
Service-Oriented Architecture for Mobile Applications
Yuri Natchetoi
SAP Research

Montreal, Canada
 yuri.natchetoi@sap.com

Viktor Kaufman
SAP Research

Karlsruhe, Germany
viktor.kaufman@sap.com

Albina Shapiro
SAP Labs

Montreal, Canada
albina.shapiro@sap.com

ABSTRACT
Mobile phones are becoming a new popular platform for business
applications. The number of mobile users increases daily and so
does the need for efficient mobile data access and management.
However, a traditional approach to business application and
database design is not suitable for mobile devices because of the
limited memory and connection bandwidth. This paper presents a
novel lightweight mobile SOA-based architecture for business
applications running on J2ME enabled devices such as cell
phones. The paper includes position statement based on our
experience and describes a first prototype implementation of the
architecture. Some important features of our design are: using the
knowledge of business processes to minimize data transferred to
and stored on the device; pro-active data loading; allowing
applications to fully function in a disconnected mode. The above
architecture results in a lightweight framework, which can be
used in order to develop a wide spectrum of business-oriented
mobile applications.

Categories and Subject Descriptors

H.3.5 [Online Information Services] Web-based services

General Terms
Design, Experimentation, Human Factors, Performance.

Keywords
Mobile; framework; web service; service composition;
lightweight architecture; pro-active loading.

INTRODUCTION
There are almost 3.3 billion connected mobile devices in the
world, and this number is increasing daily. Cellular telephones
dominate the global telecommunications market. Due to their
massive popularity and flexibility, cell phones become equipped
with hardware and software technologies such as J2ME,
Bluetooth, Global Positioning System, digital cameras, and more -
all at a greatly reduced cost. The wide use of mobile devices, low
hardware costs and improved infrastructure make cell phones a
logical and convenient access point for business applications.

The field of mobile applications and services continues to be one
of the most rapidly evolving areas of communications. In the

corporate world, the use of employee-purchased cell phones for
both personal and business use also grows rapidly. On average,
mobile employees spend one-third of their time out of the office,
and almost half their time in the office away from their desks
[18]. A growing number of mobile employees want to make
business decisions using their cell phones. As a result, cell phones
will play a critical role as the devices used for accessing
enterprise systems, such as ERP (Enterprise Resource Planning),
CRM (Customer Relationship Management), BI (Business
Intelligence), etc.

Most business applications require performing significant
amounts of data processing, either locally or through high-speed
networks. However, currently most of existing cell phones cannot
fulfill these requirements. The main obstacles that limit the
development of business applications on mobile devices remain to
be unreliable network performance and limited data storage.
Multiple attempts to overcome the limited capacity of mobile
phones have failed, because technologies used for desktop
applications don't work well on mobile phones. Business data
objects have to be requested from the back-end application and
stored for processing on a mobile device, which has significantly
lower resources than any enterprise system. At the same time, the
mobile framework must provide a comprehensive user experience
as well as a convenient application implementation model for
developers. Hence, business application development for mobile
devices requires an innovative approach to Web Service
invocation, data exchange, transformation, and interfacing with
the user. The basic requirements for such a mobile solution should
include the following: 1) timely, robust and easy access to
Service-Oriented Architecture (SOA) system, 2) transparency
between connected, occasionally-connected, and disconnected
modes, 3) loose-coupling system designed to combine services on
demand, 4) lightweight application composition and development
and, 5) low total cost of ownership.

In this paper, we propose a lightweight SOA-based architecture
for mobile devices using the following techniques: 1) minimizing
the amount of data transferred to and stored on the mobile device
by using the knowledge of business processes and data access
statistics to identify only the data required by the user, 2) a
highly compressed XML format to transfer and store data, 3)
reducing the amount of information contained in SOAP messages
to increase efficiency of SOA-services invocation, 4) performing
pro-active loading of data from the server, taking into account the
client's service-invocation schedule, and 5) providing
asynchronous connectivity to the back-end system, thus allowing
applications to fully function in a disconnected mode. We argue
that this set of techniques as a whole has not been considered
sufficiently in publications, although they are necessary and/or
facilitate meeting the above-mentioned requirements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAM’08, May 10, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-022-7/08/05...$5.00.

