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ABSTRACT | Several analog and digital brain-inspired elec-

tronic systems have been recently proposed as dedicated

solutions for fast simulations of spiking neural networks. While

these architectures are useful for exploring the computational

properties of large-scale models of the nervous system, the

challenge of building low-power compact physical artifacts that

can behave intelligently in the real world and exhibit cognitive

abilities still remains open. In this paper, we propose a set of

neuromorphic engineering solutions to address this challenge.

In particular, we review neuromorphic circuits for emulating

neural and synaptic dynamics in real time and discuss the role

of biophysically realistic temporal dynamics in hardware

neural processing architectures; we review the challenges of

realizing spike-based plasticity mechanisms in real physical

systems and present examples of analog electronic circuits that

implement them; we describe the computational properties of

recurrent neural networks and show how neuromorphic

winner-take-all circuits can implement working-memory and

decision-making mechanisms. We validate the neuromorphic

approach proposed with experimental results obtained from

our own circuits and systems, and argue how the circuits and

networks presented in this work represent a useful set of

components for efficiently and elegantly implementing neuro-

morphic cognition.

KEYWORDS | Cognitive systems; learning systems; neuro-

morphic engineering; real-time neuromorphic systems; spike-

timing-dependent plasticity (STDP); spiking neural network

architecture; subthreshold analog circuits; very large-scale

integration (VLSI); winner-take-all (WTA)

I . INTRODUCTION

Machine simulation of cognitive functions has been a

challenging research field since the advent of digital com-

puters. However, despite the large efforts and resources

dedicated to this field, humans, mammals, and many other

animal species including insects still outperform the most

powerful computers in relatively routine functions such as

sensory processing, motor control, and pattern recogni-
tion. The disparity between conventional computing tech-

nologies and biological nervous systems is even more

pronounced for tasks involving autonomous real-time

interactions with the environment, especially in presence

of noisy and uncontrolled sensory input. One important

aspect is that the computational and organizing principles

followed by the nervous system are fundamentally

different from those of present day computers. Rather
than using Boolean logic, precise digital representations,

and clocked operations, nervous systems carry out robust

and reliable computation using hybrid analog/digital unre-

liable processing elements; they emphasize distributed,

event-driven, collective, and massively parallel me-

chanisms and make extensive use of adaptation, self-

organization, and learning.
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Several approaches have been recently proposed for
building custom hardware, brain-like neural processing

architectures [1]–[9]. The majority of them are proposed

as an alternative electronic substrate to traditional

computing architectures for neural simulations [2], [4],

[5], [7]. These systems can be very useful tools for neuro-

science modeling, e.g., by accelerating the simulation of

complex computational neuroscience models by three or

more orders of magnitude [4], [7], [10]. However, our
work focuses on an alternative approach aimed at the

realization of compact, real-time, and energy-efficient

computational devices that directly emulate the style of

computation of the brain, using the physics of silicon to

reproduce the biophysics of the neural tissue. This ap-

proach, on the one hand, leads to the implementation of

compact and low-power behaving systems ranging from

brain–machine interfaces to autonomous robotic agents.
On the other hand, it serves as a basic research instrument

for exploring the computational properties of the neural

system they emulate and hence gain a better understand-

ing of its operational principles. These ideas are not new:

they follow the original vision of Mead [11], Mahowald

[12], and Douglas et al. [13]. Indeed, analog complemen-

tary metal–oxide–semiconductor (CMOS) technology has

been effectively employed for the construction of simple
neuromorphic circuits reproducing basic dynamical prop-

erties of their biological counterparts, e.g., neurons and

synapses, at some level of precision, reliability, and detail.

These circuits have been integrated into very large-scale

integration (VLSI) devices for building real-time sensory-

motor systems and robotic demonstrators of neural com-

puting architectures [14]–[19]. However, these systems,

synthesized using ad hoc methods, could only implement
very specific sensory-motor mappings or functionalities.

The challenge that remains open is to bridge the gap from

designing these types of reactive artificial neural modules

to building complete neuromorphic behaving systems that

are endowed with cognitive abilities. The step from reac-

tion to cognition in neuromorphic systems is not an easy

one, because the principles of cognition remain to be

unraveled. A formal definition of these principles and their
effective implementation in hardware is now an active

domain of research [20]–[23]. The construction of brain-

like processing systems able to solve cognitive tasks re-

quires sufficient theoretical grounds for understanding the

computational properties of such a system (hence its nec-

essary components), and effective methods to combine

these components in neuromorphic systems. During the

last decade, we pursued this goal by realizing neuro-
morphic electronic circuits and systems and using them as

building blocks for the realization of simple neuromorphic

cognitive systems [20]. Here we describe these circuits,

analyze their dynamics in comparison with other existing

solutions, and present experimental results that demon-

strate their functionalities. We describe the limitations and

problems of such circuits, and propose effective design

strategies for building larger brain-like processing systems.
We conclude with a discussion on the advantages and dis-

advantages of the approach we followed and with a de-

scription of the challenges that need to be addressed in

order to progress in this domain. Specifically, in

Sections III–VI, we show how the building blocks we

propose, based on dynamic synapse circuits, hardware

models of spiking neurons, and spike-based plasticity cir-

cuits, can be integrated to form multichip spiking recur-
rent and winner-take-all neural networks, which in turn

have been proposed as neural models for explaining pat-

tern recognition [24], [25], working memory [9], [26],

decision making [27], [28], and state-dependent compu-

tation [29], [30] in the brain.

II . NEURAL DYNAMICS IN ANALOG VLSI

Unlike a von Neumann computing architecture, neuro-

morphic architectures are composed of massively parallel

arrays of simple processing elements in which memory and

computation are colocalized. In these architectures, time

represents itself and so the synapse and neuron circuits

must process input data on demand, as they arrive, and

must produce their output responses in real time.

Consequently, in order to interact with the environment
and process real-world sensory signals efficiently, neuro-

morphic behaving systems must use circuits that have

biologically plausible time constants (i.e., of the order of

tens of milliseconds). In this way, they are well matched to

the signals they process and are inherently synchronized

with the real-world events. This constraint is not easy to

satisfy using analog VLSI technology. Standard analog

circuit design techniques either lead to bulky and silicon-
area expensive solutions [31] or fail to meet this condition,

resorting to modeling neural dynamics at ‘‘accelerated’’

unrealistic time scales [32], [33].

One elegant solution to this problem is to use current-

mode design techniques [34] and log-domain subthreshold

circuits [35]–[39]. When metal–oxide–semiconductor

field-effect transistors (MOSFETs) are operated in the

subthreshold domain, the main mechanism of carrier
transport is that of diffusion, as it is for ions flowing

through proteic channels across neuron membranes. As a

consequence, MOSFETs have an exponential relationship

between gate-to-source voltage and drain current, and

produce currents that range from femto- to nano-

Ampères. As the time constants of log-domain circuits

are inversely proportional to their reference currents, in

addition to being directly proportional to the circuit
capacitance, the subthreshold domain allows the integra-

tion of relatively small capacitors in VLSI to implement

temporal filters that are both compact and have biologi-

cally realistic time constants, ranging from tens to

hundreds of milliseconds.

Neuron conductance dynamics and synaptic transmis-

sion can be faithfully modeled by first-order differential
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equations [40], therefore subthreshold log-domain circuits

that implement first-order low-pass filters (LPFs) can

faithfully reproduce biologically plausible temporal dy-
namics. Several examples of such circuits have been

proposed as basic building blocks for the implementation

of silicon neurons and synapses. Among them, the differ-

ential pair integrator (DPI) [41], [42], the log-domain LPF

[43], and the ‘‘tau-cell’’ [44] circuits offer a compact and

low-power solution. These circuits, shown in Fig. 1, can be

analyzed by applying the translinear principle, whereby

the sum of voltages in a chain of transistors that obey an
exponential current–voltage characteristic can be ex-

pressed as multiplication of the currents flowing across

them [45]. For example, if we consider the DPI circuit of

Fig. 1(a), and we assume that all transistor have same

parameters and operate in the subthreshold regime and in

saturation [37], we can derive circuit solution analytically.
Specifically, we can write

Iout ¼ I0e
�VC
UT IC ¼ C

d

dt
VC

Iin ¼ I1 þ I2 I2 ¼ I� þ IC (1)

where I0 represents the transistor dark current, UT repre-

sents the thermal voltage, and � represents the subthresh-

old slope factor [37]. By applying the translinear principle

across the loop made by the arrows in the circuit diagram
of Fig. 1(a), we can write: Ith � I1 ¼ I2 � Iout. Then, by re-

placing I1 and expanding I2 from (1), we get

Ith � ðIin � I� � ICÞ ¼ ðI� þ ICÞ � Iout: (2)

Thanks to the properties of exponential functions, we

can express IC as a function of Iout

IC ¼ C
UT

�Iout

d

dt
Iout: (3)

Finally, by replacing IC from this equation and dividing

everything by I� in (2), we get

� 1þ Ith

Iout

� �
d

dt
Iout þ Iout ¼

IthIin

I�
� Ith (4)

where � ¼D CUT=�I� .

This is a first-order nonlinear differential equation that
cannot be solved explicitly. However, in the case of

sufficiently large input currents (i.e., Iin � I� ), term �Ith

on the right-hand side of (4) can be neglected. Further-

more, under this assumption and starting from an initial

condition Iout ¼ 0, Iout will increase monotonically and

eventually condition Iout � Ith will be met. In this case,

also term Ith=Iout on the left-hand side of (4) can be

neglected. So the response of the DPI reduces to a first-
order linear differential equation

�
d

dt
Iout þ Iout ¼

Ith

I�
Iin (5)

The general solution of the other two log-domain cir-
cuits shown in Fig. 1(b) and (c) can be derived analytically

following a similar procedure. Table 1 shows the equations

used for the derivation of all three circuits, and their

general solution.

