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Abstract

In theories and models of computational intelligence, cognition and action have historically been

investigated on separate grounds. We conjecture that the main mechanism of case-based reasoning

(CBR) applies to cognitive tasks at various levels and of various granularity, and hence can

represent a bridge - or a continuum - between the higher and lower levels of cognition. CBR is an

artificial intelligence method that draws upon the idea of solving a new problem reusing similar

past experiences. In this paper we re-formulate the notion of CBR to highlight the commonalities

between higher level cognitive tasks such as diagnosis, and lower level control such as voluntary

movements of an arm. In this view, CBR is envisaged as a generic process independent from the

content and the detailed format of cases. Diagnostic cases and internal representations underlying

motor control constitute two instantiations of the case representation. In order to claim such a

generic mechanism, the account of CBR needs to be revised so that its position in non-symbolic

AI becomes clearer. The paper reviews the CBR literature that targets lower levels of cognition

to show how CBR may be considered as a step toward bridging the gap between symbolic and

nonsymbolic AI.

1 Introduction

In theories and models of computational intelligence, cognition and action have historically been

investigated on separate grounds. Within the method area of artificial intelligence (AI), symbol-

processing approaches have emphasized higher-level cognition, while situated and embodied AI

has more focus on the bodily activities of an agent. The issue of representation has become

an effective departure point contributing to the escalation of tension between these two lines

of AI. In recent years, however, a trend has emerged that is looking for similarities and

complementarities between underlying mechanisms of higher-level cognition and lower-level motor

behavior. Ongoing research in cognitive science aims at providing clues of a seamless link between

cognition and action, resulting from the close cooperation between researchers across disciplines

such as cognitive psychology, linguistics, neuroscience and AI, who previously investigated the

same problems in isolation from each other. An important hypothesis that has arisen in this

context is the equivalence of the neural mechanisms underlying overt motor behavior and motor
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imagery (i.e. thinking of a motor action without executing it), which implicates the existence of

underlying representations. Both cognitive psychology (Robin, Dominique, Toussaint, Blandin,

Guillot, & Le Her, 2007), philosophy (Grush, 2004) and neuroscience (Filimon, Nelson, Hagler,

& Sereno, 2007; Zimmermann-Schlatter, Schuster, Puhan, Siekierka, & Steurer, 2008) findings

provide convincing evidence supporting this hypothesis.

Knowledge models of higher level reasoning tasks include generalized models such as rule-

based, frame-based, or network-based models, but also instance-based models such as collections

of situation-specific experiences. The latter are typically captured by case representations and

case-based reasoning (CBR) methods (Kolodner, 1993; de Mántaras, Mcsherry, Bridge, Leake,

Smyth, Susan, Faltings, Maher, Cox, Forbus, Keane, Aamodt, & Watson, 2005). CBR draws

from research in cognitive science on human memory and was originally targeted at explaining

experience-based behavior at higher levels of cognition (Schank, 1982). It rests on the assumption

that similar problems are likely to have similar solutions, which can be used to solve new similar

problems. Two key indicators of CBR are context-sensitive representations coupling a concrete

problem situation with a corresponding solution, and similarity-based search for reusable cases.

Besides a plethora of applications in higher level cognition such as medical diagnosis and therapy,

design, job scheduling and planning, CBR has also, more recently, been applied in highly dynamic

domains that call for non-symbolic representations such as navigation, real time strategy games,

robot soccer, and actuator movement. Although CBR has provided outstanding results in higher-

levels of the cognition, it has so far scarcely been employed for lower level control and even less so

in cooperation with neuroscientists studying movement planning, who have provided interesting

findings about internal representation pertinent to actuator-level planning. This paper has a

special focus on how CBR is applied at the lower levels of cognition-action continuum, and

through a review of the current state of the art, argues that CBR is a generic mechanism that

can be used in the entire cognition-action continuum.

The notion of representation has triggered a major debate in AI. Brooks (1991), for example,

banned representations in robot behavior and maintained that “the world is its own best

representation” and “explicit representations and models of the world simply get in the way.

It turns out to be better to use the world as its own model”. We conjecture that unification

of symbolic and non-symbolic AI is conditioned on a reconciliation of the different views of

representation, and where/when they are used in the entire cognition-action continuum. Our

standpoint is that representations in the brain exist for motor level control as well, and are used

in a CBR process. Plannning in both higher and lower levels of cognition-action continuum rely

on representations pertinent to their own target domains, although the two types of AI have,

at the first sight, irreconcilable perspectives on the representations underlying these models.

Following Markman & Dietrich (2000), this paper stresses that the non-symbolic “models”

should be included in the definition of representation because they are stored for later use and

can be recalled upon encountering similar situations. Our hypothesis is that the computational

framework for case-based reasoning may encompass lower level cognitive tasks such as motor

control, as well as higher level reasoning tasks. The reasoning is that actions may be at various

abstraction levels (Öztürk, 2009) while the underlying action selection mechanism may be similar

in vital ways. Proposing marriage, ordering a blood test, going to the cinema and lifting a tea

cup are all actions, albeit at rather different levels of granularity.