27

In Section 1 we provide an overview of the existing SOA-based
approaches for mobile phones. In Section 2 we describe the
technique of Business Object pruning and serialization into a
compressed RDF format that enables efficient transmission and
storage of data. In Section 3 we introduce the overall lightweight
Web Services architecture. Section 4 describes our security
considerations. Section 5 focuses on a pro-active data-feeding that
we use to optimize the Web Services performance on the mobile
device. Section 6 summarizes the paper.

1. STATE OF THE ART
Mobile applications have been making use of Web Services for
quite some time already. Companies like IBM, Nokia and
Microsoft have made software available for enabling mobile
devices to act as Web Service clients. There exist several
development toolkits for Web Services on mobile devices. On the
J2ME platform (mostly for Symbian based devices), JSR-172 is a
widely used set of Web Services APIs [16]. The .NET Compact
Framework for smart phone architectures also supports the use of
synchronous and asynchronous invocation of Web Services [17].
Nokia Research is working with Mobile BPEL [23].

Web Services also have disadvantages when used in mobile
applications [18]. Some examples are the verboseness of the
frequently used XML and SOAP, lack of mature standards and
mature support for transactions. There are also several
performance issues for Web Services on mobile devices [19]. In
our approach, we have devised solutions for dealing with such
issues. The advanced topic of Dynamic Service Discovery and
Composition in Mobile Environments has been so far addressed
by relatively few authors. The related work can be found in [20].

SOA back-end access requires standardized data exchange. XML
and SOAP are established universal flexible formats that enable
publishing and exchanging heterogeneous data between business
systems. Unfortunately, SOAP is very verbose and implies high
performance costs. It is therefore difficult to use SOAP in
situations where resources, such as communication channel
bandwidth and storage capacity, are constrained. In these cases, a
smart compression of XML files appears to be a solution, it
reduces required bandwidth, storage, and processing.

The general approach to compression is a reduction of the
information entropy of the message [10]. This can be achieved by
using additional information known on both sides: receiver and
sender. There are two types of data compression: lossy and
lossless. A lossless compression is a method that ensures that the
de-compressed message is identical to the original message. Most
existing approaches use lossless compression, which takes
advantage of a certain coding schema (e.g., Huffman encoding
[4], arithmetic encoding [7]) to encode text and symbols in the
original message in order to reduce its size. Lossless compression
is context-free if the compressed message contains all the
information required to recover the original message (e.g., [6],
[8], and [12]). Lossless compression is context-dependent if the
compressed message does not contain information that is already
known by the receiver (e.g., [9]). Until now, only lossless
compression was used in business applications.

Lossy compression cannot recover 100% of the original data from
the compressed message. It reduces the size of the original
message by discarding some information. If the information is

never required on the recipient side or if the probability of using
the information is very small, some loss of information is
justified. Lossy methods provide a higher degree of compression
and result in very small compressed messages. However, they
must ensure that the loss does not affect the application
functionality.

While lossless compression has been studied in many research
projects, there has not been much work on lossy compression
methods for XML. Cannataro [2] proposed a lossy compression
algorithm for XML data, where each attribute value in the XML
document is compressed by losing some precision, e.g., truncating
strings, or replacing precise numbers by ranges. However, in most
business cases, we believe it is important to keep the precision of
the data, and it is not easy to determine which level of precision
can be sacrificed. Alternatively, in the approach we propose, the
precision of data is not altered. Instead, we sacrifice data that is
never used on the client side.

2. BUSINESS DATA DELIVERY
When providing mobile access to existing enterprise back-end
applications, one must be careful to distinguish between the
traditional understanding of software applications and a specific
functionality in a mobile enterprise software context. The core
challenge is not to deploy the entire business supporting system
onto a mobile device. Rather, the challenge is to transmit only the
relevant business information and software functionality required
for a specific process.
A business object, in general, is an entity of significance to a
business. It acts as a service provider as well as a service
consumer, and is exclusively accessible through a standardized set
of services. Partial copies of business objects are used in our
approach to create lightweight client-side replicas, which can then
be accessed by the users of the mobile middleware. For the client
side to perform efficiently, a lightweight business object
management system must determine which data is relevant for the
business functionality.
The business objects on the server side often have redundant
attributes. Application designers try to make server-side business
objects as generic as possible to minimize customization effort for
each specific use case. Delivering such a complex object to the
client often doesn't make sense, because some of the data fields
will never be used on the client side. In every given case, the
application designer can manually reduce the object complexity,
see e.g. Figure 1.

