
Optimal 2-constraint satisfaction via

sum-product algorithms

Mikko Koivisto

HIIT Basic Research Unit, Department of Computer Science,

University of Helsinki, Finland

Abstract

We show that for a given set of m pairwise constraints over n variables, a variable
assignment that satisfies maximally many m constraints (MAX-2-CSP) can be found
in O∗(nm dnω/3) time, where d is the maximum number of states per variable, and
ω < 2.376 is the matrix product exponent over a ring; the notation O∗ suppresses
factors polylogarithmic in m and n. As a corollary, MAX-2-SAT can be solved in
O∗(nm1.732n) time. This improves on a recent result by Ryan Williams (ICALP
2004, 1227–1237) by reducing the polynomial factor from nm3 to about nm.

Key words: Algorithms, Computational complexity, Matrix multiplication,
Maximum satisfiability, Sum-product

1 The constraint satisfaction problem

We consider some variants of the maximum constraint satisfaction problem
(MAX CSP). An instance of this problem consists of n variables x1, . . . , xn,
each xi taking values from a finite domain Xi of size di, and m (weighted)
constraints w1, . . . , wm that are integer-valued functions over subsets of the
variables. The task is to find an assignment of values to the variables maxi-
mizing the sum of weights of the satisfied constraints.

More precisely, the scope of the cth constraint wc is an index subset Sc ⊆
{1, . . . , n} that specifies a variable vector xSc

taking values from XSc
. Here, and

throughout this paper, we use indexing with subsets: If S = {i1, . . . , ik} with
1 ≤ i1 < · · · < ik ≤ n, we write XS for Xi1 ×· · ·×Xik and xS for (xi1 , . . . , xik);
for S = {1, . . . , n} we may drop the subscript. Thus, the constraint wc maps

Email address: mikko.koivisto@cs.helsinki.fi (Mikko Koivisto).

Preprint submitted to Elsevier Science 21 December 2005



each partial assignment xSc
from XSc

to a number from {0, 1, 2, . . .} (we do not
allow negative weights). We say that a variable assignment x ∈ X satisfies the
constraint wc if the value wc(xSc

) is greater than zero. The total weight of the
constraints w1, . . . , wm at x is the sum of the weights, w1(xS1

)+ · · ·+wm(xSm
).

Given an instance, the maximum constraint satisfaction problem is to find a
variable assignment so as to maximize the total weight.

For analyzing purposes it is useful to consider restricted subclasses of MAX
CSP. Most importantly, we bound the cardinality of the scopes by a constant
k; in fact, we will focus on the case k = 2. We also bound the number of states
per variable by d, and the maximum weight by R; however, d and R need not
be constants.

MAX-k-CSP

Input: n variables, each with at most d states, m constraints with weights
in {0, 1, . . . , R}, each over at most k variables.
Output: An assignment x to the n variables such that the total weight
of the constraints at x is maximized.

Note that the non-weighted version where each constraint is either satisfied
or unsatisfied by a variable assignment is obtained by setting R = 1.

It is possible to solve MAX-k-CSP by reducing it to the following counting
variant that asks the number of optimal assignments and the total weight
achieved [11].

COUNT-k-CSP

Input: n variables, each with at most d states, m constraints with weights
in {0, 1, . . . , R}, each over at most k variables.
Output: The number of assignments x to the n variables such that the
total weight of the constraints at x is maximized, and the maximum total
weight W .

An important special case of MAX-k-CSP is MAX-k-SAT, where each variable
is Boolean with two possible values, true and false, and each constraint (clause)
is a disjunction of at most k literals and has weight 1 if the clause is satisfied
(evaluates to true) and 0 otherwise. Thus, if an algorithm solves MAX-k-
CSP, it trivially solves MAX-k-SAT as well. Analogously, COUNT-k-SAT,
the problem of counting the number of satisfying assignments, is a special
case of COUNT-k-CSP. Note also that the (non-weighted) existence versions,
k-CSP and k-SAT, which ask for a variable assignment that satisfies every
constraint, trivially reduce to MAX-k-CSP.

Another related problem, MAX CUT, is obtained as a special case of MAX-
2-CSP. An instance of MAX CUT consists of m edge weights on n vertices
(variables). The task is to find a partition of the vertices so as to maximize

2



the sum of the weights of edges that cross the cut (i.e., the endpoints belong
to different parts). Thus, an instance of MAX CUT can be represented as an
instance of MAX-2-CSP (or MAX-2-SAT as well) with n binary variables (the
value specifies the part to which the corresponding vertex belongs).

