < 8.2×10−3;

Supplementary Fig. 6a, P < 9.8×10−5; Supplementary Fig. 7a, P < 1.1×10−4).

Given the limited availability of suitable independent data in the public domain, we

evaluated the performance of the OV clinical + miRNA model. Using the multiclass

classifier built from TCGA OV miRNA expression data (Fig. 2a, Online Methods, the area

under the receiver operating characteristic curve [AUC] = 0.98, Fig. 2b), we recovered the

survival pattern of the NMF subtypes observed for the TCGA core set (Fig. 2c, log-rank test

P < 0.043) in an independent cohort18 (Fig. 2d, log-rank test P < 6.3×10−3): the patients in

cluster 3 have better survival than those in clusters 1 and 2 (prognostic miRNAs in each

cluster are shown in Supplementary Table 2). Further, applying this trained model to the

independent cohort yielded the expected improvement for including the miRNA NMF

subtypes.

For the molecular subtypes defined by LUSC protein expression, pMEK1 and pMAPK and

the downstream target pS6 were among the top markers expressed at higher levels in

patients with shorter survival times (clusters 2 and 3, Fig. 2e,f). Clinical and preclinical data

suggest that MEK inhibitors are active in specific subsets of non-small cell lung cancer, such

as KRAS-mutated lung adenocarcinomas19, 20. Our results suggest that patients with high-

risk forms of LUSC have relatively greater activation of the RAS/MEK/MAPK pathway and

that MEK targeting warrants further exploration in this population as well. In addition, the

mTOR and Src pathways may also be more active in cluster 3, whereas DNA-repair protein

levels were low in both clusters 2 and 3 (Fig. 2f). Gene signatures associated with KIRC

mRNA expression subtypes were aligned with their reported biological roles and survival

patterns: many proteins involved in acute-phase response signaling and several pro-

metastatic matrix metalloproteases were highly expressed in the groups with worse survival

outcomes (clusters 2 and 3)21, 22, whereas death receptor signaling proteins were down-

regulated in these groups23 (Supplementary Fig. 6a,b). The survival pattern of the NMF

subtypes by KIRC protein expression also matches the survival correlations of individual

protein markers (Supplementary Fig. 7a,b).

Finally, the KIRC clinical + miRNA model was the only integrative model for which

individual gene features, instead of a molecular subtype derived from the complete

expression dataset, provided additional prognostic power. Each of the six miRNAs

comprising the signature was significantly correlated with survival, and their hazard ratio

matched with previously reported roles in cancer progression. Although up-regulation of

miR-21, which has growth promoting activity, is associated with a worse prognosis24, 25, the
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remaining miRNAs (miR-192, miR-101, let-7a, let-7f and miR-143) suppress tumor growth,

with higher expression being associated with a better prognosis26–31 (Fig. 2g).

Patient survival prediction using cross-tumor models

To test whether molecular data could identify commonalities across different tumor types,

we assessed whether a model trained using molecular data in one cancer type could predict

survival in other cancer types that share the same type of molecular data generated by the

same platform (Online Methods). In the vast majority of cases, the C-index was around 0.5,

suggesting little predictive power across tumor types (Supplementary Fig. 8).

However, a model trained from OV SCNA data was predictive of survival for patients with

KIRC, with a median C-index of 0.67 (Fig. 3a, Supplementary Fig. 9). Furthermore, given

the same KIRC test sets, the OV model showed higher predictive power than a model

trained from SCNA data of the KIRC training samples (Fig. 3a, median C-index, 0.67 vs.

0.59, P = 4.7×10−9, Wilcoxon signed rank test). When we randomly sampled the same

number of OV samples as the KIRC training sets to build the predictive model, the C-index

dropped from 0.67 to 0.54, suggesting that the higher predictive power was largely due to

the larger sample size of the OV core set. We further confirmed this pattern using an

independent approach and an independent sample partition (Supplementary Fig. 10, Online

Methods). Closer examination revealed one common feature (“12q”) among the features

selected from SCNA of the whole OV core set and KIRC core set, which may be crucial for

the cross-tumor predictive power. In addition to 12q, there were another four arm-level

SNCA features included in the model trained from OV SCNA data: 12p, 16q, 20p and 20q,

all of which showed significant amplification of q-values in KIRC according to GISTIC232

(Fig. 3b). Indeed, the KIRC q-values of the features selected from OV SCNA data were

lower than those not selected (Fig. 3b, P = 1.6×10−3, Wilcoxon rank sum test). The shared

biological features identified above provide key insights into mechanistic connections

between the two cancer types.