Figure 1. Semantic data pruning

Our goal was to find a generic approach that allows automatic
pruning of the business object, only preserving the data that is
required on the client side. In order to prune business objects, we

28

need to have some knowledge of the object usage to determine
which information will not be used on the client side. In our
Framework, users can access business objects only through a
(Web-) Services directory. Users can view and edit these objects
through interactive tables and forms. In both cases, the list of data
attributes (database table and columns) used on the client side can
be clearly identified from the definition of the Web Services
implemented on the client, compare Figure 1. This knowledge
defines the specific information then requested from the general
back-end Services. Furthermore, caching of information facilitates
its immediate reuse, see Sections 3 and 5 for more information.
In order to transmit the business objects to the client side, we
serialize each object to produce an RDF document. In [9], we
have proposed a context-dependent XML compression technique
that allows indexed data search and update without
decompression of the XML file. The proposed XML compression
is based on the knowledge of the business object data structure
and the occurrence statistics. The principles guiding this approach
are based on [5], where the authors claim that the information to
be transmitted between the two systems may be reduced when
considering the knowledge that both systems share. This shared
knowledge may be at the pragmatic, semantic, syntactic or lexical
level.

File
type

XSLT WSDL XForm SOAP SVG RDF/
RSS

All
files

bzip2 0.551 0.196 0.490 0.564 0.449 0.454 0.426

EXEM 0.131 0.148 0.159 0.197 0.394 0.437 0.201

Gzip 0.501 0.178 0.445 0.499 0.432 0.417 0.393

Xmill 0.631 0.238 0.576 0.661 0.553 0.498 0.498

Table 1. XML Compression ratio comparison

By using the information about the data model (object
description, DTD, XML schema) and XML lexical element
occurrence frequency, we can significantly compress data by
applying Huffman encoding to every context of the XML file
such as a tag name, an attribute name or an attribute value. The
lossless context-based compression allows not only to efficiently
store RDF files, but also to search through the file and build
search indexes without decompression. We have performed some
experiments in order to compare compression ratio for different
compression methods and different types of XML files. The
results of our compression experiments, described in details in
[11], are presented in Table 1. In the simple m-business
application presented in [15] and in Figures 3 and 4, we have
achieved binary XML compression ratio about 0.18.

3. MOBILE ARCHITECTURE
Based on the business cases we have analyzed, we have made the
following assumptions about the mobile applications
environment: 1) the online connection to the host is slow and
expensive; 2) the mobile device has very limited local memory.
Using these assumptions, we have implemented a lightweight
mobile application framework design that provides an efficient
SOA back-end connection solution with a minimal cost and
hardware requirements.

In our Framework, the business objects are serialized, compressed
and transmitted to the client side in the form of a compressed

RDF message. The information is stored in the local Persistent
Data Store (Fig.2) in a compressed RDF format, making it
possible to store a significantly larger number of business objects
as compared to a traditional file system or relational database.
The pro-active Business Object Manager enables local service
calls, updates on the Business Objects, and pro-active loading of
data required later on in the business process. The client
application uses this local data to support the off-line work.
The Data Connection Manager (CM and Data Parser in Fig.2),
parses the incoming compressed SOAP files and builds indices on
the Business Objects. They are passed to the Business Object
Manager to be used to perform local operations on business
objects. The cached objects are decompressed only when
requested by an application.
Our Framework provides an asynchronous remote invocation
mechanism to support on-demand requests of server-side Web
Services for updating or inserting new data. The client sends
update requests to the server as compressed SOAP messages. The
server responds to remote calls from the mobile client as well as
sends real-time alerts and data-updates notifications to the client
side.

Figure 2. Mobile client Framework architecture

Providing efficient connection to the back-end Enterprise system
is an important part of our lightweight architecture. First, an
asynchronous, message-based communication is used as it is a
better fit for a mobile environment in which the sender and the
receiver are loosely coupled. Second, mobile devices make use of
many different network channels with different capabilities. The
Connection Manager selects the best communication channel
based on availability and user's preferences. It then uses
asynchronous communication to prevent unstable networks from
causing long delays and canceling the entire transmission process.
The Connection Manager can merge different communication
channels into a single session. For example, if a mobile phone is
in a close proximity to a computer, the Smart Connection
Manager will use Bluetooth. However, when the user walks out
of the Bluetooth range, the Connection Manager will
transparently switch the session to a GPRS or EDGE channel.