The idea we advance is that “action selection” in nondeterministic domains including purpose-

ful actuator movement is case selection. But why is applying CBR to such low-level mechanisms

as movement learning and control important? From the biological plausibility perspective, the

aforementioned research findings in neuroscience indicate that the motor system deals not

(only) with purely reactive stimulus-response type of processes but often with stimulus-response-

consequence type of processes where the consequences are computed through anticipation, an

important part of the whole enterprise (Herwig & Waszak, 2009; Shin et al., 2010). The notion of

anticipation in itself is a vital issue with respect to the discussion whether to use representations
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or not, providing supporting evidence to the ubiquity of representations in the entire cognition-

action continuum. Furthermore, studies in neuroscience on imitation-based motor control also

support the existence of multiple contex-sensitive representations underlying actuator movement.

The outline of the paper is as follows. Following the introduction, main characteristics of a CBR

system and the tasks of the system designer are introduced in section 2. Section 3 conveys the

rationale behind our hypothesis that cognition and action constitute a continuum involving action

selection at various levels, why CBR underlies the entire cognition-action continuum and why it

provides a bridge to unify symbolic and sub-symbolic AI. Section 4 reviews CBR systems that

deal with real-time dynamic domains such as navigation, robot soccer and real-time strategical

games. Section 5 discusses the role of imitation in various disciplines, with a particular focus on

neuroscience, followed by a discussion of the role of representations in human motor control and

planning. Section 7 presents an architecture about imitation-based motor control and learning,

suggested by neuroscientists. This is a preparation for the other part of the review of CBR

systems, which focuses on the lower levels of cognition-action tasks, in sections 8, 9 and 10.

Finally, Section 11 discusses why the reviewed CBR systems strengthen the possibility that CBR

plays an important role in connecting symbolic and sub-symbolic AI.

2 Main characteristics and design tasks of CBR systems

The main argument of using CBR in general is that it does not need an extensive and deep

domain model and relies instead on experience-based, compiled knowledge which humans are

known to gather during and after problem solving. The distinctive role of CBR in symbolic AI is

its ability of fast reasoning compared to reasoning with deep domain knowledge.

An experience of solving a problem enriches the experiential memory of humans (and animals,

in general) and, if properly stored, experiences can be useful in solving new, but similar problems.

A CBR process has a number of characteristic subprocesses, as shown in Figure 1. Upon

encountering a new problem, the problem description of the new case is matched against those

of the past cases in the case base and the most similar ones are used to solve the new problem.

This constitutes the retrieval subprocess which is often implemented as k-nearest neighbor, where

various similarity metrics may be employed. In the reuse stage, the solution of the retrieved case

is used in solving the new problem. If the problem description of the retrieved case(s) is almost

equivalent to the current situation, no adaptation of the solution would be necessary. Otherwise,

the solution needs and adaptation before its reuse, and adaptation may be anything from simple

modifications of individual actions/steps to a rather complicated operation on an overall plan.

Revise evaluates how well the past (or adapted past) solution worked in the new situation. Finally,

the retain stage takes care of the storage of the new case if it is sufficiently different from the

cases in the case base.

Typically a case has two main components, a problem description and a problem solution:

C = {ProbDescription, Solution}. In mainstream CBR there may also be a “lessons learned”

component, typically a free text note written by the problem solver that may provide hints on

the specific conditions that this solution works best, or anything in general that may be useful

for the problem solver to decide whether to re-use this solution. The cases are stored in a case

base: CB = {C1, C2, ..., Cm}.
In any CBR system the most important questions that the system designer encounters are

• What is the content of a case, how is it represented?

• How is the case base initially populated?

• How is the similarity between two cases measured?

• How are the retrieved case solutions adapted?

In mainstream CBR, both the problem description and the solution are typically represented

explicitly and symbolically. The problem description part embraces a set of attribute-value pairs
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Figure 1 The CBR cycle has four main computational subtasks:retrieve, reuse, revise and retain.

(tuples) where the attributes are salient properties defining a situation or an object under con-

sideration: ProbDescription= {< a0 : V0 >, < a1 : V1 >, ..., < An : Vn >}. Attributes are defined

concepts in classical CBR, while the values may take numerical or nominal values. The solution

can be of various sort such as the diagnosis of a patient, a sequence of actions of a soccer player

agent, or a free text interpretation of an anomalous event, depending on the application task.

The content of the case and the used representation language depend on the level of the

application in the cognition-action continuum. Representations at the lowest motor level don’t

involve symbols and concepts as they do in higher level cognitive processes, which is the focus

in symbolic CBR. During retrieval, previously solved cases are activated through some indexes

typically decided by the designer. The indexes are often a subset of the attributes of the cases.

Initial population of a case base is a daunting task in classical CBR because it is manually

crafted by knowledge engineers who makes use domain experts or written material to extract

the case content. We can call this “case grounding” problem, which is reminiscent of the much

discussed symbol grounding problem (Harnad, 1990). We believe case grounding problem is the

reason why CBR has not seen wide-spread adoption in the industry - because manual extraction

of cases from reports and records is costly and time consuming. Scarcity of CBR in motor level

applications, such as voluntary actuator movement, may also be attributed to the problem of

initial case acquisition - manual case acquisition is even more impracticable. Recently new ways

of case acquisition through training, observation, and imitation have emerged. In addition, a

recently popular research subfield of CBR, textual CBR (TCBR), has a focus on automated

extraction of cases from documents in free text such as anomaly reports (Massie, Wiratunga,

Donati, & Vicari, 2007) and patient records that embrace a concrete problem solving experience.