The LPF circuit of Fig. 1 is the one that has the least

number of components. However, it is not the most com-

pact, because, to apply the translinear principle correctly,

Fig. 1. Current-mode LPF circuits. Red arrows show the translinear

loop considered for the log-domain analysis. (a) The DPI circuit

diagram. (b) The LPF circuit diagram. (c) The ‘‘tau-cell’’ circuit

diagram.
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it is necessary to use a p-type field-effect transistor (FET)

with its bulk connected to its source node [see p-FET with

I1 current flowing through it in Fig. 1(b)]. This requires an

isolated well in the circuit layout, which leads to larger
area usage, and makes the overall size of the circuit com-

parable to the size of the other two solutions. Furthermore,

the requirement of an isolated well for the p-FET does not

allow the design of the complementary version of the

circuit in standard CMOS processes (e.g., to have negative

currents). The tau-cell circuit does not have this problem,

but it requires precise matching of the two current sources

producing I� and �2I� , which can also lead to large area
usage at the layout level. The DPI can implement in a

compact way both positive and negative currents [e.g., by

using the complementary version of the schematic of

Fig. 1(a)]. Another advantage of the DPI, with respect to

the other two solutions, is the availability of the additional

control parameter Ith that can be used to change the gain of

the filter.

The LPF circuit has been used to model both synaptic
excitation and shunting inhibition [46]. The tau-cell has

been used to implement log-domain implementations [47],

[48] of Mihalas-Niebur and Izhikevich neuron models, and

the DPI has been used to implement both synapse and

neuron models [41], [49]. In Sections III and IV, we will

show examples of neurons and synapses that exploit the

properties of the DPI to implement the relevant dynamics.

III . SILICON NEURONS

Several VLSI implementations of conductance-based

models of neurons have been proposed in the past [50]–

[54]. Given their complexity, these circuits require

significant silicon real estate and a large number of bias
voltages or currents to configure the circuit properties.

Simplified integrate-and-fire (I&F) models typically re-

quire far less transistors and parameters but often fail at

reproducing the rich repertoire of behaviors of more

complex ones [55], [56].

A recently proposed class of generalized I&F models,

however, has been shown to capture many of the pro-

perties of biological neurons, while requiring fewer and
simpler differential equations compared to more elaborate

conductance-based models, such as the Hodgkin & Huxley

(H&H) one [56], [57]. Their computational simplicity and

compactness make them valuable options for VLSI imple-

mentations [32], [47], [48], [58], [59].

We describe here a generalized I&F neuron circuit

originally presented in [59], which makes use of the DPI

circuit described in Section II and which represents an
excellent compromise between circuit complexity and

computational power: the circuit is compact, both in terms

of transistor count and layout size; it is low power; it has

biologically realistic time constants; and it implements

refractory period and spike-frequency adaptation, which

are key ingredients for producing resonances and oscilla-

tory behaviors often emphasized in more complex models

[55], [57].
The circuit schematic is shown in Fig. 2. It comprises

an input DPI circuit used as an LPF ðML1�3Þ, a spike-event

generating amplifier with current-based positive feedback

ðMA1�6Þ, a spike reset circuit with refractory period func-

tionality ðMR1�6Þ, and a spike-frequency adaptation mech-

anism implemented by an additional DPI LPF ðMG1�6Þ.
The DPI block ML1�3 models the neuron’s leak conduc-

tance; it produces exponential subthreshold dynamics in
response to constant input currents. The neuron’s

membrane capacitance is represented by the capacitor

Cmem, while sodium channel activation and inactivation

dynamics are modeled by the positive-feedback circuits in

the spike-generation amplifier MA1�6. The reset MR1�6

block models the potassium conductance and refractory

period functionality. The spike-frequency adaptation block

MG1�6 models the neuron’s calcium conductance that pro-
duces the after-hyperpolarizing current Iahp, which is pro-

portional to the neuron’s mean firing rate.

By applying the current-mode analysis of Section II to

both input and spike-frequency adaptation DPI circuits, we

derive the complete equation that describes the neuron’s

subthreshold behavior

1þ Ith

Imem

� �
�

d

dt
Imem þ Imem 1þ

Iahp

I�

� �
¼ Imem1 þ fðImemÞ

�ahp
d

dt
Iahp þ Iahp ¼ Iahp1uðtÞ (6)

where Imem is the subthreshold current that represents the

real neuron’s membrane potential variable, Iahp is the slow

Table 1 Characteristic Equations of the DPI, LPF, and Tau-Cell

Log-Domain Filters
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variable responsible for the spike-frequency adaptation

mechanisms, and uðtÞ is a step function that is unity for the
period in which the neuron spikes and null in other

periods. Term fðImemÞ is a function that depends on both

membrane potential variable Imem and positive-feedback

current Ia of Fig. 2

fðImemÞ ¼
Ia

I�
ðImem þ IthÞ: (7)

In [49], Indiveri et al. measured Imem experimentally and

showed how fðImemÞ could be fitted with an exponential

function of Imem. The other parameters of (6) are de-

fined as

� ¼D CmemUT

�I�
�ahp ¼

D CpUT

�I�ahp

I� ¼D I0e
�

UT
Vlk I�ahp

¼D I0e
�

UT
Vlkahp

Imem1 ¼
D Ith

I�
ðIin � Iahp � I�Þ Iahp1 ¼

D Ithahp

I�ahp

ICa

where Ith and I�ahp
represent currents through n-type

MOSFETs not present in Fig. 2, and defined as

Ith ¼
D

I0eð�=UTÞVthr , and Ithahp
¼D I0eð�=UTÞVthrahp , respectively.

In addition to emulating calcium-dependent after-

hyperpolarization Potassium currents observed in real

neurons [60], the spike-frequency adaptation block MG1�6

reduces power consumption and bandwidth usage in

networks of these neurons. For values of Iin � I� , we

can make the same simplifying assumptions made in

Section II. Under these assumptions, and ignoring the
adaptation current Iahp, (6) reduces to

�
d

dt
Imem þ Imem ¼

Ith

I�
Iin þ fðImemÞ (8)

where fðImemÞ � ðIa=I� ÞImem.

So under these conditions, the circuit of Fig. 2 imple-
ments a generalized I&F neuron model [61], which has

been shown to be extremely versatile and capable of faith-

fully reproducing the action potentials measured from real

cortical neurons [62], [63]. Indeed, by changing the biases

that control the neuron’s time constants, refractory period,

and spike-frequency adaptation dynamics, this circuit can

produce a wide range of spiking behaviors ranging from

regular spiking to bursting (see Section VII).
While this circuit can express dynamics with time

constants of hundreds of milliseconds, it is also compatible

with fast asynchronous digital circuits (e.g., G 100-ns pulse

widths), which are required to build large spiking neural

network architectures (see the /REQ and /ACK signals of

Fig. 2 and Section VI). This allows us to integrate multiple

neuron circuits in event-based VLSI devices and construct

large distributed reconfigurable neural networks.

IV. SILICON SYNAPSES

Synapses are fundamental elements for computation and

information transfer in both real and artificial neural sys-

tems, and play a crucial role in neural coding and learning.

Fig. 2. Adaptive exponential I&F neuron circuit schematic. The input DPI circuit ðML1�3Þmodels the neuron’s leak conductance.

A spike event generation amplifier ðMA1�6Þ implements current-based positive feedback (modeling both sodium activation and

inactivation conductances) and produces address–events at extremely low-power operation. The reset block ðMR1�6Þ resets the neuron

and keeps it in a resting state for a refractory period, set by the Vref bias voltage. An additional LPF ðMG1�6Þ integrates the spikes

and produces a slow after-hyperpolarizing current Iahp responsible for spike-frequency adaptation.

Chicca et al. : Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems
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While modeling the nonlinear properties and the dynamics

of large ensembles of synapses can be extremely onerous

for software (SW) simulations (e.g., in terms of compu-

tational power and simulation time), dedicated neuro-

morphic hardware (HW) can faithfully reproduce synaptic

dynamics in real time using massively parallel arrays of

pulse (spike) integrators. In this case, the bottleneck is not
in the complexity of the spiking processes being modeled,

but in the number of spikes being received and transmitted

(see Section VI for more details).

An example of a full excitatory synapse circuit is shown

in Fig. 3. This circuit, based on the DPI circuit described in

Section II, produces biologically realistic excitatory

postsynaptic currents (EPSCs), and can express short

term plasticity, N-Methyl-D-Aspartate (NMDA) voltage
gating, and conductance-based behaviors. The input spike

(the voltage pulse Vin) is applied to both MD3 and MS3. The

output current Isyn, sourced from MD6 and through MG2,

rises and decays exponentially with time. The temporal

dynamics are implemented by the DPI block MD1�6. The

circuit time constant is set by V� while the synaptic effi-

cacy, which determines the EPSC amplitude, depends on

both Vw0 and Vthr [41].