Factors affecting prediction of dichotomized survival data

In addition to analysis on censored survival data, we examined the power of molecular data

in predicting dichotomized overall survival data. Unlike censored survival data, there are

many machine-learning algorithms for classifying binary clinical outcomes. Although the

process of dichotomization will lose some information, this practice enables us to

systematically survey many modeling scenarios and assess the effect of different factors on

predicting survival data. For each cancer type, we dichotomized the censored continuous

survival data through a designated cutoff time (survival milestone) (Online Methods), and

then constructed a series of models from individual molecular data alone or with clinical

variables by (i) using eight common classification algorithms, (ii) applying two feature pre-

selection strategies and (iii) including different numbers of final features in the model. In

total, we assessed the performance of >5,000 models through 10-fold cross-validation based

on the threshold-independent AUC score.

Figure 4a–d and Supplementary Table 3 show the AUC score for each algorithm, with the

optimal setting for each dataset and each cancer. Overall, as observed for continuous
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survival data, the predictive power of molecular data strongly depended on the cancer type.

Clinical variables showed better performance than individual molecular data except for

LUSC, where the protein expression data showed better performance than the clinical

variables given the best-performing algorithms (Fig. 4d). Moreover, the integration of

molecular data with clinical variables improved the predictive power, especially for the

following datasets: DNA methylation and protein expression in KIRC using most algorithms

(Fig. 4a), mRNA expression in GBM using K-nearest neighbor (KNN), nearest centroid

(NC) and support vector machine (SVM) (Fig. 4b), and protein expression in OV and LUSC

using most algorithms (Fig. 4c,d). To quantify the effects of specific factors on survival

prediction, we performed an analysis of variance (ANOVA) on the AUC scores, and found

that cancer type, data type and their interactions were the three dominant sources of

variability, respectively explaining 35.7%, 17.4% and 11.8% of the variability of the

prediction performance (Fig. 4e, violet bars). In contrast, the effect of machine-learning

algorithms was moderate (5.2%). We obtained similar results when the sample size was kept

consistent across all cancer types (Fig. 4e, green bars, Online Methods). These results were

consistent with the recent microarray quality control (MAQC)-II study33.

Somatic alterations in clinically relevant genes

Finally, we assessed the therapeutic utility of TCGA data by analyzing somatic mutations

and small insertion/deletions (indels) in 3,277 patients across 12 tumor types. We applied a

heuristic algorithm34, 35 to score the clinical importance of each alteration in 121 clinically

relevant genes. Clinically relevant genes were defined as those that, when somatically

altered, may predict resistance or response to a therapy and/or have diagnostic or prognostic

relevance for a particular tumor type36 (Online Methods). It is important to emphasize that

not all aberrations in clinically relevant genes will act as “drivers” and portend response to

therapeutic targeting, and that a majority of the alterations in these clinically relevant genes

remain variants of uncertain clinical significance and require further experimental and

clinical evaluation.

In 89.4% (2,928/3,277) of the TCGA patient samples, 10,281 somatic non-synonymous

alterations (1.62% of all alterations, synonymous or non-synonymous, in this combined

cohort) in 121 clinically relevant cancer genes were observed (Fig. 5a,b). Of these, 1,287

alterations in 31.4% (1,028/3,277) of patients were observed in genomic hotspots that were

tested for in representative prospective clinical settings using a panel that probes events in

41 genes9. As expected, by extending genomic profiling to cover all exons of the same gene

set, we observed a large increase in the number of observed alterations in clinically relevant

genes in all 12 tumor types (Fig. 5c,d). This result reflects the gap in the understanding of

the clinical relevance of a majority of alterations in genes potentially linked to clinical

actions. To exclude the effect of hypermutated tumors in this cohort (e.g., colorectal,

endometrial)3, 5, we repeated the analysis for tumors with mutation rates of ≤ 10

mutations/Mb (n = 2,892) as suggested in previous TCGA studies. We observed 3.5%

(6,153/177,977) somatic alterations in the 121 clinically relevant genes (Supplementary

Figure 11).
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These results highlight multiple themes pertaining to the use of genomics in clinical

oncology. First, well-characterized clinically relevant alterations can rarely be observed in

unexpected tumor types. For instance, one patient with cervical cancer harbored a somatic

BRAFK601E mutation (Fig. 5e). While not previously reported in this tumor type, such a

patient may warrant consideration for therapies that target these alterations37. This

descriptive example highlights the potential benefit for comprehensive profiling in clinical

settings, although prospective implementation of this approach is needed to determine the

general applicability to clinical oncology.