TCBR is an example of how CBR brings together different research disciplines such as linguistics,

psychology, information retrieval and information extraction. Another line of research related to

automated case acquisition is imitation-based learning. Although the CBR examples on real time

domains and in particular highly nondeterministic domains like control of actuators are rare,

still the current state of the art CBR provides sufficiently strong evidence to suggest that the

computational framework for case-based reasoning may encompass lower level cognitive tasks

such as motor control, as well as higher level reasoning tasks.

Classical CBR has used various similarity measures. Cunningham (2009) presents a taxonomy

of similarity measures used in CBR research, and examples in each category. Euclidean distance

is one of the most common metrics for measuring the distance/similarity between two cases, each

of which is represented as a feature vector. Case adaptation has much to say about the success of

case reuse and various methods varying between simple and superficial changes to complex and
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radical changes have been studied (Leake, Kinley, & Wilson, 1995, Lee-Urban & Muñoz-Avila,

2009). Throughout the paper we will review various similarity and adaptation methods.

3 Rationale behind the “CBR in cognition-action continuum”

A large number of tasks at various levels of cognition involve selection of the best next action.

However, the notion of action selection (AS) is not well defined, since it has been used both for

selection of an action defined at a level as high as “getting married” or “declaring war”, as well

as at a much lower level, such as “grasping a tea mug”. Öztürk (2009) attempts to define action

selection at different levels of cognition as a unified mechanism. Briefly, she makes a distinction

between two types of action which we dubbed Type1 and Type2 actions. The border between the

Type1 and Type2 AS is where the planning starts to involve the limbs. Type1 actions are higher

level intentions, not involving the motor system while Type2 actions are movement related; we

may call them intention in action (Searle, 1983). CBR has so far been mostly applied to Type1

AS, while the current paper argues that CBR applies also to Type2 action selection and describes

how motor planning and motor-command selection rests on CBR. Öztürk (2009) speculated that

the Type1 action selection may take place in the basal ganglia (BG), while the cerebellum may

be the loci for Type2 action selection. This argument relies on neuroscience findings that the BG

may be facilitating a winner-takes-all mechanism while the cerebellum, which is known to take a

major role in motor control, involves a mixture-of-experts process. Despite these differences, both

action selection mechanisms rely on the same notions of matching and similarity. This speaks for

why a CBR mechanism should be common to action selection in both Type1 and Type2 action

levels.

In domains where a high level planning is needed CBR has long proven to perform well where

plans involve “conceptual actions” close to goal or task descriptions such as “get money from

machine”, “fly to San francisco” and “take taxi to the hotel” (Muñoz-Avila & Cox, 2008). Such a

plan is done when preparing for a trip. The purpose of making the plan is important. In higher

levels of cognition, the plans are for setting up the goals (i.e. what to do), while in the lower

levels planning involves increasingly more how to do things. In motor control, action selection is

very much about how to compute the force to be exerted on the actuators to move them to the

desired state/goal.

At the lower levels of the cognition-action continuum, the body (the actuators in particular)

becomes a focus in intelligent artificial agents. Systems at this level involve non-symbolic,

continuous representations contrary to their counterparts in the higher level cognitive tasks.

Therefore, in non-symbolic AI, neural networks have often been used for learning and control of

motor level tasks. On the other side, related research in neuroscience suggests that the motor

level representation is not necessarily a single generic large network. We propose accordingly that

an artificial motor system should embrace a case base instead of, or in addition to, a generic large

network. There are two reasons why the system should have a case base and why the underlying

mechanism is case-based reasoning. The first is the findings in neuroscience illustrating that

the motor subsystem (i.e. cerebellum and cerebral cortex) learns multiple representations.

The other reason is of a more technical nature and is due to a problem in artificial neural

networks, called catastrophic forgetting (French, 1994). Briefly, catastrophic forgetting arises

when a neural network is forced to learn new concepts reaching beyond its capacity, which leads to

the overwriting of old information. Having several networks instead of one huge enables learning

of a large repertoire of different movements. In this paper we don’t deal with the technical

aspects of the discussion of a single network versus a case base. We focus rather on the coherence

between the findings and models in neuroscience, a CBR explanation of artificial motor control,

and subsequently a unified account of symbolic and subsymbolic AI suggested by the role and

use of CBR in the entire cognition-action continuum. Our account is grounded in two arguments:

• Human motor planning involves a planning similar to planning in higher levels of cognition

because both involve representations. An important point of departure, however, is that

5



models the corresponding models are about the external world (i.e. the environment) and

the actuators (i.e. the body), respectively.

• Planning in motor control also involves a CBR process because it relies on selection between

previously learned context-sensitive representations - among a set of alternative ones - that

provide an action to be taken at the next moment.