A. Short-Term Depression and
Short-Term Facilitation

Short-term plasticity mechanisms can be extremely

effective tools for processing temporal signals and decod-
ing temporal information [64], [65]. Several circuit

solutions have been proposed to implement these types

of dynamics, using different types of devices and following

a wide range of design techniques [66]–[71]. These short-

term dynamic mechanisms are subdivided into short-term

depression and short-term facilitation. The circuit block

MS1�3 is responsible for implementing short-term depres-

sion: with every voltage pulse Vin the synaptic weight
voltage Vw decreases, at a rate set by Vstd. When no spikes

are being received, Vw ‘‘recovers’’ toward the resting state

set by Vw0. In [67], Boegerhausen et al. demonstrate that

this subcircuit is functionally equivalent to the one de-

scribed in theoretical models, and often used in compu-

tational neuroscience simulations [72], [73]. In addition to

short-term depression, this DPI synapse is capable also of

short-term facilitation: if the bias Vthr of MD1 is set so that
Ith � Isyn at the onset of the stimulation (i.e., during the

first spikes), the circuit equation, derived from (4) in the

analysis of Section II, reduces to

�
d

dt
Isyn þ

I2
syn

Ith
� Isyn

Iw

I�
þ 1

� �
¼ 0 (9)

which can be further simplified to

�
d

dt
Isyn ¼ Isyn

Iw

I�
þ 1

� �
: (10)

In other words, the change in circuit response in-

creases with every spike, by an amount greater than one,

for as long as condition Isyn � Ith is satisfied. As Isyn in-

creases, this condition starts to fail, and eventually the

opposite condition ðIsyn � IthÞ is reached. This is the con-
dition for linearity, under which the circuit starts to

behave as a first-order LPF, as described in Section II.

B. NMDA Voltage Gating and Conductance Behavior
The output differential pairs of Fig. 3 (MN1�2 and

MG1�2) are responsible for implementing NMDA voltage-

gated channels and conductance-based behavior, respec-

tively. The response properties of these circuits have been

thoroughly characterized in [41].

C. Homeostatic Plasticity: Synaptic Scaling
Synaptic scaling is a stabilizing homeostatic mecha-

nism used by biological neural systems to keep the net-
work’s activity within proper operating bounds. It operates

by globally scaling the synaptic weights of all the synapses

afferent to a neuron, for maintaining the neuron’s firing

rate within a functional range, in face of chronic changes

of their activity level, while preserving the relative differ-

ences between individual synapses [74]. In VLSI, synaptic

scaling is an appealing mechanism that can be used to

compensate for undesired behaviors that can arise, for
example, because of temperature drifts or sudden changes

in the system input activity levels. Thanks to its inde-

pendent controls on synaptic efficacy set by Vw and Vthr,

the DPI synapse of Fig. 3 is compatible with both con-

ventional spike-based learning rules, and homeostatic

synaptic scaling mechanisms. Specifically, while learning

circuits can be designed to locally change the synaptic

Fig. 3. Complete DPI synapse circuit, including short-term plasticity,

NMDA voltage gating, and conductance-based functional blocks.

The short-term depression block is implemented by MOSFETs MS1�3;

the basic DPI dynamics are implemented by the block MD1�6; the

NMDA voltage-gated channels are implemented by MN1�2, and

conductance-based voltage dependence is achieved with MG1�2.
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weight by acting on the Vw of each individual synapse (e.g.,
see Section V), it is possible to implement adaptive circuits

that act on Vthr of all the synapses connected to a given

neuron to keep its firing rate within desired control

boundaries. This strategy has been recently demonstrated

in [75].

V. SYNAPTIC PLASTICITY: SPIKE-BASED
LEARNING CIRCUITS

One of the key properties of biological synapses is their

ability to exhibit different forms of plasticity. Plasticity

mechanisms produce long-term changes in the synaptic

strength of individual synapses in order to form memories

and learn about the statistics of the input stimuli. Plasticity

mechanisms that induce changes that increase the synaptic

weights are denoted as long-term potentiation (LTP)
mechanisms, and those that induce changes that decrease

synaptic weights are denoted as long-term depression

(LTD) mechanisms [76].

In neuromorphic VLSI chips, implementations of long-

term plasticity mechanisms allow us to implement learn-

ing algorithms and set synaptic weights automatically,

without requiring dedicated external read and write access

to each individual synapse.
As opposed to the case of theory, or software simula-

tion, the realization of synapses in hardware imposes a set

of important physical constraints. For example, synaptic

weights can only have bounded values, and with a limited

(and typically small) precision. These constraints have

dramatic effects on the memory capacity of the neural

network that uses such synapses [77], [78]. So when de-

veloping computational models of biological synapses that
will be mapped onto neuromorphic hardware, it is im-

portant to develop plasticity mechanisms that work with

limited resolution and bounded synaptic weights [24].

Another important constraint that should be taken into

account when developing hardware learning systems that

are expected to operate continuously (as is the case for

real-time behaving systems) is related to the blackout

effect [79]. Classical Hopfield networks are affected by this
effect: in Hopfield networks the memory capacity is

limited, and is related to the number of synapses available.

Learning new patterns uses memory resources and if the

number of stored patterns reaches a critical value the

storage of even one single new pattern destroys the whole

memory because none of the old patterns can be recalled.

Unfortunately, this catastrophic condition is unavoidable

in most practical scenarios, since continuous, uninter-
rupted learning will always lead to the blackout effect.

However, it is possible to avoid this effect, by building

networks that can progressively forget old memories to

make room for new ones, thus exhibiting the palimpsest

property [80]. It has been demonstrated that the optimal

strategy for implementing this palimpsest property, while

maintaining a high storage capacity, is to use synapses that

have a discrete number of stable states and that exhibit
stochastic transitions between states [81]. Specifically, it

was demonstrated that by modifying only a random subset

of the network synapses with a small probability, memory

lifetimes increase by a factor inversely proportional to the

probability of synaptic modification [82]. In addition, the

probability of synaptic transitions can be used as a free

parameter to set the tradeoff between the speed of learning

against the memory capacity.
These types of plastic synapse circuits can be imple-

mented in a very compact way by reducing to the mini-

mum the resolution of the synaptic weight (i.e., just two

stable states) and using variability in the input spike trains

as the source of stochasticity for the transition of the

synaptic weights (e.g., from an LTD to an LTP stable state).

The low resolution in the synaptic weights can be compen-

sated by redundancy (i.e., using large numbers of sy-
napses), and the variability in the input spike trains can be

obtained by encoding signals with the mean rates of

Poisson distributed spike trains [83]–[85]. An important

advantage of delegating the onus of generating the stochas-

ticity to the input spiking activity is that no additional

circuitry is needed for the stochastic state transitions [86].

Furthermore, since the spiking activity controls the speed

of learning, the network can easily switch between a slow-
learning regime (i.e., to learn pattern of mean firing rates

with uncorrelated stimuli) to a fast learning one (i.e., to

learn highly correlated patterns) without changing its

internal parameters [84], [87].

In addition to allowing compact circuit designs, these

types of plastic synapse circuits do not require precisely

matched analog devices. As the dominant source of

variability lies in the (typically Poisson distributed) input
spikes driving the learning, additional sources of variabil-

ity, for example, induced by device mismatch, do not affect

the main outcome of the learning process. As a conse-

quence, analog VLSI designers do not have to allocate

precious silicon real-estate resources to minimize device

mismatch effects in these circuits.

An example of a circuit that implements a weight

update mechanism compatible with this stochastic learn-
ing rule is shown in Fig. 4(a). The circuit comprises three

main blocks: an input stage MI1�2, a spike-triggered weight

update block ML1�4, and a bistability weight storage/

refresh block [see transconductance amplifier in Fig. 4(a)].

The input stage receives spikes from presynaptic neurons

and triggers increases or decreases in weights, depending

on the two signals VUP and VDN generated downstream by

the postsynaptic neuron. The bistability weight refresh
circuit is a positive-feedback amplifier with very small

‘‘slew rate’’ that compares the weight voltage Vw to a set

threshold Vthw and slowly drives it toward one of the two

rails Vwhi or Vwlo, depending on whether Vw > Vthw or

Vw G Vthw, respectively. This bistable drive is continuous

and its effect is superimposed to the one from the spike-

triggered weight update circuit. The analog, bistable,
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synaptic weight voltage Vw is then used to set the ampli-

tude of the EPSC generated by the synapse integrator cir-

cuit (e.g., the circuit shown in Fig. 3). Note that while the

weight voltage Vw is linearly driven by the bistability
circuit, its effect on the EPSC produced by the connected

DPI synapse is exponential. This nonlinearity can, in

principle, affect adversely the dynamics of learning and is

more relevant at small scales (tens of synapses) since the

contribution of each synapse is important. However, the

nonlinearity has a negligible effect in practice because in

the slow-learning regime only a small subset of a much

larger number of synapses is involved in the learning
process, each one participating with a small contribution.

The circuit presented here can be easily modified to better

reproduce the linear dynamics of the theoretical model by

decoupling the synaptic weight from the internal variable,
as in [88].

