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Abstract

This paper examines a method of clustering within a fully decentralized multi-agent system. Our

goal is to group agents with similar objectives or data, as is done in traditional clustering. However,

we add the additional constraint that agents must remain in place on a network, instead of first being

collected into a centralized database. To do this we connect agents in a random overlay network and have

them search in a peer-to-peer fashion for other similar agents. We thus aim to tackle the basic clustering

problem on an Internet scale, and create a method by which agents themselves can be grouped, forming

coalitions. In order to investigate the feasibility of this decentralized approach, this paper presents

simulation experiments that look into the quality of the clusters discovered. First the clusters found

by the agent method are compared to those created by k-means clustering for two-dimensional spatial

data points. Results show that the decentralized agent method produces a better clustering than the

centralized k-means algorithm, placing 95% to 99% of points correctly. A further experiment explores

how agents can be used to cluster a straightforward text document set, demonstrating that agents can

discover clusters and keywords that are reasonable estimates of those identified by the central word

vector space approach.

I. INTRODUCTION

Agents that wish to cooperate within a multi-agent system must have a means of finding each

other. The straightforward solution to this problem is to create a central directory server that is

able to match requests. However, this centrally directed solution limits the autonomy of agents

with respect to their choice of partners, and it limits the scalability of the multi-agent system as

a whole. Ideally agents would, on their own, be able to group together to form cliques of like

minded agents. As a result they would know their potential partners (members of their social

circle) and could directly negotiate new partnerships based on more information than a directory

server would contain. Grouping agents in this way, based on similar objectives, can be viewed

as a clustering problem. Clustering has been studied in a variety of fields, notably statistics,

pattern recognition and data mining. These fields have a wide range of purposes in mind, for

instance discovering trends, segmenting images, or grouping documents by subject. However, in

all of these disciplines the underlying problem is the same; given a number of data items, create

a grouping such that items in the same group are more similar to each other than they are to

items in other groups [4]. Most algorithms for clustering focus on how to form these groups

given a file or database containing the items. Yet, for Internet applications like finding similar
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web pages or finding agents with similar interests, items can be widely distributed over many

machines and the issue of collecting the items in the first place gains importance. Centralized

clustering is problematical if data is widely distributed, data sets are volatile, or data items cannot

be compactly represented. Decentralization, on the other hand, is a thorny problem. Even in the

centralized case where each data item can be compared to every other data item, perfect clusters

can be hard to find. Decentralization creates the additional complication that even if a correct

classification can be determined with the incomplete information available, the location of items

belonging to a class also needs to be discovered.

This paper considers the case where classification is straightforward and focuses on the

question of finding potential cluster members in a decentralized fashion. By studying in depth a

simplified example of agent grouping we hope to gain insight into dynamics that can be used to

create more complex, self-organizing agent communities. With this purpose in mind, we view

clustering as a search problem in a multi-agent system in which individual agents have the goal

of finding other “similar” agents. Agents aim to form groups among themselves, and these groups

constitute a clustering. In large scale Internet systems potentially millions of agents are spread

across possibly as many machines. As a result each agent will always have a view of only a very

small fraction of the rest of the system. Our research is concerned with the minimal abilities

and resources required by such agents. We create an abstract model of simplified agents which

have a very small range of actions and act using straightforward decision functions. Furthermore,

these agents can generally only communicate in a peer-to-peer manner with a limited amount

of additional coordination among small groups.

We study the behavior of this abstract system through simulation experiments. In the first

of these experiments agents are each given a two-dimensional spatial point and seek to group

themselves based on the Euclidean distance between their points. In this setting the quality

of the clusters produced can be measured. A second experiment considers more complex data

for which similarity measures are more subjective. Each agent is given a text document and

agents try to find groups based on document similarity. In both experiments agents are initially

randomly assigned a small number (5) of neighbor agents. These neighbors are an agent’s only

view of the system as a whole. Based on these local views, agents form clusters with the closest

points they come across. Agents within a cluster coordinate, combining their local views to allow

each member to search a broader range of neighbors for better matches. Clusters are limited in
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size by a user-defined parameter. Once clusters have grown to this size they spilt when better

matches are found by their members, allowing stronger new clusters to develop. We show that

for the two-dimensional data case agents produce better clusterings then the standard k-means

algorithm. We further find that agents can also discover reasonable clusters for high dimensional

text data, even when similarity is imprecise.