1.1 Previous research

Much theoretical work has been devoted to developing asymptotically fast
exact algorithms for MAX-2-SAT. One of the best results is due to Gramm et
al. [5] who give an algorithm that runs in time Õ(2m/5), where m is the number
of clauses. 1 This is better than the trivial bound Õ(2n), when the number of
clauses m is less than 5n. But note that m may well grow quadratically in n.
The question, whether one can solve MAX-2-SAT in time Õ((2−ε)n) for some
ε > 0, has been raised explicitly by many authors (e.g., [8,1,12]).

Recently, Williams [11] answered this question by giving an algorithm that
runs in time Õ(2nω/3), where ω is the matrix multiplication exponent, that is,
the smallest constant such that two N ×N square matrices can be multiplied
in time O(Nω). The current record is ω < 2.376 [2] yielding the time com-
plexity Õ(1.732n) for MAX-2-SAT. Williams’s [11] method is rather general
and applies to the general MAX-2-CSP as well. In fact, the essential part of
Williams’s method is his algorithm for solving the counting variant, COUNT-
2-CSP. An outline of his approach to MAX-2-CSP is as follows: (1) Split the n
variables into three disjoint groups of sizes (about) n/3. (2) Then construct a
graph on the corresponding 3dn/3 partial variable assignments such that each
(weighted) 3-clique in the graph corresponds to a variable assignment in the
COUNT-2-SAT instance. (3) Count the number of optimal 3-cliques using fast
matrix multiplication; this solves the COUNT-2-CSP instance. (4) Finally, use
self-reducibility to reconstruct an optimal variable assignment. The first phase
that solves COUNT-2-SAT runs in time O(m3dnω/3). Williams’s analysis for
the last step (4) gives O(nm3dnω/3) bound for the total running time. (In fact,
Williams’s construction allows for partitioning the variables into more than
three groups, but the complexity bound is obtained with three groups.)

In addition to William’s work, constraint satisfaction problems have also been
viewed as special classes of a more general family of sum-product problems
[10,4,7]. In a sum-product problem the task is to evaluate a multi-dimensional
sum of a product of lower-dimensional functions; here the addition and mul-
tiplication operations need not be the conventional ones, as long as they form
a semiring. The generic algorithm for sum-product problems is known as vari-
able elimination (or bucket elimination) [10,4,7]; this dynamic-programming

1 The notation Õ suppresses polynomial factors: we write f(x) ∈ Õ(g(x)) if f(x) ∈
O(p(x) · g(x)) for some polynomial function p(x).

3



algorithm solves the summation problem by marginalizing the variables out
one by one. The running time depends on the induced treewidth of the (hy-
per)graph structure determined by the scopes of the given low-dimensional
functions (see, e.g., [4]). Applied directly to 2-CSP or COUNT-2-CSP this
framework gives only the trivial bound Õ(dn) (see, e.g., [4]).

1.2 Contributions and outline of this paper

Based on the sum-product framework, this paper provides a new look at the
matrix multiplication approach to COUNT-2-CSP; see [6, Ch. 3] for similar
ideas regarding general sum-product problems. Like Williams [11], we par-
tition the variables into three groups and connect any two groups by the
constraints that mention variables from these groups (the first step). The key
difference is in the second and third steps: we turn to matrix multiplication
directly, avoiding the transformation to the clique problem. We do this, in
Section 2, by formulating a sum-product expression whose value encodes the
number of optimal variable assignments and the associated total weight. This
treatment gives the improved upper bound O(nm log(nm) log log(nm) dnω/3)
for the time complexity of COUNT-2-CSP (throughout this paper the base of
the logarithms is 2).

We also provide a more careful, yet very simple analysis of the self-reduction
technique of Williams’s. In Section 3, we show that the factor n can be avoided,
yielding the bound O(nm log(nm) log log(nm) dnω/3) for the time complexity
of MAX-2-CSP.

While the improvements over Williams’s results concern the polynomial factor
only, for potential practical implementations the improvement is important. If,
for example, the number of constraint m grows as Θ(n2), then the improvement
is roughly by the factor n4.

In our analysis we do not assume that d and R are constants. This general-
ity results in slightly more complex bounds than the ones stated above for
constant d and R.

2 An algorithm for COUNT-2-CSP

Fix an instance of COUNT-k-CSP with the notation given in the previous
section. Let M = mR be the maximum total weight. For r = 0, 1, . . . ,M , let
αr be the number of variable assignments for which the total weight equals r.
We are interested in finding the largest r for which αr > 0.

4



We next give an algorithm that finds the value αr for all r = 0, 1, . . . ,M .
We do this by constructing a sum-product formulation as follows. Let β = 2l

where l is an integer satisfying dn < 2l ≤ 2dn; we will use β as the base of
some exponential terms, as described below. For each constraint c = 1, . . . ,m
define

fc(xSc
) := βwc(xSc

) ∈ {1, β, β2, . . . , βR} .