The two signals VUP and VDN of Fig. 4(a) that deter-

mine whether to increase or decrease the synaptic weight

are shared globally among all synapses afferent to a neu-

ron. The circuits that control these signals can be triggered

by the neuron’s postsynaptic spike, to implement standard

spike-timing-dependent plasticity (STDP) learning rules

[76]. In general, STDP mechanisms that update the synap-
tic weight values based on the relative timing of pre-

synaptic and postsynaptic spikes can be implemented very

effectively in analog [83], [89]–[92] or mixed analog–

digital VLSI technology [93]. However, while standard

STDP mechanisms can be effective in learning to classify

spatio–temporal spike patterns [93], [94], these algorithms

and circuits are not suitable for both encoding information

represented in a spike correlation code and a means rate
code without spike correlations [95], [96]. For this reason,

we focus on more elaborate plasticity mechanisms that not

only depend on the timing of the presynaptic spikes but

also on other state variables present at the postsynaptic

terminal, such as the neuron membrane potential or its

calcium concentration. An example of such type of learn-

ing rule is the one proposed in [25], which has been shown

to be able to classify patterns of mean firing rates, to cap-
ture the rich phenomenology observed in neurophysiolog-

ical experiments on synaptic plasticity, and to reproduce

the classical STDP phenomenology both in HW [9], [85],

[88] and in SW simulations [25], [97]. This rule can be

used to implement unsupervised and supervised learning

protocols, and to train neurons to act as perceptrons or

binary classifiers [24]. Typically, input patterns are

encoded as sets of spike trains that stimulate the neuron’s
input synapses with different mean frequencies, while the

neuron’s output firing rate represents the binary classifier

output.

Examples of circuits that implement such a learning

rule are shown in Fig. 4(b). The spikes produced by the

postsynaptic neuron are integrated by the DPI circuit

MD1�5 to produce a voltage VCa which represents a post-

synaptic calcium concentration and is a measure of the
recent spiking activity of the neuron. The three current-

mode winner-take-all circuits [98] MW1�19 compare VCa to

three different thresholds Vthk1, Vthk2, and Vthk3. In parallel,

the neuron’s membrane potential Vmem is compared to a

fixed threshold Vthm by a voltage comparator. The out-

comes of these comparisons set VUP and VDN such that,

whenever a presynaptic spike Vspk reaches the synapse

weigh-update block of Fig. 4(a)

Vw ¼ Vw þ Dw; if Vmem > Vmth

and Vthk1 G VCa G Vthk3

Vw ¼ Vw � Dw; if Vmem G Vmth

and Vthk1 G VCa G Vthk2

8><
>:

Fig. 4. Spike-based learning circuits. (a) Presynaptic weight-update

module (present at each synapse). (b) Postsynaptic learning control

circuits (present at the soma).
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where Dw is a factor that depends on VDw of Fig. 4(b), and

is gated by the eligibility traces VUP or VDN. If none of the

conditions above are met, Dw is set to zero by setting

VUP ¼ Vdd, and VDN ¼ 0.

The conditions on VCa implement a ‘‘stop-learning’’

mechanism that greatly improves the generalization per-

formance of the system by preventing overfitting when the

input pattern has already been learned [24], [25]. For
example, when the pattern stored in the synaptic weights

and the pattern provided in input are highly correlated, the

postsynaptic neuron will fire with a high rate and VCa will

rise such that VCa > Vthk3, and no more synapses will be

modified.

Mitra et al. [85] and Giulioni et al. [88] show how such

types of circuits can be used to carry out classification tasks

with a supervised learning protocol, and characterize the
performance of these types of VLSI learning systems.

Additional experimental results from the circuits shown in

Fig. 4 are presented in Section VII.

VI. FROM CIRCUITS TO NETWORKS

The silicon neuron, synapse, and plasticity circuits pre-

sented in Sections III–V can be combined together to form

full networks of spiking neurons. Typical spiking neural

network chips have the elements described in Fig. 5.

Multiple instances of these elements can be integrated

onto single chips and connected among each other either
with on-chip hard-wired connections [e.g., see Fig. 6(a)],

or via off-chip reconfigurable connectivity infrastructures

[99]–[103].

A. Recurrent Neural Networks
In the most general recurrent neural network (RNN),

each neuron is connected to every other neuron (fully

recurrent network). Unlike feedforward networks, the

response of RNNs to the input does not only depend on the

external input but also on their internal dynamics, which

in turn is determined by the connectivity profile. Thus,

specific changes in connectivity, for example through

Fig. 5. Silicon neuron diagram. This is a schematic representation of a typical circuital block comprising multiple synapse blocks, an I&F soma

block, and a homeostatic plasticity control block. The synapses receive input spikes, integrate them, and convey the resulting currents to the

soma. The soma integrates these currents and produces output spikes with a mean rate that is proportional to the total net input current.

Synapse circuits can implement both local plasticity mechanisms to change their efficacy, and global scaling mechanisms via additional

homeostatic control block.

Fig. 6. sWTA network topology. (a) Schematic representation of the

connectivity pattern of the sWTA network. These connections are

implemented by synapses with hard-wired connections to presynaptic

and postsynaptic neurons. Empty circles represent excitatory neurons

and the filled circle represents the global inhibitory neuron.

Solid/dashed lines represent excitatory/inhibitory connections.

Connections with arrowheads are mono-directional; all the others

are bidirectional. Only eight excitatory neurons are shown for

simplicity. (b) Chip architecture. Squares represent excitatory (E) and

inhibitory (I) synapses, and small unlabeled trapezoids represent

I&F neurons. The I&F neurons transmit their spikes off-chip and/or to

locally connected synapses implementing the network topology

depicted in (a). Adapted from [117].
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learning, can tune the RNN behavior, which corresponds
to the storage of internal representations of different ex-

ternal stimuli. This property makes RNNs suitable for

implementing, among other properties, associative mem-

ories [81], working memory [104], and context-dependent

decision making [30].

There is reason to believe that, despite significant

variation across cortical areas, the pattern of connectivity

between cortical neurons is similar throughout neocortex.
This fact would imply that the remarkably wide range of

capabilities of the cortex are the results of a specialization

of different areas with similar structures to the various

tasks [105], [106]. An intriguing hypothesis about how

computation is carried out by the brain is the existence of a

finite set of computational primitives used throughout the

cerebral cortex. If we could identify these computational

primitives and understand how they are implemented in
hardware, then we would make a significant step toward

understanding how to build brain-like processors. There is

an accumulating body of evidence that suggests that one

potential computational primitive consists of an RNN with

a well-defined excitatory/inhibitory connectivity pattern

[106] typically referred as soft winner-take-all (sWTA)

network.

In sWTA neural networks, a group of neurons compete
with each other in response to an input stimulus. The

neurons with highest response suppress all other neurons

to win the competition. Competition is achieved through a

recurrent pattern of connectivity involving both excitatory

and inhibitory connections. Cooperation between neurons

with similar response properties (e.g., close receptive

fields or stimulus preference) is mediated by excitatory

connections. Competition and cooperation make the
output of an individual neuron depend on the activity of

all neurons in the network and not just on its own input

[107]. As a result, sWTAs perform not only common linear

operations but also complex nonlinear operations [108].

The linear operations include analog gain (linear ampli-

fication of the feedforward input, mediated by the recur-

rent excitation and/or common mode input), and locus

invariance [109]. The nonlinear operations include non-
linear selection [110]–[112], signal restoration [13], [111],

and multistability [110], [112].

The computational abilities of these types of networks

are of great importance in tasks involving feature extrac-

tion, signal restoration, and pattern classification problems

[113]. For example, localized competitive interactions have

been used to detect elementary image features (e.g.,

orientation) [114], [115]. In these networks, each neuron
represents one feature (e.g., vertical or horizontal orien-

tation); when a stimulus is presented, the neurons coope-

rate and compete to enhance the response to the features

they are tuned to and to suppress background noise. When

sWTA networks are used for solving classification tasks,

common features of the input space can be learned in an

unsupervised manner. Indeed, it has been shown that

competition supports unsupervised learning because it
enhances the firing rate of the neurons receiving the

strongest input, which in turn triggers learning on those

neurons [116].

B. Distributed Multichip Networks
The modularity of the cortex described in the theore-

tical works and suggested by the experimental observations

above mentioned, constitutes a property of great impor-
tance related to the scalability of the system. If we under-

stood the principles by which such computational modules

are arranged together and what type of connectivity allows

for coherent communication also at large distances, we

would be able to build scalable systems, i.e., systems whose

properties are qualitatively reproduced at all scales.

The idea of modularity poses some technological ques-

tions as to how the communication between the systems
should be implemented. Large VLSI networks of I&F

neurons can already be implemented on single chips, using

today’s technology. However, implementations of pulse-

based neural networks on multichip systems offer greater

computational power and higher flexibility than single-

chip systems and constitute a tool for the exploration of the

properties of scalability of the neuromorphic systems. Be-

cause interchip connectivity is limited by the small num-
ber of input–output connections available with standard

chip packaging technologies, it is necessary to adopt time-

multiplexing schemes for constructing large multichip

networks. This scheme should also allow for an asynchro-

nous type of communication, where information is trans-

mitted only when available and computation is performed

only when needed in a distributed, nonclocked manner.

In recent years, we have witnessed the emergence of a
new asynchronous communication standard that allows

analog VLSI neurons to transmit their activity across chips

using pulse-frequency-modulated signals (in the form of

events, or spikes). This standard is based on the address–

event representation (AER) communication protocol [12].