In the rest of the paper we review the CBR accounts at the lower levels of cognition-

action characterized as real-time, dynamic, nondeterministic domains. This will illustrate why

we conceive CBR as a compelling candidate to bridge the symbolic and non-symbolic AI, or

more correctly, the suitability of CBR as a generic control mechanism.

4 CBR in dynamic and real-time domains

Despite the broadness of the areas in which CBR has been used, it has predominantly been

employed for problems that involve conceptual and higher levels of cognition, such as recipe

creation (Hammond, 1989), diagnosis/therapy (Lopez & Plaza, 1993; Leake & Kinley, 1998),

newspaper story understanding (Ram, 1993), legal argumentation (Ashley & Hammond, 1988),

dispute resolution (Kolodner et al., 1985), software reuse (Grabert & Bridge, 2003; Koehler,

1996), navigation planning (Ram & Francis, 1996), and process planning (Veloso et al., 1996;

Muñoz Avila & Hüllen, 1996).

The review of the CBR systems in this section is organized according to the application tasks

such as navigation, robot soccer, and realtime strategy games. The CBR applications of purposeful

actuator control is reviewed in depth in Section 9 and 10.

Ram & Santamara (1993) make a distinction between two types of CBR: “... high-level

reasoning in problem domains that can adequately be described using discrete, symbolic

representations. However, many real- world problem domains, such as autonomous robotic

navigation, are better characterized using continuous representations”. Our paper makes a similar

distinction between the use of CBR in higher levels of cognition and its use in lower levels of the

cognition-action continuum. We may pronounce this distinction along a number of dimensions: 1)

the characteristics of the application domain, i.e. whether it is a dynamic and real-time application

or a more static one, 2) the type of underlying representations, i.e symbolic or non-symbolic, 3)

the type of planning that are required, i.e. episodic, one shot, sequential or incremental planning

(Russel & Norvig, 2010), and 4) according to what is modelled, e.g. the external world or the

effectors of the body.

In this section we review CBR applications in dynamic and real-time domains that require

continuous representations. We should note however in advance that although the domains

discussed in this section are continuous by nature, the case representations themselves are not

necessarily always so. We will elaborate on this aspect when discussing each system.

4.1 Navigation

Ram & Santamara (1993) and Ram et al. (1997) are one of the pioneers using CBR for adaptive

reactive navigation, an example of online real-time behavior in dynamic environments. They call

this type of CBR as continuous CBR because they maintain, it is suitable in problem domains

that are continuous in three senses: “continuous representations”, “continuous performance”

(i.e. continuous sensorimotor interaction with the environment) and “continuous adaptation and

learning”. Navigation behavior of the robot is modelled as a relatively small set of behavior

schemas. Some examples are avoid-obstacle, move-ahead, move-to-goal, and noise (move randomly

in a wandering fashion) schemas, which are similar to layers in Brooks’ subsumption architecture

(Brooks, 1991). However the big difference between them is the control mechanism, that

determines how much each behavior/layer has to say about the control of the robot at each

moment. In the subsumption architecture, coordination among the layers is enabled through

inhibition and suppression of inputs and outputs of finite state automatas (FSAs) composing the
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layers. Which layer will be dominant at each moment is regulated through hard-coded decisions,

for example, “explore” layer takes over the control every 50 seconds for just 10 seconds. In (Ram

& Santamara, 1993) and (Ram et al., 1997) coordination is managed by two integrated methods.

First a number of generic behavior schemas (Arkin, 1989) are activated based on the environment

and the robot’s current state. Before the schemas are used in determining the robot’s next action

they undergo an adaptation process performed using CBR. That is, CBR is employed only after

the selection of the behavior schema assemblage done by the higher level schema-based planner.

The final decision of the robot is a combination of suggestions from all the behavior schemas in

the selected behavior assemblage, a summed vector representation.

Each reactive behavior schema implements a function with a set of parameters and each

function computes as output a vector suggesting the robot’s speed and direction in the next time

step. However, the parameters in the schema function are generic (empirically decided) and may

need to be altered, when the environment to be navigated changes, to correspond to the current

sensory information. Some behavioral parameters, for example within avoid-obstacles schema, are

goal gain, noise gain, noise persistence, object gain, and sensible distance. Gain parameters are

the multiplicative weights of the corresponding schemas, noise persistence controls the frequency

with which the noise vector changes its direction randomly, and sensible distance controls the

distance within which the robot reacts to obstacles with the avoid-obstacles schema.