The remainder of this paper first discusses the application of the clustering problem to multi-

agent systems and surveys previous work in Section II. Section III then sketches the model we

study, followed by a precise description of the simulated procedure. Section IV presents our

methodology and experimental results. A discussion of directions in which these experiments

can be expanded in future concludes the paper.

II. BACKGROUND AND RELATED WORK

Middle agents or directory services are commonly used in multi-agent systems to enable

the location of agents with particular capabilities [1]. Such services, however, add an essentially

centralized component to an ideally decentralized agent world. The formation of groups of agents

based on like interests provides a potential alternative for very large decentralized systems where

maintaining a directory becomes too costly. Such groups place potential partners for collaboration

in an agent’s immediate local environment [3]. When agents’ interests include jointly working

on common tasks this process evolves into coalition formation; the negotiation of agreements

between agents with complementary skills for the distribution of work and rewards [7] [11] [12].

Clustering, as studied in this paper, is a more basic problem, yet an essential component of the

process of forming coalitions. A multi-agent system made up of heterogenous agents that cannot

somehow identify groups of similar agents is unable to introduce potential coalition members to

each other. Clustering, on the other hand, is usually studied as a centralized problem. This paper

reviews previous work on clustering and explores how a decentralized approach can be designed

for a multi-agent system. The resulting procedure could be applied as a directory service and

can enhance our understanding of coalition formation in general.

There are a large number of centrally controlled algorithms for discovering natural clusters,

if they exist, in a data set (see [5] and [6] for a general review of the literature). There are

three underlying methods relevant to this work; k-means, which divides points into k clusters

centered around k chosen centroids, hierarchical clustering, which builds a series of clusterings
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by repeatedly combining nearest neighbor clusters (or repeatedly splitting the weakest cluster),

and density based clustering, which considers clusters to be connected areas of points with

a density above a given minimum value. There are many advanced variations of these basic

methods designed to optimize performance on particular types of data. These algorithms focus

on finding clusters given various properties of the data set; clusters of widely differing sizes,

odd cluster shapes, little separation between clusters, noise, outliers, high-dimensional data and

complex data types for which a similarity function is difficult to define. In general, all clustering

algorithms focus on creating good compact representations of clusters and appropriate distance

functions between data points. To this purpose they generally need a user to provide one or two

parameters that indicate the types of clusters expected. Most commonly, algorithms are given

the number of clusters into which the data set is to be split, the size of desired clusters, or a

density value that defines the expected distance between points within clusters. Since a central

representation is available, where each point can be compared to each other point or cluster

representation, points are never placed in a cluster with hugely differing members. Mistakes

made by these algorithms instead take the form of incorrectly splitting a real data cluster in

half or incorrectly combining two neighboring data clusters into a single cluster. On the whole,

however, the definition of clustering is imprecise; the creation of clusters in which points have

more in common with other cluster members than with members of other clusters. Given the

complexities listed above it is usually not entirely clear what the “correct” clustering of a data set

is. There is generally no one best algorithm for obtaining good clusters [4]. The most appropriate

algorithm depends on the peculiarities of the data set considered.

This paper focuses on yet another complexity that must be faced in multi-agent systems; the

distribution of the data over many machines. Part of the clustering process is to choose individual

cluster characteristics, based on the particular composition of a data set, so as to best meet the

given general guidelines. Thus, for instance, given a parameter of 10 for the desired number of

clusters, actual cluster sizes are determined by the overall data set size and density variation.

If data is decentralized, this process becomes much harder since information about the extent

of the data set or even the density of points in a particular area is incomplete. Furthermore, in

addition to determining cluster characteristics the actual points that best fit in a cluster also need

to be found.
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III. AGENT PROCEDURE

A. Model Description

In our model agents are defined by their characteristics, and can thus be seen, for the purpose

of clustering, as a set of data items. Each agent has a small number of links to other agents.

These links represent communication channels and thus define the neighborhood of an agent.

The aim of the system is for agents to rearrange these links and to select some of them to

form connections or connected links between themselves, generating a graph of connections

corresponding to a clustering.

The creation of initial links is a bootstrapping problem; we assume they are derived from the

placement of agents, or some other application-dependent source, and model them as a random

network. Thus, in our simulations each agent starts out as a cluster of a single item with links

to some other randomly chosen agents. As a simulation progresses, agents pick some of their

links to become matches, or matched links based on the similarity of the agents joined by the

link. Clusters choose the best of these matches proposed by their agents to become connections.