For all assignments x ∈ X consider the product
∏m

c=1 fc(xSc
); it is βr, where r

is the total weight at constraints satisfied by x. Denote

γ :=
∑

x∈X

m∏

c=1

fc(xSc
) . (1)

It is easy to see the following.

Lemma 1 We have γ = α0 + α1β + α2β
2 + · · · + αMβM .

Proof For each r the term βr appears in sum (1) exactly αr times. 2

Moreover, the coefficients αr can be easily read from γ:

Lemma 2 Given γ, the numbers α0, α1, . . . , αM are unique and can be found
in time linear in M log β.

Proof Observe that each coefficient αr is smaller than β = 2l. Thus, by
Lemma 1, the binary representation of γ uses O(M log β) bits and readily
tabulates the numbers α0, α1, . . . , αM . 2

We next restrict our attention to the case k = 2 where each constraint can
mention at most two variables. It turns out that in this case we can apply fast
matrix multiplication methods to solve COUNT-2-CSP.

Theorem 3 COUNT-2-CSP can be solved in O(µ(nM log d) da+n′ω) time, where
µ(b) = b log b log log b, n′ = bn/3c, and a = n − 3n′ ∈ {0, 1, 2}.

Proof To prove the claim we may assume that every variable has exactly d
states. By the above lemmas (Lemmas 1 and 2) it is sufficient to show that
the number γ, given in (1), can be evaluated in O(µ(nM log d) da+n′ω) time.

5



Namely, from γ we can easily obtain both the largest r for which αr > 0
(the maximum total weight) and the number αr itself (the number of optimal
assignments).

Suppose first that n is divisible by 3. Let {I, J,K} be a partition of {1, . . . , n}
into three disjoint sets, each of size n/3. Define further a corresponding par-
titioning {A,B,C} of the index set {1, . . . ,m} of the constraints by

A := {c : Sc ⊆ I ∪ J} ,

B := {c : Sc ∩ K 6= ∅ and Sc ∩ J = ∅} ,

C := {c : Sc ∩ K 6= ∅ and Sc ∩ J 6= ∅} .

This, indeed, gives a partition of the constraints, since a scope Sc can contain
at most two elements, and thus cannot intersect all the three sets I, J , and
K; obviously, every scope is included.

We continue by factorizing the product that appears in the sum-production
expression (1) of γ. For all variable assignments x ∈ X let

A(xI , xJ) :=
∏

c∈A

fc(xSc
), B(xI , xK) :=

∏

c∈B

fc(xSc
), C(xJ , xK) :=

∏

c∈C

fc(xSc
) .

Note that xI , xJ , and xK form a partition of the n variables. The key obser-
vation is that

γ =
∑

xI

∑

xJ

∑

xK

A(xI , xJ)B(xI , xK) C(xJ , xK) =
∑

xI

∑

xJ

A(xI , xJ)D(xI , xJ) ,

where

D(xI , xJ) :=
∑

xK

B(xI , xK) C(xJ , xK) .

Let us analyze the time needed to evaluate the above expressions. We view A
(similarly B and C) as a dn/3×dn/3 matrix, where the row and column indexes
are determined by bijections from XI and XJ to {1, 2, . . . , dn/3}; constructing
such matrix representation introduces only a negligible computational cost.
With this interpretation, we observe that D is obtained as the product of B
and the transpose of C. Thus, D can be evaluated using O(dnω/3) arithmetic
operations with numbers that are representable in O(nM log d) bits (since
log γ < (M + 2) log β ≤ (M + 2) log(2dn)). We know that two b-bit integers
can be multiplied in O(µ(b)) time, where µ(b) = b log b log log b [9], and that
addition and substraction are cheaper. Consequently, D can be computed in

6



O(µ(nM log d) dnω/3) time. Finally, we notice that computing γ given D is
much easier, since only two thirds of the n variables are involved.

Then suppose that n is not divisible by 3. We choose a = n − 3bn/3c < 3
variables and construct da new instances for the rest n−a variables. Now n−a
is divisible by 3 and by the above described procedure each instance can be
solved in O(µ(nM log d) d(n−a)ω/3) time, yielding the claimed total complex-
ity. 2

As a corollary we obtain a simplified bound when the domain size d and the
maximum weight per constraint R are constants.

Corollary 4 For constant d and R, COUNT-2-CSP can be solved in
O(µ(nm) dnω/3) time, where µ(b) = b log b log log b.

Proof Recall that M = mR and use Theorem 3. 2

Remark 5 Theorem 3 and Corollary 4 rely on the fastest known method for
integer multiplication due to Schönhage and Strassen [9]. That algorithm is
not particularly suitable for practical implementations. However, it seems that
a practical and asymptotically at least as fast algorithm for COUNT-2-CSP
can be obtained via the Chinese remainder technique (e.g., [3, Ch. 33]), which
allows us to replace the matrix multiplication with large integers by o(b) matrix
multiplications with small integers representable using only O(log b) bits, where
b = nM log d. We omit detailed analysis.