Next, by combining mutation data from 12 tumor types, we observed a “tail” of low-

frequency alterations in clinically relevant cancer genes that warrant clinical investigation

but would not be apparent with smaller, single-tumor cohorts. This is demonstrated by a

series of observations involving genes in the phosphatidylinositide 3-kinase/mTOR

signaling pathway. In PIK3CA, both hotspot alterations and those requiring preclinical and

clinical evaluation were observed in 604 patients (Fig. 5f). Somatic mutations in TSC1,

which have been implicated in everolimus sensitivity in urothelial carcinomas38, 39, were

noted in 41 patients with a diverse array of tumor types (Fig. 5g). Somatic alterations in

MTOR itself, which may predict response and/or resistance to rapamycin analogs or mTOR

catalytic domain inhibitors40, were observed in 124 patients (Fig. 5h).

Finally, comprehensive profiling may also be useful for identifying patients who may be

intrinsically resistant to certain therapies. For instance, 21 therapy-naïve patients harbored

MEK1 somatic mutations (Fig. 5i); a subset of these mutations may predict resistance to

RAF and/or MEK inhibitors in specific clinical contexts41, 42. Critically, RAF and MEK

inhibitors are currently being studied in numerous cancer types, so prospective knowledge of

MEK1 status may impact treatment selection for patients with MEK1 mutations. Broadly,

these results demonstrate how global surveys of mutational patterns in clinically relevant

genes may impact clinical trial design and treatment selection.

Discussion

In contrast to previous studies driven by a single cancer type or data type, we systematically

evaluated patient survival prediction from different molecular data types and described the

potential prognostic and/or therapeutic relevance revealed across multiple cancer types,

raising several important issues related to the potential clinical utility of large-scale

molecular data.

Currently, only a few gene expression–based molecular prognostic markers have been

established in clinical practice. For the cancers surveyed here, none of the previously

reported gene expression signatures are routinely used in current clinical practice in lung and

kidney cancer. For GBM, although the status of a few molecular markers (e.g., MGMT

promoter methylation) is frequently ordered for patients, that finding exerts limited

influence on clinical decision making43. For OV, CA125 is the only marker accepted for

clinical use44. Our systematic assessment helped address one key issue related to the lack of

prognostic markers with clinical utility: statistical significance vs. magnitude difference.

Across the four TCGA patient cohorts, clinical variables appeared to be the most
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informative resources (C-index: 0.624–0.754); and molecular data alone often (9 out of 18

cases) had statistically significant predictive power above a random guess (C-index: 0.544–

0.718). Given the clinical-variable-only models, incorporating molecular data statistically

boosts the model performance (5 out of 18 cases) in three cancer types, including mRNA,

miRNA and protein expression, especially their molecular subtype information. However,

the absolute magnitude gains were very limited (Somers’ D, 2.2~22.9%; a 2.2% gain in

Somers’ D corresponds to a 2.2% increase of rank correlation coefficient between the

predicted risk score and the actual survival of the patients), suggesting that the information

content of clinical variables and molecular data are largely redundant in terms of patient

survival stratification. This echoes the observation that the number of cancer prognostic

molecular markers in clinical use is pitifully small, despite decades of protracted and

tremendous efforts45, 46. Currently, many investigators conclude the utility of their markers

of interest by heavily relying on P-value rather than the size of the difference in patient

outcomes47. Our study calls attention to the criteria of magnitude difference that should be

emphasized in future publications of tumor prognostic markers.

Another important related issue is reliability and reproducibility. The literature of tumor

biomarkers is plagued by publication bias and selective/incomplete reporting46, which

especially poses an acute challenge in the post-genomic era. In this regard, we have

developed an open-access model assessment platform for TCGA pan-cancer survival

prediction, which will (i) reduce the barrier to analyzing TCGA data by providing access to

well curated, computable datasets used as inputs to all models in our study; (ii) increase the

transparency and reproducibility of prognostic models by providing our models as re-

runnable source code and providing this capability to other researchers; and (iii) improve the

objectivity and rigor of future model assessments by providing a baseline set of model

scores based on pre-defined criteria and evaluation scores posted on a real-time, publically

available “leaderboard”. Such an effort not only helps improve prognostic models though a

community-based challenge48, 49, but also ensures transparency and reproducibility for

tumor biomarker identification. We expect to seed such a community effort to release the

whole dataset, prognostic models and evaluation criteria for future studies of clinically

usable prognostic models.