Agents joined by a path of connected links form a single cluster.

The creation of connected links allows clusters to expand, but the initial clusters formed in

this way are very poor. They represent the best clusters agents can see in an extremely limited

local view. We give agents two behaviors that are used to improve clusters. First, agents in a

cluster combine their individual pools of links, widening their individual neighborhoods. This

allows them (still individually) to pick better matched links as candidates for cluster membership.

Additionally, to prevent agents conglomerating into one large cluster, a limit is placed on cluster

size. A further procedure then allows clusters to break weaker connections, enabling them to

upgrade stronger available matches into connections. Since connections are between agents,

breaking a connection can split a cluster, but leaves other stronger agent pairs connected in the

resulting clusters.

We represent the search for good matches between similar agents as a matchmaking problem

among agents’ short-term objectives. Internally each agent is considered to have a main attribute

that describes its basic characteristics. We would like to cluster agents according to these

attributes. Each agent further contains a number of objectives, or current goals based on its

attribute. In the first experiment in this paper an attribute is abstracted as a two-dimensional
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(a) Two clustered agents. (b) A small system.

Fig. 1. Diagrams of model components.

point. Objectives are represented by nearby points, chosen as a function of their agent’s attribute.

Objectives thus form a cloud of points around an agent’s central data. For two-dimensional points

objectives simply extend an agent’s range of influence. For higher dimensional data, on the other

hand, objectives can be chosen to reduce dimensionality and thus reducing the cost of checking

for matches. In clustering text we use a full document as an agent’s attribute and weighted word

vectors to define its objectives. For more advanced agents, an objective could be only one of

many tasks that an agent needs to complete to reach a final goal which is its central attribute.

Figure 1(a) shows a diagram of two clustered agents. Figure 1(b) shows the links between all

agents in a small system containing four clusters of ten points each.

Note that agents pick matches, since they are best able to determine how closely related

their objectives are to other agents’ objectives. Clusters, however, have a wider view of relative

closeness on the attribute level since they contain a larger number of matched and connected

links. Therefore clusters have a stronger basis on which to choose connections to make and

break.

Multi-agent systems are often described in terms of their agents’ individual behaviors. Along

these lines, we can summarize the above agents as having the goal of finding good matches

for their objectives. We would like the individual goals of these agents, along with the local

coordination provided by cooperation within the clusters, to result in the overall system self-
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organizing into a grouping of agents based on their attributes. In this paper we focus on the

nature of this collective clustering behavior. For this reason agents are limited to having very

simple decision processes. This allows us to highlight the basic clustering behavior and gives us a

good foundation on which to study more complex agents that might be used in real applications.

B. Simulation Definition

Our aim is to examine the ability of a multi-agent system to find clusters in a set of points

P� �x1� � � � �xN�. A set of N agents A� �a1� � � � �aN� is created. Each agent, ai, has as its attribute

the point xi in P. The agents are joined by links, forming a graph G � �V�E� where the nodes

are agents and the edges are links. We stipulate that each node in the graph G has the same

degree δ . The interaction of the agents will change the edges in G, and eventually yield a new

graph G� � �V�E��, where E� contains a set of chosen connected links. Connected components

in G� will correspond to clusters of P.

The procedure is as follows. Each agent, ai, is given a set Wi of δ objectives, which are points

(not necessarily in P) chosen as a function of xi. Note that in the experiments presented in this

paper we use δ � 5 and all objectives of an agent ai are given a common view of the agent’s

attribute, xi. To initiate the system we chose for each objective ωi �Wi an objective ω j �Wj

of a different agent uniformly at random in such a way that no objective is paired twice. This

pairing of objectives leads to an initial set of unmatched links, denoted as E�

0 . The initial set of

matched links, denoted as E�
0 , is set equal to the empty set. The initial set of connected links,

E�

0 , is also empty, indicating that to begin with each agent forms a cluster of size 1. From this

position we proceed in turns, each turn t consisting of the following four steps. Some of these

steps contain functions, which will be defined later.

Step 1 (Connecting): Clusters choose some of their matched links from E�
t to become con-

nected links using a rule rc. Together with all links from E�

t this forms the edge set

E�

t�1. Note that a connected link remains in E�
t .