Parameter adaptation is done by the CBR module. The solution part of each case comprises a

set of adaptable behavioral parameters specifying how they can/should be adapted to the current

environmental situation and robot’s current status. This knowledge is represented by a numeric

range for each parameter that limits the changes that the system is allowed to make on the

concerned parameter in the current problem situation. The problem description part of the cases

represents the problem state through two kinds of situational description; the environmental

state and the robot’s own state. Examples on the attributes of the environmental states are

clutter, a metric of how many obstacles are around the robot, goal-nearby which is a binary value,

goal-direction, a value in radian angle measure while robot’s state is represented by attributes

such as no-progress-with-obstacles which indicates that the robot is moving but not towards

the goal and the robot is not within the sphere of any obstacle. Naturally, one of the most

important attribute of robot’s state is its current location, on a two-dimensional grid. Most

environmental and robot states are abstracted representations of perceptual information such as

“circles”, “no-movement-flag”, “movement-to-goal-flag”, and “clutter”, many with binary values,

and often abstracted in an oversimplified way from an actual experience which consists of the

time series of real values. The authors mention that “one of the open issues in their research is

the automatic extraction of such symbolic representations from the actual continuous experiences

of the system”. This issue is still one of the most challenging problems in AI today. We conceive

the currently predominant conception of representation as the source of the problem. Contrary

to what was advocated in the context of reactive systems (Brooks, 1991) there is a need for

representations all the way in the cognition-action continuum, albeit these are not necessarily

only symbolic representations. The notion of “representation” should have a broader sense, not

limited to symbolic representations but embracing them. The hypothesis of this paper is that

CBR can be used in “reactive” systems but abstracted, symbolic frame-based representations

are not sufficient at this level of the cognition-action continuum. It is simply not possible to

represent in a case base all the possible combinations of real-valued attributes, within the frame-

based representations. So, something other than symbolic representations should be used that

allow the use of actual sensory data. Throughout the paper we will discuss various attempts made

to this end.

Regarding the similarity judgment, Ram et al. (1997) use a similarity metric that maps the

environmental and robot state of the current case with their counterpart in the past cases and

computes partial matches when the discrepancy between the values of a certain attribute in the
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new and the past case is within a predefined range. The cases are hard coded and the initial case

base is manually populated, leaving the case acquisition problem unresolved.

Likhachev et al. (2002) also use behaviour schemas where a higher-level finite state automate-

based deliberative planner generates a high level plan consisting of navigational states of type

goto. Each such state is associated with a behavior assemblage that consists of a set of behavor

schemas such as MovetoGoal, and AvoidObstacles. Similar to Ram & Santamara (1993), in each

particular situation the parameters used in the schema functions needs to be adapted to the

situation. The paper however suggests a method to learn optimal behavioral parameterization

that avoids the need for manual configuration of behavioral parameters in the cases. In this way,

initial configuration of the case library can be configured automatically. The suggested learning

process can either be a separate training process or be a part of the mission execution. The role

of CBR is, similar to (Ram et al., 1997), switching between different sets of behavior schema

parameters, i.e. adaption of the parameters. Here also cases involve interpreted sensory inputs

(e.g. goal-nearby: 0 / 1) but this work includes a feature identification module that automatically

converts the sensory environmental data into an abstracted representation that is suitable for

comparison of cases. Details of this computation is presented in (Likhachev & Arkin, 2001).

Briefly, a spatial vector is computed by the feature identification submodule that takes as input

the sensor data and the goal information (i.e. position) and computes the relevant spatial features

as a traversability vector F of size k. The space around the robot is divided into a predefined k

number of angular regions and each element of F represent the degree to which the region can be

traversed. Traversability depends on sensor readings indicating crowd of obstacles in the region

and is represented as a scalar in the range between 0 and 1, for each of k regions. Each case

is represented by a traversability vector and a temporal vector. The temporal vector is also

computed by the feature identification module and has two scalar components: short-term and

long-term velocities of the robot relative to the maximum possible velocity of the robot. Similarity

measurement between the new case and a past case happens in two stages. First, similarity

along spatial dimension is measured using a weighted Euclidean distance between spatial feature

vectors. Subsequently, the best cases enter into a second similarity process, this time for temporal

match. The resultant cases are then used to adapt the behavior schema parameters.

Before we go further, a point worth to stress - which applies to most existing CBR systems

in dynamic domains - is that at this “lower level” the actions are executed in the environment,

not on actuators, but “implicitly” and via actuators The result of an action consists of a certain

speed and a direction, but it remains implicit in the paper how/whether this is issued to the

actuators. Possibly, it is not. In a sense the actuators and the environment seem to be conflated

and reduced to “body”. What kind of actions are at the actuator level has not much been the

subject matter research focus. Still, this type of CBR is at a closer level to the real reactive and

overt behavior.

To sum up, the “behavior level” CBR does not correspond to the truly lowest level in the

cognition-action continuum. This is partly because it is mainly concerned with the outcomes of

actions on the environment and on the “body”, and not on the actuators per se, and partly

because the involved representations are symbolic, fairly arbitrary abstractions of sensor data.

4.2 Robot soccer

Karol et al. (2003) select game plays in robot soccer using CBR. The new case is matched with

the past cases based on the similarity between the positions of the players and their degree of

possession of the ball, which are denoted as Field and Degree of Possessions in the problem

description part of cases. The main idea underlying the similarity of cases is that the positions

of the players should be as similar as possible meaning that more similar cases would need less

time to move all the players from the field state of the first case to the state of the second one.

To do this, the game space is divided into 30 strategical regions, each of which is given a number

and a weight indicating its strategic importance. In the Field state, each player is represented by
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the region it currently is in. Then the Field states of two cases are compared using a weighted

Euclidean metric. Similarity involving the possession of the ball is based on Degree of Possession

of players, measured as a scalar value between 0 and -3. For example, “no possession” has 0

value, “no possession but in a scrum” has value 1, and “possession by the opponent team in the

scrum” has value -2. Similarity is based on the distance between the possession values in the two

cases under consideration. The cases involve interpreted (i.e. abstracted) data; sensory data is

converted into the described higher representations on which Euclidean distance metrics are used

for similarity measurement. It is not clear though how the abstraction is done.