3 An algorithm for MAX-2-CSP

For simplicity we consider the case of constant d so that we do not have
to care whether n is divisible by 3; the generalization to non-constant d is
straightforward.

The proof of the following result uses the self-reducibility argument of Williams
[11]. Here we give a more detailed description of the algorithm to support our
tighter running time analysis.

Theorem 6 For any constant d, MAX-2-CSP can be solved in O(µ(nM)dnω/3)
time, where M = mR and µ(b) = b log b log log b.

Proof We show how an optimal assignment is found. Let W be the maximum
total weight that can be obtained by some variable assignment. As described in

7



Section 2, this number can be found in O(µ(nM)dnω/3) time. We now construct
an optimal assignment by solving iteratively a sequence of smaller problems:

(1) For i = 1, . . . , n,
(a) set xi := 0;
(b) replace each constraint wc whose scope Sc contains i by a new con-

straint w′
c defined by w′

c(xSc\{i}) := wc(xSc
);

(c) compute the optimal weight W ′ for the new instance;
(d) if W ′ < W , set xi := 1.

(2) Return x.

This algorithm outputs an optimal assignment, since for each i there must be
an assignment to x1, . . . , xi−1 such that the constructed new instance has the
optimal weight W .

At the ith iteration of the above algorithm an instance with n− i variables is
solved in O(µ(nM)d(n−i)ω/3) time. As

∑n
i=0 d(n−i)ω/3 < dnω/3/(1 − d−ω/3), the

total time complexity is the claimed O(µ(nM)dnω/3). 2

The MAX-2-SAT problem is a special case of MAX-2-CSP where each variable
has two possible values (true and false) and each constraint (disjunction of at
most two literals) has weight 1 if the constraint is satisfied, and 0 otherwise.
We may assume that the number of constraints m is at most 4n2.

Corollary 7 MAX-2-SAT can be solved in O(nm log n log log n 1.732n) time.

Proof Use Theorem 6 with d = 2, m ≤ 4n2, R = 1, and ω < 2.376 [2]. 2

Remark 8 The discussion in Remark 5 applies to Theorem 6 and Corollary 7
as well.

Acknowledgements

I am grateful to Heikki Mannila for valuable discussions and to an anonymous
reviewer for the constructive comments that helped to improve the presenta-
tion.

8



References

[1] J. Alber, J. Gramm, R. Niedermeier, Faster exact algorithms for hard problems:
a parameterized point of view, Discrete Math. 229 (1-3) (2001) 3–27.

[2] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic
progressions, J. Symbolic Comput. 9 (3) (1990) 791–799.

[3] T.H. Cormen, C.L. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT
Press, Cambridge, Massachusetts, 1990.

[4] R. Dechter, Bucket elimination: A unifying framework for reasoning, Artificial
Intelligence 113 (1–2) (1999) 41–85.

[5] J. Gramm, E.A. Hirsch, R. Niedermeier, P. Rossmanith, Worst-case upper
bounds for MAX-2-SAT with an application to MAX-CUT, Discrete Appl.
Math. 130 (2) (2003) 139–155.

[6] M. Koivisto, Sum-product algorithms for the analysis of genetic risks, Ph.D.
thesis, University of Helsinki (January 2004).

[7] F.R. Kschischang, B. Frey, H.-A. Loeliger, Factor graphs and the sum-product
algorithm, IEEE Trans. Inform. Theory 47 (2) (2001) 498–519.

[8] V. Raman, B. Ravikumar, S.S. Rao, A simplified NP-complete MAXSAT
problem, Inform. Process. Lett. 65 (1) (1998) 1–6.

[9] A. Schönhage, V. Strassen, Schnelle Multiplikation großer Zahlen, Computing
7 (1971) 281–292.

[10] R.E. Stearns, H.B. Hunt III, An algebraic model for combinatorial problems,
SIAM J. Comput. 25 (2) (1996) 448–476.

[11] R. Williams, A new algorithm for optimal constraint satisfaction and its
implications, in: J. Diaz et al. (Eds.), ICALP 2004, in: Lecture Notes in Comput.
Sci., vol. 3142, Springer, Berlin, 2004, pp. 1227–1237.

[12] G.J. Woeginger, Exact algorithms for NP-hard problems: A survey, in: M.
Jünger et al. (Eds.), Combinatorial Optimization – Eureka, You Shrink!, in:
Lecture Notes in Comput. Sci., vol. 3142, Springer, Berlin, 2003, pp. 185–207.

9