Step 2 (Mixing): Each cluster Ci has a set of unmatched links adjacent to it, given by

E�

t �Ci� � ��ω�ω �� � E�

t : ω is an objective of an agent in Ci��

Each cluster mixes its objectives that are adjacent to an unmatched link in E�

t �Ci�,

using a random permutation. After each cluster has completed this mixing procedure,
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a new set of unmatched links is obtained which is denoted by E�

t�1.

Step 3 (Matching): All agents test their unmatched links (from E�

t�1) using a turn-dependent

matching probability p�t �ω�ω ��. More precisely, an unmatched link �ω�ω �� will become

a matched link with probability p�t �ω�ω �� and will remain unmatched with probability

1� p�t �ω�ω ��. The new matched links together with E�
t form E�

t�1, and are taken out

of E�

t�1.

Step 4 (Breaking): Clusters choose some of their matched links from E�
t�1 to be broken,

downgrading them to unmatched links and adding them to E�

t�1, according to a breaking

probability pb. Each broken link is then removed from the set E�
t�1. If a link to be

broken is also a connected link, it is also taken out of E �

t�1.

The connecting, mixing and breaking steps must be done collaboratively by a cluster as a

whole, while the matching step can be done separately by each of a cluster’s agents. In our

simulations, to simplify operations within in a cluster, we select, at random, one cluster agent

to perform the collaborative steps. Which agent is chosen is unimportant in these experiments

since all agents in the simulation have equal capabilities. Over many turns the mixing and

matching steps above create a search for matches among the objectives of neighboring clusters.

The connecting and breaking steps result in clusters forming and changing over time.

To determine the matching probability, p�t �ω�ω ��, each agent maintains a range, which it

continuously adjusts as follows. Let Ri
t denote the range of ai for turn t. The agent ai considers

M distances between objectives ω �Wi and ω � �Wj presented to it in the matching step. This

might take several turns. After the M distances have been observed let σ be the smallest observed

value. If Ri
t � σ , the agent forgets its distances and starts collecting M new distances. Meanwhile

Ri
t stays the same. On the other hand, if Ri

t � σ , the range is gradually increased in the next M

turns by a fixed fraction �σ�Ri
t��M. However, if after say m turns, the agent is presented with a

distance σ � smaller than the current σ , it repeats the test Rt
i �σ � and follows the above procedure

from that point on. The above procedure increases the range of the agent ai. To decrease it, when

a match is made the range is set to the distance of this match. In our experiments, M � 100.

For each turn t, we now let p�t �ω�ω ��� 1�d�ω�ω ���Rt . Here, d�ω�ω �� denotes some measure

of the distance between ω and ω �. For instance, for spatial data we use the Euclidean distance

between ω and ω �. In this paper we set the joint range for a link as the maximum of its two
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objective’s ranges, Rt � max�Ri
t�R

j
t �, if ω �Wi and ω � �Wj.

The rule used to choose connections, rc, is defined as follows. Let the strength of a matched link

�ω�ω �� be defined as 1�d�ω�ω ��, meaning that more closely related links have a higher strength.

All current matched links in the cluster, that are not connected, are first ordered according to

their strength. We then proceed to create connections, starting with the strongest. A connection

is created if the resulting cluster is not larger than a size limit L. Once a connection cannot be

formed because of this size limit no more connections are formed. In the experiments in this

paper L is set at 1.5 times the known cluster size.

To define the breaking probability we need a speed parameter λ . Consider a cluster C consisting

of NC agents. Each turn the cluster has a probability of breaking one of its links given as

pb�C� � λNC�L. The experiments in this paper use λ � 0�3, a value found to result in a good

tradeoff between clustering speed and quality in [8]. The cluster chooses which link to break

out of its set of matched links, E��C�, according to the following formula. Let s�l� denote the

strength of the link l, and let sC
max be the maximal strength of a matched link in C. The weight

of a link is defined as:

w�l� � �
1

s�l�
� 1

sC
max

�2�

The probability of the cluster choosing a link l is then given by:

pb�l� �
w�l�

∑l��E��C�w�l
��
�

IV. EXPERIMENTAL RESULTS

This section presents the results of two experiments designed to measure the quality of

clusterings produced by the agent method described in section III. The first experiment considers

spatial data, for which there are a number of standard quality measures, and compares agent

clusterings to those found by the k-means algorithm. The second experiment demonstrates how

agents can be adapted for use with text data and gives some comparisons to the classical word

vector model approach. To allow us to clearly separate the issue of decentralization from that of

hard to distinguish clusters, we consider basic data sets in which clusters are clearly separable

and of equal size.
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A. Comparison to K-means Clustering