Gabel & Veloso (2001) use CBR to enhance the performance of the online coach in the

simulated robot soccer matches. This is a multiagent system with two teams where a coach

agent for each team selects the team player agents. The system enables the coach to decide

the team line-up using past experiences. There is a number of player types which differ from

each other in specific characters represented in terms of mostly real-valued 11 attributes such as

maximum player speed, player’s size, and inertia moment of the player. For example, the kickable

margin attribute of player types defines a circular area around the player in terms of its radius

in which the player is able to control the ball. The value of this attribute is between 0.7 and

0.9. A player type is represented as a vector of real numbers each corresponding to one of these

attributes. The problem part of a case represents each player type as such a vector and specifies

how many players in the concerned soccer match belongs to each player type. Each player suits

certain positions in a game best and the task of a coach is to decide the main strategy of the game,

such as how many players will play in each position (e.g. midfielder, defender) and to deploy each

player in its most suitable position. The coach may also make changes in the position of players

during the match. The solutions of the past cases are examples of the assignment of the players

to the regions/positions each player stayed most of the time during the match. The first part of

a solution is the main strategy which is the specification of the number of players deployed in

each position (e.g. defender or forward) in the game, for example 4-3-3. The second part of the

solution is about performance statistics of the suggested team such as ball possession time and

pass success rate as well as the score of the match. Similarity between two cases are done for

player types, more specifically the attributes that characterize them. Similarity measure is based

on a simple distance metric that normalizes the difference between the value of each attribute in

the compared cases:

SimA(vq − Vc) = (1− vq − Vc
maxA −minA

)

where A is an attribute of the player type, max and min are its maximum and minimum values

and vq and vc are the values of this attribute in the new case and the past case. respectively.

The total similarity of player types is computed through a weighted measure of the similarity

between all the attributes. The weights used in the measure are not fixed but may be changed

by a “similarity teacher” that learns how to do that through a genetic algorithm.

Solutions may be adapted through substitution of player types. The underlying mechanism

relies on the statistics in the case solutions in the case base and ensures that the player types that

are most frequently used in past cases are given priority to substitute the players to be changed.

The cases are generated from the past games’ logfiles eliminating the need for manual crafting of

the case base.

In (Ros et al., 2006) a special robot, called “captain”, decides the next actions of all the

agents and instructs them. The captain chooses next actions by comparing snapshots of the

current game with the initial state of the game play in past cases. The problem description of

a case captures the environmental states (e.g. positions of the ball, teammate robots, opponent

robots) and the game/strategy-related aspects (e.g. time and score) while the solution represents

a sequence of actions at the, for example, “turn” and “kick to the right” level. Case retrieval

is based on two mechanisms: similarity measurement and adaptability cost. A distinction is

made between controllable and uncontrollable indexing features. Positions of teammate robots
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are controllable features, while the opponents’ and the ball’s positions are uncontrollable by

the robot that makes the decision. Non-controllable features are very important in measuring

similarity between the current case and a past case while non-controllable ones are used for

computing the adaptation cost. Past cases are filtered out if the similarity along a non-controllable

feature is below a certain threshold, where different features are assigned different thresholds. The

overall degree of similarity between the new case and a past case is computed as an aggregated

function (e.g. harmonic mean) of the separate similarities along the environmental states and

the game/strategy-related aspects. Similarity between environmental states in two cases, in turn,

is computed using different similarity functions to compare different features pertinent to the

environmental state. For example, a 2D Gaussian function computes the degree of similarity

between two points, i.e. positions of teammates.

A novel characteristic of this system is the concern of adaptability during case retrieval. The

degree of adaptability reflects the correspondence between the robots described in the case and

the ones described in the problem. Adaptation-guided retrieval has been studied in mainstream

CBR, for example, in poetry generation (Dı́az-Agudo et al., 2003). Adaptability is measured in

(Ros et al., 2006) in terms of the cost of moving the teammate robots in the current situation

to the initial positions of the teammates in a past case. The idea is that teammate robots are

controllable and can be moved to adapt the current problem description to the description of a

promising past case being considered for retrieval. This is to make the current situation more

similar to a case in the case base that is similar to the new case in other respects. It is assumed

that a past case with the minimal cost of such pre-adaptation would be more effectively re-used.

Previously (Smyth & Keane, 1998) computed the cost of modifying the solution of a case in a

similar way. The difference is here it is the problem to be adapted to solve to the case while in

(Smyth & Keane, 1998) the solution is adapted.

Ros et al. (2009) explores some of the ideas envisaged in (Ros et al., 2006) as future work.

The retrieval process has three elements: The similarity regarding the teammates’ and the ball’s

positions in the two cases, the cost of pre-adaptation, and the applicability of the candidate

solution. The first two are similar to (Ros et al., 2006). The third one is new. The solution of a

case embraces a sequences of actions such as “kick”. The role of the third element is to ensure

that the ball trajectory, which the actions in the solution leads to, is free from the opponents and

that the opponents’ situation in the current case is similar to that of the considered past case.