By exploring the spectrum of clinically actionable somatic alterations among 12 tumor

types, we identified multiple instances where alterations in clinically relevant genes were

observed in enough patients to rationalize clinical trial development across tumor types. This

was true even if these alterations were rarely observed in any single tumor type, leading to

so-called “bucket” trials. We also revealed how the potential applications of precision

oncology can be expanded to numerous additional patients with more extensive forms of

profiling. As the number of identified clinically actionable cancer genes and alterations

continues to rise8, prospective genomic profiling may inform individualized treatment plans

for patients with metastatic or localized disease, as these patients are guided toward

genomically-driven clinical trials. Importantly, many of the alterations observed in clinically

actionable cancer genes have either no known functional effect that may be consistent with a

clinical action or even have the converse effect. Through our cross-tumor analysis, we

expect that many of these alterations will emerge in preclinical and clinical studies, thereby
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informing their relative impact in specific clinical settings from a predictive/prognostic

standpoint when linked to relevant clinical outcomes.

Although our study provides important insights into the translation of biological data into

clinical utility, it has some limitations. First, we employed purely data-mining approaches to

prognostic modeling. Such a practice comes with a cost: we may miss some informative

individual features that could be identified by a candidate gene approach driven by prior

knowledge. Second, we did not analyze somatic mutations for prognostic utility because the

mutation data are binary and sparse across the patient cohorts. New methods should be

developed for assessing the prognostic power of large-scale mutation data. Third, effectively

combining multiple types of molecular data remains a technical challenge owing to the over-

fitting issue and widespread co-linearity of large-scale biological data. Therefore, one

important future direction is to build prognostic models that incorporate clinical variables

and multiple types of molecular data, which may provide crucial complementary

information. In that regard, more effective feature selection strategies should be developed.

Finally, because TCGA patient samples were collected from multiple source sites for the

purpose of comprehensive molecular profiling and were characterized at different centers,

this practice may introduce both heterogeneity and bias. In addition, the resulting clinical

annotation of patient samples may not be as rigorous and complete as those obtained from

clinical trials. Therefore, further efforts, especially independent validations with clinical

trial-grade follow-up, are crucial for assessing our findings from TCGA data.

Online Methods

Core dataset compilation

We downloaded overall survival data and SCNA data from Firehose (https://

confluence.broadinstitute.org/display/GDAC/Home). We obtained the clinical variables

from TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/) and the molecular data

(including DNA methylation, mRNA, miRNA and protein expression) from the Pan-cancer

project (syn300013) on Synapse (http://www.synapse.org). Specifically, molecular data

from the following platforms were used in our study. For SCNA, the platform is Affymetrix

Genome-Wide Human SNP Array 6.0 (arm-level and focal-level copy number calls were

derived from Firehose: https://confluence.broadinstitute.org/display/GDAC/Home). For

DNA methylation, the platform is Illumina Infinium Human DNA Methylation 27K (for

GBM and OV) or 450K (for KIRC and LUSC, we retained only the probes that most

negatively correlated with gene expression according to Firehose). For mRNA expression,

the platform was either Agilent 244K Custom Gene Expression G4502A (for GBM and OV)

or Illumina HiSeq 2000 RNA Sequencing V2 (for KIRC and LUSC). For miRNA

expression, the platform was either Agilent 8×15K Human miRNA-specific microarray

platform (for GBM and OV) or Illumina Genome Analyzer/HiSeq 2000 miRNA sequencing

platform (for KIRC and LUSC). For protein expression, the platform was the MD Anderson

Reverse Phase Protein Array (RPPA) Core platform and both total protein and

phosphorylated protein were included in this study as distinct molecular features. For each

cancer type, we defined the sample intersection across all the platforms as the core sample

set. We included neither DNA methylation data in the LUSC core, nor protein expression
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data in the GBM core in order to preserve a statistically sufficient sample size. For each

molecular data type, in additional to gene-level features, we included the NMF subtypes

from Firehose analyses reported on January 16, 2013. All core clinical and genomic/

proteomic data used to construct survival models, as well as the training and test dataset

splits, are available at the Synapse homepage of our project (accession number syn1710282,

doi:10.7303/syn1710282). The full Pan-Cancer dataset is available at the Synapse Pan-

Cancer home page (accession number syn300013, doi:10.7303/syn300013).