In order to precisely measure clustering ability we first examine the clustering of straight-

forward data sets made up of two dimensional spatial data points. As these data sets do not

contain any of the difficulties addressed by more complex algorithms, the clusters found by

the multi-agent system are compared to those found by Forgy k-means clustering, as described

in [4]. K-means clustering works by choosing at random k initial cluster centers, or centroids,

and assigning each data point to the cluster of the centroid to which it is closest. Centroids are

then reset to be the center of the resulting clusters and the data points are reassigned to the

new centroids. This process is repeated until a quality measure, the total squared error, stops

changing. This is the simplest of the centralized clustering techniques. Nonetheless, it works well

on the elementary data sets examined and illustrates the basic abilities and common mistakes of

centralized clustering.

For this experiment each agent is given a two-dimensional spatial point as its attribute data,

and agent objectives are simply also set to this data point. The strength of links is determined

using the Euclidean distance between objectives as the measure of distance, d�ω�ω ��. Table I

compares the results of the agent clustering method to perfect, random and k-means clusterings

for four data sets of varying sizes. The agent algorithm with run for 5000 turns with 50 trials

for each data set. The k-means and random clusterings were run 100 times for each data set.

The data sets used were generated according to the procedure described in [13]. Each data set

consists of K clusters of two-dimensional data points. A cluster is characterized by the number

of points per cluster (nlow � nhigh � 100) and the cluster radius (rlow � rhigh �
�

2). The grid

pattern is used, which places the cluster centers on a
�

K��K grid. The distance between the

clusters is controlled by kg, which is set to 8. The noise parameter is set to 0. This creates a grid

of well separated, circular, 2D clusters with 100 points each and equal density. Four data sets

are generated with 25, 100, 400 and 1600 clusters. A corner of the 20�20 data set is shown in

Figure 2.

We compare the quality of clusters found by our method to the generated clusters (perfect

case), a set of clusters of the correct size but with randomly assigned points (random case)

and the clusters generated by the Forgy k-means algorithm, given the correct value of k, initial

centers picked uniformly at random from all the points, and run until no further improvement
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number of clusters E2 �E2� Rand points out of place

# points min avg max min avg max avg avg min avg max % total avg

PERFECT CLUSTERINGS

2,500 25 5.04�103 2.02 1 0 0%

10,000 100 1.97�104 1.97 1 0 0%

40,000 400 7.94�104 1.98 1 0 0%

160,000 1600 3.16�105 1.97 1 0 0%

RANDOM CLUSTERINGS

2,500 25 25 25 1.27�106 1.27�106 1.28�10X 06 509.64 0.924 2272 2289.6 2304 91.58%

10,000 100 100 100 2.09�107 2.09�107 2.09�10X 07 2090.38 0.980 9560 9576.4 9590 95.76%

40,000 400 400 400 3.37�108 3.37�108 3.38�10X 08 8429.88 0.995 38920 38943.9 38978 97.36%

160,000 1600 1600 1600 5.40�109 5.40�109 5.41�109 33773.95 0.999 156744 156772.6 156811 97.98%

KMEANS: k=100

2,500 23 24.9 25 1.75�104 2.91�104 4.39�104 11.65 0.985 57 146.3 235 5.85%

10,000 97 99.2 100 8.86�104 1.20�105 1.62�104 11.99 0.996 368 576.9 857 5.77%

40,000 392 396.8 400 4.12�105 4.86�105 5.65�105 12.14 0.999 1939 2327.3 2730 5.82%

160,000 1580 1588.5 1598 1.78�106 1.92�106 2.08�106 12.02 1.000 31369 34398.6 37667 21.50%

AGENTS: L � 150, λ =0.3

2,500 25 25.0 26 5.04�103 5.20�103 5.55�103 2.08 1.000 0 2.0 7 0.08%

10,000 100 100.0 101 2.02�104 2.12�104 2.30�104 2.12 1.000 6 12.4 24 0.12%

40,000 399 400.3 407 8.80�104 9.87�104 1.73�105 2.47 1.000 46 104.1 216 0.26%

160,000 1610 1625.6 1647 1.06�106 1.17�106 1.37�106 7.33 1.000 6320 7123.9 7996 4.45%

TABLE I

COMPARISON TO K-MEANS CLUSTERING FOR 2D SPATIAL DATA.

in clustering is found.