Business data exchange is performed on demand, so that long
offline phases are possible. In our Framework, business data
exchange is implemented between original Business Object and
its loosely-coupled replica, which resides on the client and
communicates via asynchronous message exchange. Business
objects are accessible only via published service interfaces,

29

compliant with the Open Standards Gateway initiative (OSGi)
[22]. We have designed our solution as a set of OSGi-compliant
components. Communication through dedicated interfaces
simplifies process modeling and makes the process flow
transparent. The Framework supports both push and pull models
for SOAP message exchange. The push model provides a better
message delivery speed, but is sometimes difficult to implement.
A pull model is simpler to implement and is better suited for low-
priority messages.
We work with a Java midlet that asynchronously exchanges
information with the server. In our solution, neither the business
logic nor the user interface forms are hard-coded in the client
application. Instead, the client application partially implements
interpreters for open industry standards like SOAP, RDF, SVG,
BPEL and Xforms, as well as uses open-source interpreters. The
application logic and the user interface can be easily modified or
augmented at low cost, since we are using standard formats. To
further lighten the application, only subsets of the
mentioned standards are used. For example, a very limited subset
of the BPEL operations is implemented on the mobile device; this
enables basic composition of the workflow scenarios using local
and remote services.
The proposed SOA-based mobile architecture consists of Core
Services and Composite Services, originally inspired by [24]. The
Core Services provide a generic interface to business logic
consisting of common building blocks. Composite Web Services
account for more complex business processes and are
implemented as a combination of core services. The core and
composite Web Services are distributed across the client and an
auxiliary proxy server and implement the business logic.

Figure 3. Sample m-business application using the Framework

We follow the ESOA approach and use the core services as
common building blocks. The Web Services for Mobile Business
Applications can be grouped into functional modules. Each
module defines a number of Web Services related to a specific
type of business or user role, etc. Our simplified implementation
of the internal structure and provided interfaces of such modules
will be validated at a later stage. We are working on identification
of particularly useful interfaces and/or composite services that
could be subject to standardization.

The back-end-access Web Service is represented by a set of
mobile application components based on the J2ME technology.
These components provide user access to back-end Services from
ERP or CRM. The client application provides customizable user-
centric access to the service functionality.
The mobile client is a set of OSGi components that expose their
functionality as services published in the OSGi registry. Services
in the OSGi registry are not Web Services, but a special proxy
component can bridge remote Web Service invocations and make
them look like local service calls to the mobile application
components. The back-end-access component publishes the list of
selected client Services available on the server in the local OSGi
registry.
Future uses of our Framework can include: mobile notification
service that shows a pop-up message on the user’s mobile phone,
complex collaboration scenarios and invocations of proprietary
back-end APIs supplied by the service providers as Web Services.
The server-side workflow scripts can also remotely call OSGi
services implemented on the mobile clients using a Web Service
interface provided by the middleware.
This approach will enable creation of widely distributed business
processes that involve not only machine-based, but also user-
performed operations. Because of the OSGi-based architecture of
the mobile client, the new components can be easily created and
integrated with Web Services and features available on the server
side and on the mobile devices, such as phone camera, Bluetooth,
GPS, etc.

4. SECURITY
One of the most important issues in every business context is
security. The mobile business applications that provide access to
the back-end enterprise systems should be secure and ideally
provide the same level of data protection as desktop applications.
All communication between the server and the client should be
encrypted. In the case of mobile devices, there always exists an
additional risk of the device being lost or stolen, and therefore all
data stored on it should be encrypted as well. This requirement
imposes an additional hardship on the secure data storage
implementation.

In many business environments the public and private key
infrastructure is already in place. Using an existing enterprise PKI
would significantly simplify the implementation. However, a
major problem is that the asymmetric key encryption scheme
works very slowly on the devices with limited computational
power, which is the case for all mobile devices. The compromise
solution could be using asymmetric encryption for most sensitive
information and symmetric key for all other information. The
symmetric key could be generated once for the session and sent to
the client using the asymmetric key. Following this approach, all
the packets within one session between the client and the server
will be encrypted with this key, except highly sensitive
information such as, for example, payment transactions, which
will still use the asymmetric key. In our design, we have decided
to use an Elliptic Curve Cryptography [26] because it allows for
much shorter public keys with the same encryption strength. A
similar combination of the asymmetric and symmetric key
infrastructure is used by the popular PGP[27] encryption system.
The encryption feature is implemented as a replaceable module.

30

For more secure applications and policy regulated encryption, this
module can be replaced by another component.