Model training and performance comparison

For each core set, we randomly split the samples into two groups: 80% as the training set

and 20% as the test set. On the training set, we first performed a pre-selection step to keep

the top significant features correlated with overall survival (univariate Cox model,

likelihood ratio test P < 0.05). To obtain better convergence of the training model, we

required that the retained feature number did not exceed the number of events (deaths) in the

training set. We used two computational methods to train the models: (i) Cox: the Cox

proportional hazards model with LASSO for feature selection, and (ii) RSF: random survival

forest. The univariate and multivariate Cox models were built with the R package

“survival”; the LASSO was performed using the R package “glmnet” and the penalty

parameter λ was chosen based on the 5-fold cross-validation within the training set; and the

RSF models were built using the R package “RandomSurvivalForest” with the

recommended default parameters. We then applied the models thereby obtained to the test

set for prediction, and calculated the C-index using the R package “survcomp”. For each

core set, the above procedure was repeated 100 times to generate 100 C-indexes. To

compare the performance across different data types, we first chose the better performing

method (Cox or RSF) and then used its results based on the Wilcoxon signed rank test to

calculate the P value (using 0.05 as the significance cutoff).

To assess the predictive power of integrating molecular data with clinical variables, we

slightly modified the Cox method to include both clinical and molecular features. We used

the clinical features (such as patient age and gender, tumor stage and grade, and Karnofsky

performance score, upon availability) that were significantly correlated with survival

(likelihood ratio test P < 0.05 in both the univariate Cox model and the full model with all

clinical variables) as the baseline to build the clinical Cox model. We then combined the

gene-level features that better fit the existing model (through performing a feature selection

step against the residuals) or the subtype features with the clinical variables to build a new

multivariate Cox model. We performed the RSF method as before.

To evaluate the effect of feature selection, for the data exhibiting striking discrepancies (i.e.,

clinical + molecular data for GBM and LUSC), we applied different feature selection

methods before RSF: i) the same LASSO approach as for Cox; ii) minimal depth variable

selection; and iii) variable hunting. We calculated the C-indexes when applying these new

models to the same test sets. To evaluate the effect of sample size, for the molecular models

with substantial predictive power (median C-index > 0.6), we conducted a serial sampling of

various portions (ranging from 0.2–1, with a increment of 0.1) of the original training
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samples as the new training set, from which we built the models using the same approach

and calculated the C-index when applying these models to the same test set.

Building multiclass classifier from known NMF subtypes

Using the TCGA OV miRNA expression data as the explanatory variables and the three-

class NMF subtypes derived from these expression data by Firehose as the response

variable, we built the multiclass classifier (multinomial logistic regression model) using a

scheme adapted from Yuan et al50. We first cleaned out the expression data by retaining the

common features between TCGA data and the independent dataset and performed sample-

wise centering. We then built the multiclass classifier from the TCGA data and evaluated its

performance through 5-fold cross validation. During each of the five iterations, feature

selection by LASSO (class = “multinomial”) and tuning of the penalty parameter λ were

based on 80% of the data, and the prediction (using the R package “glmnet”) was made to

the remaining 20% of the data, where class labels was assigned according to the class with

the largest probability. The predictions from the five iterations were combined and the

AUCs were calculated by the R package “ROCR”. Finally, we trained the classifier using

the whole TCGA data and applied it to the independent OV dataset for the final prediction.

Analysis of important biological features in the top prognostic models

The Kaplan-Meier survival curves were drawn according to the samples’ original NMF

subtypes or predicted classes, and the log-rank test P-values were calculated using the R

package “survival”. The association of individual features with survival (better or worse)

was decided based on the hazard ratio (HR) from the univariate Cox model, where an HR

greater than 1 represented a worse prognosis. Wald’s test P-values were used to assess the

significance. For expression values obtained through sequencing (i.e., KIRC miRNA

expression), the raw values were log2 transformed before the univariate Cox analysis. The

enriched gene pathways were identified through IPA (Ingenuity Systems®,

www.ingenuity.com).