Several measures of cluster quality are compared. First, the total squared error metric, E2,

which is used by the k-means algorithm. Given k clusters C1� � � � �Ck, where Ci has a mean value

mi for 1� i� k,

E2 �
k

∑
i�1

∑
x�Ci

	x�mi	2�

Total squared error gives an easily computed measure of the compactness of clusters, but in

doing so favors small clusters. In fact, clusters with a single point have a square error of zero

and thus the total squared error alone cannot be used to compare clusterings of a data set with

different numbers of clusters. Total squared error also cannot be used to compare data sets of

different sizes. The more points there are in a data set and the larger the range over which the

data set is spread, the larger the total squared error.

Jain and Dubbes [4] describe measures for comparing two clusterings of the same data by

creating a contingency matrix which lists the number of points in common between each pair of

clusters, between the two clusterings. These measures consider cluster membership, rather than

the distance over which clusters are spread. We use this method to compare our experimental

clusterings to the perfect clusterings produced by the generator. The Rand statistic [4] sums the

June 9, 2004 DRAFT



13

number of pairs of points that are correctly placed in the same cluster and the number of pairs

of points that are correctly placed in different clusters and normalizes by the total number of

possible pairs. However, for our data sets which have many small clusters, the number of pairs

correctly placed in different clusters dominates. Thus we also use the contingency matrix to

calculate the number of points incorrectly placed by associating with each real cluster the found

cluster with which it has the most points in common. We sum the number of common points

over all real clusters and subtract from the total number of points to get the points that are out

of place. This gives a clearer distinction between clusterings that are close to, but not quite,

correct. On the other hand it does not distinguish clusters that are incorrectly grouped into a

single cluster. It also can count up to half of the points in a real cluster as incorrectly placed if

that cluster is simply split in two.

In Table I it can be seen that while the agent-based clustering method usually does not find the

perfect clusterings, it consistently improves upon the clusters found by the k-means algorithm.

For smaller systems it places more than 99% of the points correctly and for the larger system

it places at least 95% of points correctly. The reason why a less good clustering is found for

the largest data set is the amount of time it takes the agent system to find clusters. During a

trial the agents rapidly find a set of mediocre clusters and then improve these over time. In this

experiment the agent systems were run for 5000 turns, which is a long time for the smaller

systems, but halts the largest system while it is still improving. In [8] we present detailed results

on timing.

B. Nature of Discovered Clusters

Figure 2(a) shows the clusters found by the agent procedure in a sample run, for a section of

the 10�10 cluster grid. Figure 2(b) shows, for comparison, the clusters found by an example

k-means run. Both methods were given the correct input parameters. The agent-based procedure

used a maximum cluster size, L, of 150, or 1.5 times the cluster size. The k-means algorithm

was run with k � 100, the number of clusters in the data set. Overall both methods found the

correct number of clusters, meaning that k-means did not loose any, which is possible, and that

our agents adjusted to the correct cluster size of 100 instead of staying at the maximum size

of 150. Total squared error for the k-means run was 126,889 versus 20,372 for the agent-based

method.
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(a) Clusters produced by the agent-based procedure. (b) Clusters produced by the k-means algorithm.

Fig. 2. Agent-based and k-means clustering results.

The graphs in Figure 2 show the typical mistakes made by each method. At point A the agent

method has associated a point with a neighboring cluster instead of with the correct cluster. This

can happen when a point has joined the correct cluster, but has been broken off again due to

the randomness of the breaking function. Agent clusterings remain dynamic, and generally these

points reattach, though they can spend some time as a member of a neighboring cluster. Thus at

any point in time after good clusters have been found, several such mistakes are likely to exist.

This type of mistake can also occur when a point simply does not find its correct cluster. This

results in clusters with one or a small number of agents that can take a long time to discover their

correct group. We see in Figure 2a that the k-means algorithm, by contrast, makes very different

types of mistakes. At label B it has incorrectly joined two clusters into one, and at label C it

has incorrectly split a cluster in two equally sized components. This can occur when two initial

centroids are chosen from the same cluster. This cluster then becomes split, but somewhere else

two clusters need to be joined to maintain k. When there are large numbers of clusters it is likely

that this will occur. There are heuristic methods of choosing better initial centriods, however a

perfect choice would amount to knowing the correct clustering a-priori.