5. PRO-ACTIVE DATA FEEDING
An important user acceptance factor for occasionally-connected
or loosely-connected applications is the ability to store and
retrieve server information when the connection is down. A
traditional reactive approach assumes that the information is
stored in a cache only if it was already requested. In a proactive
approach, a server application would be able to anticipate what
information will be required next and push it into a cache. The
key to improving the user experience is the ability to predict what
information will be needed by a user in the near future and send it
to the client when the connection is up but idle.

Regardless of the underlying caching technology, the only way to
make the mobile applications framework viable is by proactively
supplying the client with the maximum amount of relevant data
possible. The majority of business operations have relatively
formal transaction chains, allowing the server to analyze user
transaction patterns, collect statistics and store them in individual
user profiles. When the user is disconnected or has unstable
connection, the server part of the application decides which
transactions the user will most likely execute, and preload the
client with the data required for these transactions.

In order to determine what data will be required by the client
application in a multi-client component based mobile
environment, we use the client demand forecasting model. We
have already introduced a model for mobile client to prune server-
side data objects. Some additional information can also help to
find out the probability that the object will be used by the client
application for a given user profile. The approach uses simple
rules to calculate the probability of requesting a particular data
object. Objects with the highest probability should be pro-actively
pushed to the client. Typically, the business applications reflect
business processes which contain multiple steps. However, the
business process workflow is not always linear. Every step can
trigger multiple further steps. A user can also use navigation to
change the natural order of steps.
As an example we will consider a typical m-business application
presented in [15]. The application contains many screen forms
that display multiple data objects retrieved from the XML-based
database. Our goal is to feed the database with those data objects
that have the highest probability to be requested by a specific
user.
We can describe the application as a graph of nodes where each
node represents unique screen. A screen is a combination of the
form and data objects that it displays. One form can display more
than one object (or list of objects of the same type). For each
object only a subset of its attributes should be displayed.
The transitions from one screen to another (navigation) can be
performed by clicking different keys on the keypad. In every case
we have more than one possible transition for navigating from
any screen. We assume that every such possible transition has a
certain probability of being chosen by the user. These
probabilities can be different for different users. Many factors that
characterize a user’s behavior (personal interests, geographical

location, price sensitiveness) can be organized as sets of user
context variables.

Figure 4. UI Screen navigation in our sample application

With the given probability of every step we can try to determine
the probability of the next step which requires the data object to
use statistical temporal models (e.g., hidden Markov models
(HMMs), dynamic Bayesian networks (DBNs) or dynamic
conditional random fields (CRFs)[21]). Authors have not tried all
these techniques yet, but we are looking forward to perform a
deeper research in this area.
So far we have only implemented a set of heuristic rules for
determining the probability of the Business Objects to be
requested by the user for a given application context. All data
objects can then be sorted by the probability and the objects with
the highest probability are pushed into a local database until there
is free space. This simple algorithm allows optimizing local data
storage load using the knowledge of the data to be requested.
Our goal is to build a model that will allow us to predict the
consumption of existing business objects and appearance of the
new objects. The demand prediction model based on the business
object request probability can be easily converted into simple
distribution rules. The distribution rules can in turn be generated
automatically by the analyzer for each user profile and re-
generated if the user role changes or application is being
upgraded.

6. CONCLUSION
The enterprise solution vendors have yet to fully address the
mobile enterprise applications market for cell phones connected
to Enterprise Web Services. The innovative techniques employed
by the Mobile Framework, as well as the pro-active user interface
and the alignment with the SOA strategy prevalent in business
applications, make the Framework a viable solution that merits
further development and support.

A large portion of operations currently performed by desktop
applications can be performed by mobile applications just as well.
The Mobile Application Framework presented in this paper
allows to overcome the main limitations imposed by the mobile
environment: occasional connectivity and limited memory. The

31

main advantage of our design is using the knowledge of the
business object structure and data access statistics to store only
the data required by the user. In addition, the Framework uses a
compressed RDF format to efficiently exchange, store and query
data, perform local querying on the indexed data, pro-actively
preload relevant information from the server and allow for the
application to function in a disconnected mode.

The methodology described in this paper provides a structured
approach for the migration of the existing desktop applications to
mobile devices by pruning unused parts and using compressed
RDF files. This approach doesn't require intensive Java coding
and significantly reduces application development and
maintenance cost. It is compatible with all the latest industry
standards and makes migrating existing business systems to
mobile devices a feasible task. The world of technology is clearly
moving towards wireless solutions and our mobile framework
greatly contributes to this trend, allowing ubiquitous data access
and enabling the advent of a new generation of mobile business
applications.