Cross–tumor-type survival prediction

For the cancers that shared the same platforms for the same type of genomic data (e.g.,

microarray for GBM and OV mRNA expression, RNA-seq for KIRC and LUSC mRNA

expression), we first obtained the common features shared by any two cancers in a pairwise

manner. Then we trained the Cox model from the shared molecular features of one cancer

and applied the model trained to the same 100 test sample sets utilized in the global analysis

of the other cancer. C-indexes were calculated accordingly. To test the effect of sample size,

for the OV-KIRC case, we randomly sampled the same number of OV samples as the KIRC

training size and repeated the whole analysis. We used the Wilcoxon signed rank test to

compare the performance of the model trained with data from different cancers. We further

confirmed this result using an independent approach and an independent sample partition

(Supplementary Fig. 11). The sample partition was done using standard 5-fold cross-

validation on the KIRC data. For each fold, we trained non-parametric unregularized Cox

proportional hazards models using the glmnet package in R. We repeated the cross-

validation process 30 times, randomly choosing a 5-fold split each time. Finally, the KIRC
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patients were stratified using the SCNA signatures derived from OV, and the Kaplan-Meier

curves were drawn based on the median risk score.

Dichotomization of survival data

For each cancer type, we dichotomized the censored continuous survival data by assigning a

cutoff time (survival milestone) of 1 year for individuals with GBM, 2 years for LUSC, 3

years for OV and 4 years for KIRC. The individuals who lived beyond the cutoff time were

labeled as 1; the deceased were labeled as 0. The individuals with survival times that were

censored before the cutoff were excluded. The different cutoffs were chosen in order to

reach a balance between the event ratio and the sample size. The dichotomized survival data

were deposited in Synapse (syn1748545).

Classification algorithms for dichotomized survival data

For each dichotomized survival dataset, we used two pre-selection strategies (ANOVA and

shrinking centroids) and 8 classification algorithms: diagonal discriminant analysis (DDA),

K-nearest neighbor (KNN), discriminant analysis (DA), logistic regression (LR), nearest

centroid (NC), partial least square (PLS), random forest (RF) and support vector machine

(SVM). The performance was assessed in 10-fold cross-validation, and AUCs were

calculated as the measurement. For KNN, we varied the number of candidate neighbors

from 1 to 9 (odd numbers only) and used the Euclidean distance as the measure of distance.

For NC, we assigned equal prior probabilities. For DDA, DA, and PLS, we chose the linear

discriminant function with equal prior probabilities. For SVM, we chose the radial basis

kernel. The parameter C (the cost) ranged from 1 to 1001, in increments of 100, and gamma

ranged from 10−10 to 10−2, moving one decimal place per time. For RF, 1000 trees were

used. The other parameters were chosen by default. The number of features after pre-

selection ranged from 10 to 50, in increments of 10.

Variability analysis for modeling factors

There are five factors that can potentially affect the performance of binary classification:

cancer type, data type (clinical or individual molecular features), pre-selection strategies, the

number of features after pre-selection and classification algorithms. We used ANOVA to

assess the variability contributed by these factors and their interactions, and the Akaike

information criterion in stepwise model selection for significant factors and interactions. The

estimated variance components were then divided by their total in order to compare the

proportion of variability explained by each modeling factor. To remove the effect of sample

size, we performed a size-adjusted analysis, in which we kept the sample size consistent

across all cancer types by randomly sampling 77 samples according to the smallest sample

(which was LUSC) from KIRC, GBM and OV, and repeated the same procedure for the

original dichotomized sets.

Identification of somatic alterations in clinically relevant genes

Somatic mutations and indels called from exome sequencing of matched tumor and normal

genome pairs from 12 TCGA projects were aggregated using mutation annotation format