C. Clustering Text

Text clustering uses the same basic methods as spatial data clustering, however it faces the

additional difficulty that the similarity of text documents is ambiguous. Since there is no strict

distance measurement that can be used, text algorithms focus on effective ways to extract a

document’s meaning through identifying content bearing words in the text or by means of any

June 9, 2004 DRAFT



15

weighting function similarity coefficient number of clusters points out of place

min avg max min avg max

none Dice 11 15.46 25 4 10.76 27

�IDF ∑m
k�1 min�tik � t jk� 10 13.5 19 5 11.1 19

�IDF ∑m
k�1 s�k�, where s�k� � tik � t jk if tik � 0 and t jk � 0, and s�k� � 0 otherwise. 10 13.5 19 0 6.58 17

TABLE II

RESULTS OF TEXT CLUSTERING AGENTS: 50, 500 TURN, RUNS PER EXPERIMENT.

additional information available through user feedback or references [2]. Again, in this paper we

wish to keep the issue of decentralization separate from that of difficult to find clusters. Thus we

consider a straightforward data set and use comparison methods from the classical word vector

model [10].

We use a 100 point data set containing the first ten chapters of each of ten books chosen

to have distinct subjects. These chapters are between 343 and 15733 words long. Agents are

each given the entire text of a chapter as their data point. Following the word vector model

agents process these texts to create a weighted vector of all unique words (without stopping or

stemming). We represent this weight vector as T � �t1� � � � � tm�, where there are m unique terms

in the entire document set, though of course agents only know of the terms their text contains

and thus have a 0 weight for all other terms. Table II shows data for agent clusters found using

three different combinations of weighting schemes and distance functions. In the first of these

all words in the text are given a weight of 1 and we use the Dice coefficient:

D�Ti�Tj� �
2�∑m

k�1 tik 
 t jk�

∑m
k�1 tik�∑m

k�1 t jk

This gives a measure of the number of words two texts have in common, normalized by the

lengths of the texts. We see in Table II that even with this simple method agents are already

able to find passable clusterings.

A more advanced method of weighting terms is to use each word’s inverse document fre-

quency:

IDF�tk� � log

�
N
nk

�
�1

where N is the total number of documents, and nk is the number of documents in which

term tk appears. This weighting method is based on the assumption that words that occur very

frequently or almost never among the documents are likely to be functional words, while those

with a middling frequency are likely to be content bearing. We see here a problem, however, in
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Fig. 3. Example clustering of text data set.

that in order to calculate the inverse document frequency of a word an agent must examine the

entire document set. Since this is not possible in a decentralized setting we instead have agents

attempt to estimate inverse document frequencies by observing the frequency of words in the

neighbors with which they attempt to make matches:

� IDF�tk� � log

�
total matches attempted

potential neighbors that contained term k

�
�1�

To account for difference in document lengths agents normalize their weights so that their

entire vector sums to 1. Agents then use one of the simpler of the methods of determining

similarity, the sum of the minimum of the weights of each term, though we find in the last row

of Table II that using the sum of the combined weights for each common term works slightly

better. Since changing the weights of words changes link strengths and thus requires updating

cluster heads we have agents reevaluate weights only after each 1000 attempts to make a match.

Figure 3 shows an example average clustering using the last of the three methods in Table

II. The clustering divides the data set into 12 clusters and places 6 points incorrectly. From

the diagram we can see that this is actually quite a reasonable clustering of the data set. The

mistakes that are made are similar to those seen for spatial data, the “War of the Worlds” cluster

has been broken up, one of its components has joined “The Hound of the Baskervilles” and

one of the “Oliver Twist” points has gotten lost. Considering that agent clusterings are dynamic

these mistakes are most likely to be temporary, so that over time the average clustering will be

the correct one.
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Around The World In 80 Days (2831 words total) La Mort d’Arthur (979 words total) Sense and Sensibility (2506 words total)

agent rank word agent score actual rank actual score word agent score actual rank actual score word agent score actual rank actual score