This component involves a function called free path function that measures how free of opponents

are the trajectories the ball follows during the execution of the past case solution in the current

situation. If the the current problem includes opponents that are either on the trajectory or in

a position to reach the ball before the teammates, then the case is not a good candidate for

retrieval. Hence, the free path function simulates the solution on-line during retrieval to see how

effective it would be under current circumstances. Since the ball’s movement, for example after

a “kick” action, is not deterministic the paper uses a specific representation for the trajectory. It

represents a trajectory by means of a fuzzy set whose membership function indicates the degree

of membership of an opponent or the ball in the trajectory such that the closer their location to

the center of the trajectory, the higher their membership value. A distinguishing property of the

case description is the case scope. Precise values of the positions of the opponents and the ball on

the field may be misleading because the incoming information about the world state is uncertain.

To resolve this problem, positions of the opponents and the ball are represented as elliptic regions

with small predetermined radius centered in the position of the object. The case scope maintains

the radius values of the scopes of the opponents and the ball. The reasoning component of the

system does position-related computations accordingly. Another rationale behind representing

the positions of the opponents and the balls as regions with small radius is that it is easier for

the system to reason with qualitative locations. Qualitative information is advantageous when

generalization of similar situations are needed. As we have seen earlier in this section, it is a

common system development strategy to fall back on the abstracted/interpreted version of the
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sensory data to ensure effective similarity-related reasoning For example, in (Kerkez & Cox, 2003)

the state representation on (object1 table) and on (object2 table) is abstracted to ontable (object

2) meaning there are 2 objects on the table, because this makes case comparison much easier and

flexible. Such a generalization is needed for the type of similarity-reasoning method the system

proposed in (Ros et al., 2009) uses. As the authors maintain, “it is more general to reason about

a defender being in a region in front of the ball, rather than the defender being in position (x,

y)”. In a nut shell, Ros et al. (2009) has two important contributions to CBR applications in

nondeterministic and dynamic domains: anticipation of the applicability of a candidate soution

through simulation and the pre-adaptation, both during retrieval.

4.3 Real-time strategic games

Case-based plan recognition is another task studied in connection with interactive virtual

environments such as characters in training simulators and computer games, highly similar to

robot soccer and american football types of tasks but with a special focus on how a counter-

player’s future actions, intentions or goals can be anticipated by observing their actions like in

“mind reading”. This involves predicting the intentions and actions of the observed agent through

retrieving plan-cases form the case base. For example, Fagan & Cunningham (2003) use CBR

in “space invaders”, a strategic game, to predict other players’ actions. The states in the plans

are abstractions of the real-time data to states at the conceptual level of e.g., “safe” and “very

unsafe” while the actions are of type fire, hide, emerge.

The system stores intermediate states in the plans in form of action-state pairs instead of

actions only. That is, the case solutions maintain the states that result from the observed

actions. The approach does not require a priori case bases because cases are extracted from the

problem solving episodes. Representation of the consequences of actions in the solution facilitates

prediction of the consequences, which is useful when an action is considered as a candidate next

action. This capability of the system is crucial particularly in nondeterministic contexts. The

system can find past cases that “match a current observation at arbitrary points in a stream

of observed actions” (Kerkez & Cox, 2003). It can predict only one step ahead, contrary to

Dinerstein et al. (2005).

Dinerstein et al. (2005) describe a CBR approach for incremental prediction of another agent’s

actions in interactive virtual environments involving mixtures of synthetic agents (non-playable

characters (NPCs)) and humans. The idea is that by learning on-line through interaction with

the human the NPC becomes a better opponent when playing against synthetical agents in the

system. The NPCs predict the human players’ actions using case-based plan recognition. The

agent observes the state-action pairs employed by the human, and records each nondeterministic

mapping of a state-action pair as a case.

While many systems with interactive virtual characters involve on-line learning of high-level

behavioral guidelines from user feedback in social contexts, this work is concerned with relatively

lower level behavior and is more physically oriented. The state space itself is represented as a

real-valued, n-dimensional feature vector where n is small and the features are decided by the

designer ensuring a compact state representation. This makes the generalization easy and the

retrieval easy. Some salient features are the relative distance between an observed agent and its

nearest opponent, the velocities of the observed agent and the nearest opponent, and an angle

representing the average direction towards obstacles.

Actions are also represented as real-valued vectors. The agent predicts the other agents’ action,

and then uses this information to perform an informed tree search to plan its own actions. The

agent predicts another agent’s actions by retrieving a case given the current state, and can do

that iteratively several steps into future, so that the agent selects its actions based on non-local

information. Each time the predicted next action is used to predict the next state and this

goes on a certain number of times. In retrieval, the system uses a continuous k-nearest neighbor
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algorithm to find the k cases closest to the query state and to compute the next action through

a distance-weighted normalized sum of the actions associated to the retrieved k cases.