(MAF) files from Synapse (syn1710680). Each alteration was ranked for clinical relevance
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using a heuristic algorithm34, 35. Clinical actionability was defined at the gene level: any

gene that, when somatically altered in cancer, predicted response or resistance to a specific

therapy, had diagnostic potential, or had prognostic significance, was considered a clinically

actionable gene. These genes were derived by a review of the primary literature,

consultation with experts, and manual curation. A complete list is available at

www.broadinstitute.org/cancer/cga/target. For the purpose of understanding the distribution

of hotspot alterations in BRAF and PIK3CA, the following definitions were assigned:

hotspot alterations in BRAF were defined as those leading to V600E, V600K, and V600R

protein changes. Similarly, hotspot alterations in PIK3CA were restricted to those that

resulted in E545K and H1047R protein changes. All code for this effort was generated using

the R statistical package.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of the survival predictive power of clinical variables, molecular data and
their combinations
(a) An overview of the computational approach. (b)–(e) C-indexes by models trained from

clinical variables, individual molecular data alone or in combination with clinical variables

in (b) KIRC (Ntotal = 243), (c) OV(Ntotal = 379), (d) GBM (Ntotal = 210) and (e) LUSC

(Ntotal = 121). For each cancer type, during each of the 100 times of random splitting, 80%

of the total samples were used to train the model and the remaining 20% as the test set for C-

index calculations. The blue box highlights the model built from individual molecular data

that shows comparable performance to that based on clinical variables (two-sided Wilcoxon

signed rank test, P > 0.05); and the magenta boxes highlight the models integrating

molecular data and clinical variables that show better performance than that based on only

clinical variables (two-sided Wilcoxon signed rank test, FDR < 0.01).
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Figure 2. Biological insights from the top prognostic models
(a) Consensus nonnegative matrix factorization (NMF) clustering of the TCGA OV miRNA

expression data reveals three molecular subtypes (clusters). (b) The ROC curves of the

multiclass classifier against NMF subtypes trained from the TCGA OV miRNA expression

data through five-fold cross-validation. (c) The Kaplan-Meier plot of the patients from the

TCGA OV core set stratified by OV miRNA-expression NMF subtypes. (d) The Kaplan-

Meier plot of the patients from the independent OV cohort stratified by predicted miRNA

NMF subtypes using the classifier in (b). (e) The Kaplan-Meier plot of the patients from the

LUSC core set stratified by LUSC protein-expression NMF subtypes. (f) The top

differentially expressed protein markers among LUSC protein-expression NMF subtypes

grouped by pathways/functions. (g) The miRNAs selected by LASSO for the KIRC clinical

+ miRNA integrative model.
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Figure 3. Models trained from OV SCNA data can predict survival of individuals with KIRC
(a) From left to right: C-index for the models trained from KIRC SCNA data (Ntraining=

192), C-index for the models trained from SCNA of OV sample sets with the same size as

the KIRC training sets (Ntraining = 192), and C-index for the model trained from SCNA of

the whole OV core set (Ntraining = 379). The OV model trained from the whole OV core set

showed higher predictive power than the model trained from SCNA data of independent

KIRC training samples (two-sided Wilcoxon signed rank test, P = 4.7 × 10−9). (b) The bar

plot of amplification Q-value of arm-level SCNA features from GISTIC2. The features

included in the model trained from OV SCNA data are shown in red. The KIRC q-values of

the features selected from OV SCNA data were lower than those not selected (two-sided

Wilcoxon rank sum test, P = 1.6 × 10−3).
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Figure 4. Predictive performance of clinical variables, molecular data and their combination on
dichotomized survival data
The best AUC achieved by each classification algorithm for each clinical/molecular/

combination dataset in (a) KIRC (Ntotal = 150), (b) GBM (Ntotal = 155), (c) OV (Ntotal =

252) and (d) LUSC (Ntotal = 77). (e) Variation explained by modeling factors and their

interactions. Abbreviations for classification algorithms: diagonal discriminant analysis

(DDA), K-nearest neighbor (KNN), discriminant analysis (DA), logistic regression (LR),

nearest centroid (NC), partial least square (PLS), random forest (RF) and support vector

machine (SVM). AUCs were calculated based on 10-fold cross-validation.
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Figure 5. Alterations in clinically relevant genes across 12 tumor types
(a)–(b) Examination of mutations and indels in 3,277 patients representing 12 tumor types

reveals a long tail of the frequency distribution of alterations in clinically relevant genes that

warrant further exploration across 12 tumor types. Expanding tumor profiling beyond

hotspot profiling technologies (c) to whole exome sequencing (d) increases the percentage

of patients in all tumor types that may harbor clinically relevant alterations. (e) Hotspot

alterations in known cancer genes occur at low frequencies in unexpected tumor types. (f)–

(i) Alterations in emerging genes with potential clinical relevance are observed across tumor

types. For a key to the tumor types, see Supplementary Table 4.
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