1 fogg 0.034 1 33.03 unto 0.034 1 30.79 dashwood 0.037 1 33.03

2 phileas 0.034 2 33.03 knights 0.033 5 25.47 norland 0.032 3 27.88

3 bombay 0.028 3 25.47 uther 0.032 6 25.47 elinor 0.031 2 27.88

4 suez 0.028 5 25.47 merlin 0.032 3 27.88 marianne 0.028 7 25.47

5 passport 0.027 8 22.64 king 0.030 8 23.86 park 0.028 4 27.18

6 passepartout 0.026 4 25.47 arthur 0.030 2 28.78 handsome 0.028 5 26.51

7 p.m 0.025 7 22.64 brastias 0.030 4 25.47 marianne’s 0.027 8 25.47

8 mongolia 0.022 17 19.98 ulfius 0.027 10 22.64 barton 0.026 11 22.64

9 club 0.022 6 23.12 wherefore 0.026 7 24.64 john 0.025 6 26.09

10 steamers 0.022 18 19.98 barons 0.025 9 22.64 mrs 0.024 9 23.86

11 steamer 0.022 9 22.64 lords 0.023 16 17.42 middleton 0.024 12 22.64

12 october 0.022 12 20.91 archbishop 0.023 12 19.98 income 0.024 20 19.98

13 repaired 0.021 20 18.86 kay 0.023 14 19.98 wishes 0.023 14 22.33

14 visaed 0.021 31 16.88 ye 0.022 11 21.48 daughters 0.022 10 23.57

15 departure 0.020 23 18.20 tintagil 0.022 24 16.88 dashwood’s 0.022 19 19.98

16 eighty 0.020 16 19.98 igraine 0.022 13 19.98 propriety 0.021 21 19.98

17 robber 0.020 15 20.39 wales 0.020 48 13.49 situation 0.021 13 22.33

18 reform 0.020 10 21.83 pentecost 0.020 44 13.49 conversation 0.020 23 19.54

19 detectives 0.020 38 15.98 ector 0.019 21 16.88 edward 0.020 26 18.86

20 brindisi 0.020 28 16.88 purvey 0.019 23 16.88 cottage 0.019 15 21.56

21 paris 0.019 21 18.48 merlin’s 0.019 41 13.49 affection 0.019 17 20.62

22 consulate 0.019 72 13.49 canterbury 0.018 18 16.88 herself 0.019 16 20.99

23 quay 0.019 80 13.49 pendragon 0.018 22 16.88 dashwoods 0.018 32 16.88

24 detective 0.019 24 17.42 nourish 0.018 43 13.49 elinor’s 0.018 33 16.88

25 doesn’t 0.019 39 15.98 assay 0.018 36 13.49 required 0.018 27 18.27

TABLE III

TOP 25 WORDS FROM THREE EXAMPLE CLUSTERS.

Finally Table III shows for three of the clusters in Figure 3 the top twenty-five words, scored

by adding the weights of all agents in the cluster that contain that word. In addition, the table

shows the scores and ranks these words would have if agents used the actual inverse document

frequency of the words for this data set as their weights. We see from this table that the agents

were able to find reasonably good estimates of the central inverse document frequency values.

V. CONCLUSION AND FUTURE WORK

The experiments reported in this paper indicate that decentralized agent systems can indeed

be used to find clusterings of data sets, with surprisingly good quality. Our method contains

two parameters, the maximum cluster size and the speed at which clusters break, that can be

adjusted to trade off knowledge of the data set and time for cluster quality. Agent clusters show

an ability to adjust their size to the size of underlying data clusters, and to learn the appropriate

range for matching. In addition, more complex text agents show an ability to learn reasonable

approximations of word frequency within a data set. In other work we have shown that agents
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can learn a much wider range of appropriate cluster sizes by watching the series of links they

make and break [9] and have found that agent clustering show good scalability properties [8].

Together these results demonstrate how using rational autonomous agents, which can modify

their decision making criteria over time, can be advantageous in the clustering problem.

The agents studied in this paper are extremely simple and clustered straightforward data sets.

However, they exhibit the basic dynamics of forming clusters based on similarities between agent

attributes. The text agents in this paper demonstrate how these agents can be modified to deal

with more complex forms of data and matching functions. They further suggest that approximate

values of central concepts like word frequency might be sufficient to produce good clusterings.

On the other hand, the text data set studied was fairly small and this work needs to be extended for

larger data sets. Further research directions include studying more advanced matching functions

and distance measures in order to tackle issues, such as clusters of varying size, shape and density,

addressed by more advanced central clustering algorithms. How well this works in practice must

be determined by future research, however, some such form of decentralized agent grouping may

in the future provide a basis for peer-to-peer directory services.
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