In AER input and output signals are real-time asynchronous

digital pulses (events or spikes) that carry analog informa-

tion in their temporal relationships (interspike intervals).
If the activity of the VLSI neurons is sparse and their firing

rates are biologically plausible (e.g., ranging from a few

spikes per second to a few hundred spikes per second), then

it is possible to trade off space with speed very effectively,

by time-multiplexing a single (very fast) digital bus to repre-

sent many (very slow) neuron axons. For example, it has

been recently demonstrated how these time-multiplexing

schemes can sustain more than 60 mega events/s,
representing the synchronous activity of one million

neurons firing at a rate of 60 Hz [99], [118]. In general,

AER communication infrastructures provide the possibility

to implement arbitrary custom multichip architectures,

with flexible connectivity schemes. Address–events can

encode the address of the sending node (the spiking neu-

ron) or of the receiving one (the destination synapse). The
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connectivity between different nodes is implemented by
using external digital components and is typically defined

as a lookup table with source and destination pairs of

addresses, or by more resource-efficient schemes, e.g.,

using multicast or multistage routing [6], [119], [120]. This

asynchronous digital solution permits flexibility in the

configuration (and reconfiguration) of the network topol-

ogy, while keeping the computation analog and low power

at the neuron and synapse level.
To handle cases in which multiple sending nodes at-

tempt to transmit their addresses at exactly the same time

(event collisions), on-chip digital asynchronous arbitration

schemes have been developed [12], [118], [121]. These

circuits work by queuing colliding events, so that only one

event is transmitted at a time. Multiple colliding events are

therefore delayed by a few nanoseconds or fractions of

microseconds. For neuromorphic architectures that use
biologically plausible time constants (i.e., of the order of

milliseconds), these delays are negligible and do not affect

the overall performance of the network. For example,

assuming a tolerance of 1-ms jitter [122], it is possible to

process up to four thousand coincident input events

without introducing sensible delays, even with an outdated

350-nm CMOS technology [102]. On the other hand, in

accelerated-time systems, such as those proposed in [7]
whose circuits operate at 104 the speed of their biological

counterpart, communication delays are much more

critical, because their duration does not scale. In general,

the performance of any AER neuromorphic system will be

bound by communication memory and bandwidth con-

straints, which trade off the speed of the neural processing

elements with the size of the network that can be

implemented.

C. SW/HW Ecosystem
In order to promptly explore the computational proper-

ties of different types of large-scale multichip computa-

tional architectures, it is important to develop a dedicated

HW and SW infrastructure, which allows a convenient,

user-friendly way to define, configure, and control in real

time the properties of the HW [123], [124] spiking neural
networks, as well as a way to monitor in real time their

spiking and nonspiking activity.

The definition of an SW infrastructure for neuromor-

phic systems pertains to an issue of increasing importance.

Indeed, as reconfigurable neuromorphic platforms are

scaled to larger sizes, it is necessary to develop efficient

tools to interpret the neural network model, e.g., through

programming or scripting languages, and configure the
hardware parameters correspondingly for the neural and

synaptic dynamics and for the events routing. Hence, the

SW should provide means to configure, control, interact,

and monitor the electronic hardware. Fortunately, while

the specific electronic implementation of each neuromor-

phic system can differ substantially, several common pro-

perties can be identified, such as the use of an AER scheme

for communication. Therefore, an SW ecosystem can be
defined to assemble and control the system in a modular,

fully reconfigurable way. In this respect, several SW inter-

faces for neuromorphic and neurocomputing platforms

have already been developed. The scopes of these tools are

diverse and so are their peculiarities due to the specificities

of the corresponding system. Both digital neurocomputing

platforms and analog neuromorphic systems typically re-

quire a ‘‘neuromorphic compiler’’ able to parse the net-
work topology and configure correspondingly memories,

processors, or digital interfaces to properly simulate the

neural and synaptic dynamics and route the spiking events

through the network [125]–[128]. On top of the compilers,

a number of SW frameworks have been developed as

scripting and programming languages for neural networks

at the level of the single network elements, e.g., neurons,

synapses, and connectivity [123] and also including a
system-level description for building large-scale, brain

simulators [129].

A promising example of an open-source SW framework

that interprets generalized hardware specification files and

constructs an abstract representation of the neuromorphic

devices compatible with high-level neural network prog-

ramming libraries is available at http://inincs.github.com/

pyNCS/. This framework is based on reconfigurable and
extensible application programming interfaces (APIs) and

includes a high-level scripting front–end for defining neu-

ral networks. It constitutes a bridge between applications

using abstract resources (i.e., neurons and synapses) and

the actual processing done at the hardware level through

the management of the system’s resources, much like a

kernel in modern computers [130], and it is compatible

with most existing software. The HW and SW infrastruc-
ture can be complemented with tools for dynamic param-

eter estimation methods [131], [132] as well as automated

methods for measuring and setting circuit-level parameters

using arbitrary cost functions at the network level [124].

VII. EXPERIMENTAL RESULTS

The circuits and architectures described in this paper have
been designed and developed over the course of several

years. Therefore, the experimental data presented in this

section have been collected from multiple neuromorphic

VLSI devices and systems. The results presented demon-

strate the correct behavior of the circuits described in

Sections III–VI.

A. Synaptic and Neural Dynamics
To show the combined effect of synaptic and neural

dynamics, we stimulated a silicon neuron via an excitatory

DPI synapse circuit, while sweeping different short-term

depression (STD) parameter settings. The typical pheno-

menology of STD manifests as a reduction of EPSC ampli-

tude with each presentation of a presynaptic spike, with a

slow (e.g., of the order of 100 ms) recovery time [133]. In
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Fig. 7, we plot the neuron’s membrane potential Vmem

during the stimulation of one of its excitatory synapses

with a regular presynaptic input spike train of 50 Hz, for

different STD adaptation settings. Small parameter set-

tings for the STD bias voltage have no or little effect. But

for larger settings of this bias voltage the effect of STD is

prominent: the synaptic efficacy decreases with multiple

input spikes to a point in which the net input current to the

soma becomes lower than the neuron’s leak current, thus
making the neuron membrane potential decrease, rather

than increase over time.

Another important adaptation mechanism discussed in

Section III, is that of spike-frequency adaptation. To show

the effect of this mechanism, we set the relevant bias

voltages appropriately, stimulated the silicon neuron with

a constant input current, and measured its membrane

potential. Fig. 8 shows an example response to the step
input current, in which Vlkahp ¼ 0.05 V, Vthrahp ¼ 0.14 V,

and Vahp ¼ 2.85 V. As shown, we were able to tune the

adaptation circuits in a way to produce bursting behavior.

This was achieved by simply increasing the gain of the

negative feedback adaptation mechanism ðVthrahp > 0Þ.
This is equivalent to going from an asymptotically stable

regime to a marginally stable one that produces ringing in

the adaptation current Iahp, which in turn produces bursts
in the neuron’s output firing rate. This was possible due to

the flexibility of the DPI circuits, which allow us to take

advantage of the extra control parameter Vthrahp, in

addition to the adaptation rate parameter Vahp, and the

possibility of exploiting its nonlinear transfer properties, as

described in Section IV, without requiring extra circuits or

dedicated resources that alternative neuron models have to

use [32], [57], [58].

B. Spike-Based Learning
In this section, we present measurements from the

circuits implementing the STDP learning mechanism

described in Section V. To stimulate the synapses, we

generated presynaptic input spike trains with Poisson dis-

tributions. Similarly, the postsynaptic neuron was driven

by a current produced via a nonplastic synapse (a DPI

circuit with a constant synaptic weight bias voltage) stimu-

lated by software-generated Poisson spike trains. These
latter inputs are used to drive the I&F neuron toward

different activity regimes which regulate the probabilities

of synaptic transitions [25], [134], effectively modulating

the learning rate in unsupervised learning conditions, or

acting as teacher signals in supervised learning conditions.

The Poisson nature of the spike trains used in this way

represents the main source of variability required for im-

plementing stochastic learning [83], [84]. In Fig. 9, we
show measurements from a stochastic learning experiment

in which the neuron is driven to a regime where both

potentiation and depression are possible but depression

has a higher probability to occur. As shown, the weight

voltage undergoes both positive and negative changes,

depending on the timing of the input spike and the state of

the postsynaptic neuron (as explained in Section V). In

addition, the weight voltage is slowly driven toward one of
the two stable states, depending on whether it is above or

below the threshold � [where � corresponds to the voltage

Vthw of Fig. 4(a)]. Long-term transitions occur when a

series of presynaptic spikes arrive in a short time frame

causing the weight to cross the threshold �. As a

consequence, the probability of synaptic state transitions

depends on the probability that such events occur, hence it

depends on the firing rate of the presynaptic neuron [82],
[89]. In the case of the experiment of Fig. 9, an LTD

Fig. 7. Membrane potential of I&F neuron in response to a 50-Hz

presynaptic input spike train for different values of short-term

depression adaptation rate, which is controlled by Vstd bias

(see Fig. 3). The dashed trace in background corresponds to

the response without STD. Black dots correspond to input

spike times.

Fig. 8. Silicon neuron response to a step input current, with

spike-frequency adaptation mechanism enabled and parameters

tuned to produce bursting behavior. The figure inset represents

a zoom of the data showing the first six spikes. Adapted from [49].
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transition has occurred upon the presentation of an input

stimulus of 60 Hz for 400 ms. In conclusion, the bistability

of the synapses and the spike-based plasticity concur in a
mechanism that: 1) ensures that only a random fraction of

the stimulated bistable synapses undergo long-term modi-

fications; and 2) that synaptic states are resilient to

changes due to spontaneous activity, thus increasing the

robustness to noise.

In Fig. 10(a), we show the results of another stochastic

learning experiment in which we stimulated the postsyn-

aptic neuron with a high-frequency Poisson-like spike train
through a nonplastic excitatory input synapse, in order to

produce Poisson-like firing statistics in the output. The

dashed line on the Vmem plot represents the learning

threshold voltage Vthm of Fig. 4(b). The VUP (active low)

and VDN (active high) signals are the same as shown in

Fig. 4(b) and represent the currents that change the

synaptic values when triggered by presynaptic spikes. They

can be considered as eligibility traces that enable the
weight update mechanism when they are active.