REFERENCES
[1] A. Ankolekar, P. Hitzler, H. Lewen, D. Oberle, and R.

Studer. Integrating Semantic Web Services for Mobile
Access. ESWC, 2006.

[2] M. Cannataro, G. Carelli, A. Pugliese, and D. Sacca.
Semantic lossy compression of XML data. In Knowledge
Representation Meets Databases, 2001.

[3] B. Choi. Document decomposition for XML compression: A
heuristic approach. In DASFAA, number 3382 in LNCS,
Singapore, 2006.

[4] D.A. Huffman. A method for the construction of minimum-
redundancy codes. In Proc. of the I.R.E., 1952.

[5] P. Kropf, G. Babin, and A. Hulot. Réduction des besoins en
communication de CORBA. NOTERE’98, Montréal,
Canada.

[6] H. Liefke and D. Suciu. XMill: An efficient compressor for
XML data. In Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, pages 153–164, 2000.

[7] David J.C. MacKay. Information theory, inference and
learning algorithms. CUP, 2003.

[8] J. K. Min, M. J. Park, and C. W. Chung. XPRESS: A
queriable compression for XML data. In Proc of the ACM
SIGMOD Int’l Conf. on Management of Data, 2003.

[9] Y. Natchetoi, H. Wu, and G. Babin. A context-dependent xml
compression approach to enable business applications on
mobile devices. Euro-Par. 2007.

[10] C.E. Shannon. A mathematical theory of communication.
Bell Syst. Tech. Journal, 27:398–403, 1948.

[11] Y.Natchetoi, H.Wu, G.Babin, S.Dagtas EXEM: Efficient
XML Data Exchange Management for Mobile Applications,
Information Systems Frontiers ISF 2007

 [12] P. M. Tolani and J. R. Haritsa. XGRIND: A query-friendly
XML compressor. In IEEE Proc. of the 18th Int’l Conf. on
Data Engineering, pages 225–234, 2002.

[13] A.Arion, A.Bonifati, I.Manolescu, A. Pugliese XQueC: A
Query-Conscious Compressed, XML Database, Proceedings
of the 2004 International Conference on Extending DataBase
Technology

[14] C.J. Augeri, B.E. Mullins, D. A. Bulutoglu, R. O. Baldwin,
L. C. Baird An Analysis of XML Binary Formats and
Compression

[15] H.Wu, Y.Natchetoi Mobile Shopping Assistant: Integration
of Mobile Applications and Web Services, Proc. WWW
2007

[16] Sun Microsystems. J2ME Web Services Technical White
Paper, July 2004.

[17] Microsoft Developer Network (MSDN). Consuming Web
Services with the Microsoft .NET Compact Framework,
March 2003.

[18] Bradford C. Johnson, James M. Manyika, and Lareina A.
Yee. The next revolution in interactions. The McKinsey
Quarterly 2005 Number 4

[19] D. Schall, M. Aiello, and S. Dustdar. Web Services on
Embedded Devices. (2006) International Journal of Web
Information Systems 2(1):1-6.

[20] Wolf-Tilo Balke, Jorg Diederich. A Quality- and Cost-based
Selection Model for Multimedia Service Composition in
Mobile Environments. icws, pp. 621-628, 2006.

[21] J. Lafferty, A. McCallum, F. Pereira, Conditional random
fields: probabilistic models for segmenting and labeling
sequence data. 18th International Conference on Machine
Learning, 2001

[22] OSGi. http://www.osgi.org/.
[23] L.Pajunen, A.Ruokonen, Modeling and Generating Mobile

Business Processes, IEEE International Conference on Web
Services (ICWS), Salt Lake City, Utah, USA, July 2007

[24] Ecospace IP. http://www.ip-ecospace.org/.
[25] OASIS Open: OASIS web services business process

execution language (WSBPEL)TC. (2006).
[26] M. Smith M.D. Malan, D.J. Welsh, A public-key

infrastructure for key distribution in tinyos based on elliptic
curve cryptography. In Sensor Communications and
Networks, 2004.

[27] Hankerson D. Hernandez J.L. Kirkup M.Menezes A. Brown
M., Cheung D. PGP in constrained wireless devices. In 9th
USENIX Security Symposium., 2000.

32