In Fig. 10(b), we show the results of an experiment

where we trained a matrix of 28� 124 ¼ 3472 plastic sy-

napses, constituting the total input of a neuron, with

multiple presentations of the same input pattern repre-

senting the ‘‘INI’’ acronym. Initially, all the neuron’s input

synaptic weights are set to their low state (black pixels).

Then, the postsynaptic neuron is driven by a teacher signal
that makes it fire stochastically with a mean rate of 40 Hz.

At the same time, input synapses are stimulated according

to the image pattern: in the input image (top left image),

each white pixel represents a Poisson spike train of 55 Hz,
sent to the corresponding synapse; similarly, each black

pixel represents a low rate spike train (5 Hz) which is

transmitted to its corresponding synapse. Because the

probability of LTP depends on the presynaptic firing rate,

elements of the input matrix that correspond to a white

pixel are more likely to make a transition to the poten-

tiated state compared to the other ones. Because of the

stochastic nature of the input patterns, only a random
subset of synapses undergoes LTP, leaving room available

to store other memories. By repeating the presentation of

Fig. 9. Stochastic transitions in synaptic states. The nonplastic

synapse is stimulated with a Poisson-distributed spikes train. The

neuron fires at an average rate of 30 Hz. The presynaptic input ðVpreÞ is

stimulated with Poisson-distributed spike trains with a mean firing

rate of 60 Hz. The updates in the synaptic weight produced an LTD

transition that remains consolidated. VH and VL show the potentiated

and depressed levels, respectively, while w denotes the synaptic

weight, and � is the bistability threshold. Adapted from [85].

Fig. 10. Stochastic learning. (a) Single-neuron stochasticity. Traces

from a VLSI multineuron chip with I&F neurons and plasticity circuits

as in Fig. 4(a). TheVUP andVDN signals (top traces) are set by the circuits

in Fig. 4(b). A Poisson spike train of high firing rate is sent to the

excitatory synapse of an I&F neuron whose Vmem trace is reported in

the lower trace. The strong input current generated by the synapse has

been compensated by a strong leakage current (Vleak ¼ 0.39 V).

This parameter choice allows to exploit the stochasticity of the input

spike trains to produce the highly irregular dynamics of Vmem. The

nonideal rounding in the rising part of the VUP trace has negligible

effects on the synaptic weight given the exponential nature of

the current generated through transistor ML3 of Fig. 4(a). (b) An image

of the ‘‘INI’’ acronym is converted into a series of Poisson spike trains

and gradually stored in the memory by repeated presentations.

See Section VII-B for details. (c) Normalized frequency of occurrence

of LTP transitions during the experiment of (b), fitted by an

exponential function (solid line).
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the input pattern multiple times, this pattern gets grad-
ually stored in the synaptic matrix. The bottom left image

of Fig. 10(b) represents the synaptic matrix at the end of

the experiment. Furthermore, the stop-learning mecha-

nism described in Section V causes a drop in the number of

synapses that undergo LTP because as the pattern is stored

in the memory, the postsynaptic firing rate increases

[Fig. 10(c)].

The above experiments demonstrate the properties of
the learning circuits implemented in the VLSI chips. In a

feedforward configuration, the neuron can be controlled by

an external spiking teacher signal, which indirectly con-

trols the transition probabilities. This ‘‘perceptron-like’’

configuration allows the realization of supervised learning

protocols for building real-time classification engines. But,

as opposed to conventional perceptron-like learning rules,

the spike-triggered weight updates implemented by these
circuits overcome the need for an explicit control (e.g.,

using error backpropagation) on every individual synapse.

In ‘‘Hopfield-network’’-like RNN configurations, the same

neuron and plasticity circuits can implement attractor

neural network (ANN) learning schemes [9], [135],

exploiting the neural network dynamics to form memories

through stochastic synaptic updates, without the need for

explicit random generators at each synapse.

C. sWTA Networks of I&F Neurons
Two characteristic features of sWTA networks that

make them ideal building blocks for cognitive systems are

their ability to selectively enhance the contrast between

localized inputs and to exhibit activity that persists even

after the input stimulus has disappeared. We configured

the local hard-wired connectivity of a multineuron chip to
implement an sWTA network and carried out test experi-

ments to show both selective amplification and state-

dependent computation. Specifically, we configured a chip

comprising a network of 128 I&F neurons with local

nearest neighbor excitatory connectivity and global inhibi-

tion: each neuron was configured to excite its first nearest

neighbors, its second neighbors, and a population of four

global inhibitory neurons (the top four neurons in the
array of 128 neurons). In the first experiment, we calib-

rated the settings and input stimuli to minimize the effect

of device mismatch, following the event-based techniques

described in [124] and [131] and stimulated the network

with two distinct regions of activation, centered around

units 20 and 60 (see shaded areas in Fig. 11). In one case,

the top region had a higher mean firing rate than the

bottom one, and in the other case, the bottom region had a
higher activation (see top and bottom plots in Fig. 11,

respectively). As expected from theory [109], [111], [108],

the population of silicon neurons receiving the strongest

input won the competition, enhancing its activity by

means of the local recurrent connections, while suppres-

sing the activity of the competing population via the global

inhibitory connections (selective amplification feature).

In the second experiment, we demonstrate the behav-
ior of a sWTA architecture used to construct state-holding

elements, which are the basic blocks for building finite

state machines (FSMs) using spiking neurons, and in

which the FSM states are represented by subpopulations of

neurons. The network topology supporting the FSM

functionality and used in the following experiments

resembles the ones of ANN with discrete or line attractors.

As mentioned in Section VI, this type of networks can
support a diverse range of functionalities and these

networks have been employed in hardware implementa-

tions, e.g., for head-direction tracking [137] and memory

recall [9]. In particular, we concentrated our experiments

Fig. 11. Selective amplification experiments. The network is

stimulated in two regions, one centered around unit 20 and the other

around unit 60, with Poisson spike trains of mean firing rates 180

and 240 Hz. The figures show the networks response to these inputs

(black) and their respective steady-state firing rates on the right

panels (calculated for time > 500 ms). Neurons 124–127 are the four

inhibitory neurons of the soft WTA network. In the right and left

panels, the input amplitudes are swapped. The results show smooth

activity profiles that are invariant to input swapping, demonstrating

that the mismatch in the local weights has been partially compensated.

Adapted from [136].
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on demonstration of two of their main properties useful for
implementing the FSM, namely selective amplification

and state switching due to external inputs.

In this experiment, we present localized and transient

inputs to two groups of neurons using synthetically gene-

rated Poisson trains (see Fig. 12). After the presentation of

each input stimulus, the activity of the stimulated popu-

lation persists, reverberating in time, by means of the local

recurrent excitatory connectivity. Note that, because of the
global competition, only a subset of the stimulated neurons

remains active. To obtain the results shown in Fig. 12, we

first stimulated the bottom population for 500 ms, and

then after subsequent 500 ms, we stimulated the top pop-

ulation. When the second stimulus is applied, a ‘‘state

transition’’ is triggered: as the top population becomes

active the bottom one is suppressed. When the second

stimulus is removed, the bottom population is completely
silent, and the top population remains active, in a self-

sustained activity regime. In full FSM systems, the state

transition signals would be produced by other neuronal

populations (transition populations) responding to both

incoming input stimuli and to neurons representing the

current state. A complete description and analysis of these

neural-network-based FSMs is presented in [29], and

working examples of multineuron chips implementing
spiking FSMs are described in [131] and [132].

VIII . DISCUSSION

The set of low-power hybrid analog/digital circuits pre-

sented in Sections III–V can be used as basic building

blocks for constructing adaptive fully parallel, real-time

neuromorphic architectures. While several other projects
have already developed dedicated hardware implementa-

tions of spiking neural networks, using analog [4], digital

[23], [138], and mixed mode analog/digital [2], [8] ap-

proaches, few [5], [14], [139]–[141] follow the neuromor-

phic approach originally proposed in the early 1990s [11].

The foundations of this neuromorphic approach were

established by pointing out that the implementation of

compact and low-power hardware models of biological
systems requires the use of transistors in the subthreshold

analog domain and the exploitation of the physics of the

VLSI medium. We argue that the circuits and architectures

presented here adhere to this approach and can, therefore,

be used to build efficient biophysically realistic real-time

neural processing architectures and autonomous behaving

systems.

A. Device Mismatch and Noise
One common criticism to this subthreshold analog

VLSI design approach is that circuits operating in this do-

main have a high degree of noise. However, subthreshold

current-mode circuits have lower noise energy (noise

power times bandwidth) and superior energy efficiency

(bandwidth over power) than above-threshold ones [142],

[143]. Another common criticism is that device mismatch
in subthreshold circuits is more prominent than in above-

threshold circuits. While this observation is correct, device

mismatch is a critical problem in any analog VLSI imple-

mentation of neural networks (e.g., see the postcalibration

neuronal variability measurements of above-threshold ac-

celerated time silicon neuron circuits, presented in [10]).

In principle, it is possible to minimize the effect of device

mismatch following standard electrical engineering ap-
proaches and adopting appropriate analog VLSI design

techniques, however we argue that it is not necessary to

adopt aggressive mismatch reduction techniques in the

type of neuromorphic systems we propose: these techni-

ques would lead to very large transistor or circuit designs,

which could, in turn, significantly reduce the number of

neurons and synapses integrated onto a single chip (see,

for example, [31], where a whole VLSI device was used to
implement a single synapse). Rather than attempting to

minimize mismatch effects using brute-force engineering

techniques at the circuit design level, the neuromorphic

engineering approach we promote in this work aims to

address these effects at the network and system level, with

collective computation, adaptation, and feedback mechan-

isms. For example, the plasticity mechanisms presented in

Fig. 12. FSM state-holding behavior using a VLSI sWTA architecture.

States are represented by two recurrently connected populations

of I&F neurons using the hard-wired, on-chip connectivity. Population 1

(bottom half of the raster plot) is stimulated by synthesized Poisson

spike trains for the initial 500 ms. Its activity persists due to the

recurrent excitatory connectivity, until population 2 (top half of the

raster plot) is stimulated. The width and position of the subpopulations

depend on the properties of the local connectivity and on their

variability. Line plots superimposed to the raster plot represent the

mean firing rates computed across each population. The colored

bars below the plot represent input stimulus presentations. Input

stimuli are composed of Poisson spike trains of 200 Hz lasting

for 500 ms, and are applied to all the neurons of one population.

The higher variability in the output, e.g., compared with Fig. 11, is due

to the absence of mismatch compensation techniques, deliberately

omitted to highlight the differences.
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Section V are intrinsically robust to mismatch by design,
and do not require precisely matched transistors. More-

over, it has been shown how both short- and long-term

plasticity mechanisms can be effectively used to reduce the

effects of device mismatch in VLSI circuits [68], [144], and

how homeostatic plasticity mechanisms can be used to

compensate for large changes in the signals affecting the

operation of the neurons in multineuron VLSI systems

[75]. In addition, the approach of building distributed
multichip systems interfaced among each other via the

AER protocol (e.g., see Section VI-B) lends itself well to

the adoption of event-based mismatch reduction tech-

niques, such as the one proposed in [136], that can be

effective even for very large-scale systems (e.g., compris-

ing 1 million silicon neurons) [145]. In addition to being

useful for compensating mismatch effects across neurons,

homeostatic synaptic scaling circuits, such as the ones
described in Section IV-C, can provide another approach to

compensating the effects of temperature drifts, comple-

menting dedicated subthreshold bias generator approaches

[146], [147]. In summary, this neuromorphic approach

makes it possible to tolerate noise, temperature, and mis-

match effects at the single device level by exploiting the

adaptive features of the circuits and architectures de-

signed, leading to robustness at the system level.

B. Exploiting Variability and Imprecision
The strategy proposed by this approach essentially ad-

vocates the construction of distributed and massively

parallel computing systems by integrating very compact,

but inaccurate and inhomogeneous circuits into large

dense arrays, rather than designing systems based on small

numbers of very precise, but large and homogeneous com-
puting elements. Indeed, intrinsic variability and diverse

activation patterns are often identified as fundamental

aspects of neural computation for information maximiza-

tion and transmission [30], [148]–[150]. The strategy of

combining large numbers of variable and imprecise com-

puting elements to carry out robust computation is also

followed by a wide set of traditional machine learning

approaches. These approaches work on the principle of
combining the output of multiple inaccurate computa-

tional modules that have slightly different properties, to

optimize classification performances and achieve or even

beat the performances of single accurate and complex

learning systems [151], [152]. A set of similar theoretical

studies showed that the coexistence of multiple different

time scales of synaptic plasticity (e.g., present due to mis-

match in the time constants of the DPI synapse circuits)
can dramatically improve the memory performance of

ANN [153]. The coexistence of slow and fast learning

processes has been shown to be crucial for reproducing

the flexible behavior of animals in context-dependent

decision-making (i.e., cognitive) tasks and the

corresponding single-cell recordings in a neural network

model [154].

C. Toward Autonomous Cognitive Systems
Building cognitive systems using noisy and inhomoge-

neous subthreshold analog VLSI circuits might appear as a

daunting task. The neural circuits and architectures pre-

sented in this paper represent a useful set of building

blocks paving the way toward this goal. These circuits, as

well as the analogous one proposed in the literature [155],

have been used to build compact, low-power, scalable,

computing systems that can interact with the environment
[3], [145], [156], learn about the input signals they have

been designed to process [85], and exhibit adaptive abi-

lities analogous to those of the biological systems they

model [75], [157], [158]. We showed in this paper how the

sWTA networks and circuits presented can implement

models of working memory and decision making, thanks to

their selective amplification and reverberating activity

properties, which are often associated to high-level cog-
nitive abilities [21]. Multichip systems employing these

architectures can reproduce the results of a diverse set of

theoretical studies based on models of sWTA and ANN to

demonstrate cognitive properties: for example, Schöner

and Sandamirskaya [28], [159] link the types of neural

dynamics described in Section VI to cognition by applying

similar network architectures to sensory-motor processes

and sequence generation; Rutishauser and Douglas [29]
show how the sWTA networks described in this paper can

be configured to implement FSMs and conditional branch-

ing between behavioral states [160]; Rigotti et al. [30],

[161] describe neural principles, compatible with the ones

implemented by the circuits described in Section V, for

constructing recurrent neural networks able to produce

context-dependent behavioral responses; Giulioni et al. [9]

demonstrate working memory in a spiking neural net-
work implemented using the same type of silicon neuron

circuits and plasticity mechanisms [135] described in

Sections III and V.

We recently demonstrated how the circuits and net-

works presented in Sections III, IV, and VI can be used to

synthesize cognition on neural processing systems [20].

Specifically, the neuromorphic multichip system proposed

was used to carry out a context-dependent task selection
procedure, analogous to the sensory-motor tasks adopted

to probe cognition in primates. This is a concrete example

showing how neuromorphic systems, built using variable

and imprecise circuits, can indeed be configured to express

cognitive abilities comparable to those described in [21]

and [30].

D. Challenges and Progress in
Neuromorphic Engineering

Many years have passed since the first publication on

neuromorphic electronic systems [11], and remarkable

progress has been made by the small but vibrant neuro-

morphic engineering (NE) community [162], [163]. For

example, the NE community has mastered the art of

building real-time sensory-motor reactive systems, by
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interfacing circuits and networks of the type described in
this paper with neuromorphic event-based sensors [164];

new promising neural-based approaches have been pro-

posed that link neuromorphic systems to machine learning

[165]–[169]; substantial progress has been made in the

field of neuromorphic robots [170]; and we are now able to

engineer both large-scale neuromorphic systems (e.g., that

comprise the order of 106 neurons [171]) and complex

multichip neuromorphic systems (e.g., that can exhibit
cognitive abilities [20]). However, compared to the

progress made in more conventional standard engineering

and technology fields, the rate of progress in NE might

appear to be disappointingly small. On the one hand, this is

due to the fact that NE is still a small community involving

a small number of research groups worldwide [e.g., com-

pared to the number of engineers that are assigned to the

industrial development of new graphical processing units
(GPUs) or central processing units (CPUs)], which lacks

the technological infrastructure for automatized design,

verification, and configuration tools available for conven-

tional digital integrated circuit (IC) development. On the

other hand, scaling and engineering challenges are not the

main issue: the major limiting factor that hinders the fast

development of neuromorphic engineering is related to

our limited understanding of brain function and neural
computation, a concept that Carver Mead himself high-

lighted already over 20 years ago in a video interview (that

we transcribe here):

‘‘I think at the present time we have enough

technology to build anything we could imagine. Our

problem is, we do not know what to imagine. We

don’t understand enough about how the nervous
system computes to really make more complete

thinking systems.’’

Progress on theoretical and computational neuro-

science is accelerating dramatically, also thanks to large-

scale funding initiatives recently announced in both

Europe and the United States [172], [173]. At the same

time, an increasing number of companies are beginning to
support research and development in brain-inspired com-

puting technologies [174]–[177]. Supported by these new

initiatives, progress in NE is beginning to accelerate as

well [178]. In this perspective, reaching the ambitious goal

of building autonomous neuromorphic systems able to

interact with the environment in real time and to express

cognitive abilities is within the realm of possibility. To
reach this goal, however, it is important to follow a truly

multidisciplinary approach where neuromorphic engineer-

ing serves as a medium for the exploration of robust prin-

ciples of brain computation and not only as a technology

platform for the simulation of neuroscience models.

IX. CONCLUSION

In this paper, we proposed circuit and system solutions

following the neuromorphic approach originally proposed

in [11] for building autonomous neuromorphic cognitive

systems. We presented an in-depth review of such types of

circuits and systems, with tutorial demonstrations of how

to model neural dynamics in analog VLSI. We discussed

the problems that arise when attempting to implement

spike-based learning mechanisms in physical systems
and proposed circuit solutions for solving such problems.

We described examples of recurrent neural network im-

plementations that can be used to implement decision

making and working-memory mechanisms, and argued

how, together with the circuits described in the previous

sections, they can be used to implement cognitive architec-

tures. We discussed about the advantages and disadvan-

tages of the approach followed (e.g., for the subthreshold
regime of operation or for mismatch in analog subthreshold

circuits), and proposed system-level solutions that are

inspired by the strategies used in biological nervous

systems. Finally, we provided an assessment of the progress

made in the NE field so far and proposed strategies for

accelerating it and reaching the ambitious goal of building

autonomous neuromorphic cognitive systems. h
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‘‘An embodied account of serial order: How
instabilities drive sequence generation,’’
Neural Netw., vol. 23, no. 10, pp. 1164–1179,
2010.

[160] E. Neftci, J. Binas, E. Chicca, G. Indiveri, and
R. Douglas, ‘‘Systematic construction of
finite state automata using VLSI spiking
neurons,’’ in Biomimetic and Biohybrid
Systems, vol. 7375, T. Prescott, N. Lepora,
A. Mura, and P. Verschure, Eds. Berlin,
Germany: Springer-Verlag, 2012,
pp. 382–383.

[161] M. Rigotti, D. B. D. Rubin, X.-J. Wang, and
S. Fusi, ‘‘Internal representation of task rules
by recurrent dynamics: The importance
of the diversity of neural responses,’’
Front. Comput. Neurosci., vol. 4, 2010,
DOI: 10.3389/fncom.2010.00024.

[162] Telluride Neuromorphic Cognition
Engineering Workshop. [Online]. Available:
http://ine-web.org/workshops/
workshops-overview

[163] The Capo Caccia Workshops Toward
Cognitive Neuromorphic Engineering.
[Online]. Available: http://capocaccia.
ethz.ch

[164] S.-C. Liu and T. Delbruck, ‘‘Neuromorphic
sensory systems,’’ Current Opinion Neurobiol.,
vol. 20, no. 3, pp. 288–295, 2010.

[165] B. Nessler, M. Pfeiffer, and W. Maass,
‘‘STDP enables spiking neurons to detect
hidden causes of their inputs Advances in
Neural Information Processing Systems 22,
Y. Bengio, D. Schuurmans, J. Lafferty,
C. I. Williams, and A. Culotta, Eds.
Cambridge, MA, USA: MIT Press, 2009,
pp. 1357–1365.

[166] A. Steimer, W. Maass, and R. Douglas,
‘‘Belief propagation in networks of
spiking neurons,’’ Neural Comput., vol. 21,
pp. 2502–2523, 2009.

[167] D. Corneil, D. Sonnleithner, E. Neftci,
E. Chicca, M. Cook, G. Indiveri, and
R. Douglas, ‘‘Real-time inference in a VLSI
spiking neural network,’’ in Proc. IEEE Int.
Symp. Circuits Syst., 2012, pp. 2425–2428.

[168] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck,
and M. Pfeiffer, ‘‘Real-time classification and

sensor fusion with a spiking deep belief
network,’’ Front. Neurosci., vol. 7, 2013,
DOI: 10.3389/fnins.2013.00178.

[169] E. Neftci, S. Das, B. Pedroni,
K. Kreutz-Delgado, and G. Cauwenberghs,
‘‘Event-driven contrastive divergence for
spiking neuromorphic systems,’’ Front.
Neurosci., vol. 7, 2014, DOI: 10.3389/fnins.
2013.00272.

[170] J. Krichmar and H. Wagatsuma,
Neuromorphic and Brain-Based Robots.
Cambridge, U.K.: Cambridge Univ. Press,
2011.

[171] P. Merolla, J. Arthur, R. Alvarez, J.-M. Bussat,
and K. Boahen, ‘‘A multicast tree router for
multichip neuromorphic systems,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 61,
no. 3, pp. 820–833, Mar. 2014.

[172] A. P. Alivisatos, M. Chun, G. M. Church,
R. J. Greenspan, M. L. Roukes, and R. Yuste,
‘‘The brain activity map project and the
challenge of functional connectomics,’’
Neuron, vol. 74, no. 6, pp. 970–974,
2012.

[173] H. Markram, ‘‘The human brain project,’’
Sci. Amer., vol. 306, no. 6, pp. 50–55,
2012.

[174] E. McQuinn, P. Datta, M. D. Flickner,
W. P. Risk, and D. S. Modha, ‘‘Connectivity
of a cognitive computer based on the
macaque brain,’’ Science, vol. 339, no. 6119,
pp. 513–513, 2013.

[175] IBM Research, ‘‘Cognitive computingV
Artifical intelligence meets business
intelligence,’’ 2013.

[176] Samsung’s SAITSamsung Global Research
Outreach (GRO) Program, 2013.

[177] Brain CorporationBuilding artificial nervous
systems: Technology, 2013.

[178] G. Indiveri and T. Horiuchi, ‘‘Frontiers in
neuromorphic engineering,’’ Front. Neurosci.,
vol. 5, 2011, DOI: 10.3389/fnins.2011.00118.

ABOUT T HE AUTHO RS

Elisabetta Chicca (Member, IEEE) studied physics

at the University of Rome, La Sapienza, Italy,

where she graduated in 1999. She received the

Ph.D. degree in natural sciences from the Physics

Department, Federal Institute of Technology

Zurich (ETHZ), Zurich, Switzerland, and the Ph.D.

degree in neuroscience from the Neuroscience

Center Zurich (ZNZ), Zurich, Switzerland, in 2006.

Immediately after her Ph.D., she started a

postdoctoral research at the Institute of Neuroin-

formatics, University of Zurich and ETH Zurich, Zurich, Switzerland, where

she continued working as a Research Group Leader from May 2010 to

August 2011. Since August 2011, she has been an Assistant Professor at

Bielefeld University, Bielefeld, Germany, and is heading the Neuro-

morphic Behaving Systems Group affiliated with the Faculty of Technol-

ogy and the Cognitive Interaction TechnologyVCenter of Excellence

(CITEC). Her current interests are in the development of very large-scale

integration (VLSI) models of cortical circuits for brain-inspired computa-

tion, learning in spiking VLSI neural networks, and bio-inspired sensing

(olfaction, active electrolocation, audition).

Prof. Chicca is a member of the IEEE Biomedical Circuits and Systems

Technical Committee and the IEEE Neural Systems and Applications

Technical Committee (currently Secretary).

Fabio Stefanini received the Laurea Triennale

degree (B.S.) and the ‘‘Laurea Magistrale’’ degree

(M.S.) in physics from La Sapienza University of

Rome, La Sapienza, Italy, in 2006 and 2009,

respectively, and the Ph.D. degree from the

Institute of Neuroinformatics of Zurich, Zurich,

Switzerland, in 2013, implementing a brain-

inspired, real-time pattern recognition system

using neuromorphic hardware with distributed

synaptic plasticity.

He has been a Research Collaborator at the Institute for Complex

Systems, CNR–INFM, Rome, Italy, developing experimental, software, and

theoretical methods for the study of collective behavior in flocking birds.

His main research interests are in neuromorphic systems with analog

VLSI circuits, learning neural networks and complex systems. He

currently has a postdoctoral position at the Institute of Neuroinformatics

of Zurich. His research involves the development of cortical-inspired

smart processing systems for context-aware, embedded processors for

resource management in mobile devices. He is one of the creators of

PyNCS, a Python package proposed as a flexible, kernel-like infrastruc-

ture for neuromorphic systems.

Chicca et al. : Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems

Vol. 102, No. 9, September 2014 | Proceedings of the IEEE 1387



Chiara Bartolozzi (Member, IEEE) received the

Laurea degree (with honors) in biomedical engi-

neering from the University of Genova, Genova,

Italy, in 2001, the Ph.D. degree in natural sciences

from the Physics Department, Federal Institute of

Technology Zurich (ETHZ), Zurich, Switzerland,

and the Ph.D. degree in neuroscience from the

Neuroscience Center Zurich (ZNZ), Zurich,

Switzerland, both in 2007.

She then joined the Istituto Italiano di Tecno-

logia, Genova, Italy, first as a Postdoctoral Researcher in the Robotics,

Brain, and Cognitive Sciences Department and then as a Researcher in the

iCub Facility, where she has been heading the Neuromorphic Systems

and Interfaces group. Her main research interest is the design of event-

driven technology and their exploitation for the development of novel

robotic platforms. To this aim, she coordinated the eMorph (ICT-FET

231467) project that delivered the unique neuromorphic iCub humanoid

platform, developing both hardware integration and computational

framework for event-driven robotics.

Dr. Bartolozzi is a member of the IEEE Circuits and Systems Society

(CASS) Sensory Systems (SSTC) and Neural Systems and Applications

(NSA) Committees.

Giacomo Indiveri (Senior Member, IEEE) received

the M.Sc. degree in electrical engineering from the

University of Genoa, Genova, Italy in 1992. Subse-

quently, he was awarded a doctoral postgraduate

fellowship within the National Research and

Training Program on ‘‘Technologies for Bioelec-

tronics’’ from which he graduated summa cum

laude in 1995. He also received the Ph.D. degree in

computer science and electrical engineering from

the University of Genoa in 2004, and the ‘‘Habil-

itation’’ certificate in neuromorphic engineering from the Federal

Institute of Technology Zurich (ETHZ), Zurich, Switzerland, in 2006.

He is an Associate Professor at the Faculty of Science, University of

Zurich, Zurich, Switzerland. He carried out research on neuromorphic

vision sensors as a Postdoctoral Research Fellow in the Division of

Biology, California Institute of Technology, Pasadena, CA, USA, and on

neuromorphic selective attention systems as a Postdoctoral Researcher

at the Institute of Neuroinformatics, University of Zurich and ETHZ. His

current research interests lie in the study of real and artificial neural

processing systems, and in the hardware implementation of neuro-

morphic cognitive systems, using full custom analog and digital very

large-scale integration (VLSI) technology.

Dr. Indiveri is a member of several Technical Committees (TCs) of the

IEEE Circuits and Systems society and a Fellow of the European Research

Council.

Chicca et al. : Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems

1388 Proceedings of the IEEE | Vol. 102, No. 9, September 2014



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