For a fast retrieval in this real-time complex domain the continuous state space is partitioned

by the programmer, and a set of cases are associated with each region of the space. This has been

critisized in (Hartley et al., 2005) because of low accuracy attributed to compact representation

of the state space. To resolve the speed problem, Hartley & Mehdi (2009) takes another stance

and introduces two types of features: primary and secondary features. Primary features are of

more abstract nature and they are used in a first round of retrieval while in the second round a

more elaborative similarity evaluation is performed using the secondary features with continuous

or less abstract representation of the features.

The work presented in (Aha, Molineaux, & Ponsen, 2005) investigates methods for plan

selection in WARGUS game. Example actions are “selecting a building to construct”, “researching

a specific new technology”, “setting a destination for a group”, and “assigning a task to a group”.

The main task is action selection at any moment, hence, incremental planning. The actions

comprise tactics in a strategy plan. The state space is a 128 x 128 map that involves various

units and buildings. This space is abstracted to a lattice to reduce the complexity, while a set

of actions is an abstraction of the decision space. Cases are for mapping the game situations to

the tactics. The system retrieves cases when a new situation in the state lattice is entered. Each

case represents in the problem description part 8 features that describe the situation such as the

number of opponent buildings ever created, number of own worker units currently existing, and

number of buildings currently existing. The solution of the case provides an action and a value

in [0, 1] indicating the utility of selecting this action in the current situation.

The Darmok system (Sugandh, Ontañón, & Ram, 2008) learns plans from observing a human

and reuses plans when playing new games. It puts a special emphasis on on-line adaptation of

plans. The system learns the plan cases from observing and recording the traces of the behavior

of the human player. The traces are annotated by human experts where the actions are connected

to the goals they are pursuing. The case learning module then extracts the behavior from the

annotated traces and saves them as cases. The behaviors have two components, a declarative

part and a procedural part. The declarative parts capture the goal, preconditions that must be

satisfied before the behavior can be executed and the success condition that needs to be satisfied

for the behaviour to be successful. A significant difference form the “classical” planning is that

here there is no postconditions because a behaviour is not guaranteed to success. Goals are

symbolic non-operational descriptions, may have parameters, and define the success conditions

which are predicates that can be checked to evaluate whether the goal is satisfied in any game

state. The initial goal is “win the game”. A behaviour is retrieved for this goal, which in turn, sets

up a number of subgoals. The procedural part consists of an executable code for accomplishing

the goal. A plan execution module executes the plan and marks the goals that are achieved.

A plan expansion module does then re-planning for the goals that are not yet achieved and

relies on behavior retrieval module to retrieve cases from the case base. Adaptation itself is of

two types: parameter adaptation and structural adaptation. For adaptation the system relies

on a dependency graph which is inferred from retrieved plans. Dependencies between actions

are deduced from the preconditions and the success conditions. Adaptation may be needed, for

example, when preconditions of an action are not satisfied, which triggers a new subgoal that

target the satisfaction of the preconditions. This is analogous to general problem solving in

mainstream AI such as in SOAR (Rosenbloom & Newell, 1987).

The authors argue that CBR is a better alternative for planning in real-time strategy games,

a domain characterised by nondeterminism and is not fully-observable, since the decision space

is huge, which renders a search-based planning infeasible. Although the system aims to reduce

the search, the plans, goals, actions and preconditions are represented in a way rather similar

to planning in search-based AI and involves relatively high level planning. Furthermore, the
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adaptation itself relies on a rule-based like mechanism to remove the unnecessary operations and

adding new ones into the plan.

The CBR systems reviewed in this section are applications in domains that require continuous

representations and continuous performance, such as autonomous robotic navigations. In such

applications continuous sensory-motor interaction with the environment is required because

the environment changes dynamically. Therefore, this type of applications extend the use of

CBR beyond relatively deterministic domains signalling its role in the entire cognition-action

continuum. However, the focus of the accounts reviewed in this section is not the control of the

end-effectors. The reason possibly is that the actuator are assumed to behave deterministically;

when an action is applied to an end-effector, its outcome is assumed to be certain. For example

when a certain force is applied to an arm in a certain state, its end state is presumed to be known.

This is simply a too unrealistic assumption. A large community of neuroscience researchers

investigate the motor behavior to understand the mechanism of the non-deterministic motor

behavior and the feedback mechanism underlying humans’ smooth motion. In recent years,

in addition to the applications such as robot navigation, soccer, and realtime game playing,

research efforts have appeared that employ CBR also for the lower level motor control focusing

on the end-effector control. Although the reviewed CBR applications and the effector-control

level applications have some commonalities such as the need for continuous performance and

sensorimotor feedback, they have important differences. Most notably, neuroscience-inspired

voluntary end-effector control rely on anticipatory representations of the controlled actuator.

This is, rather similar to mainstream AI planning where the outcomes of actions - in the

environment - are simulated during the action selection process. Contrary to reactive planning

accounts disfavoring representations, neuroscientists inform that the very lowest level of motor

behavior uses models of the limbs.

The CBR systems reviewed in this section provide evidence that CBR is a suitable mechanism

for action selection in dynamic and nondeterministic domains in general. Various approaches

uses different types of non-symbolic representations including continues values and vectors of

them. Most typically robot soccer, strategical games and navigation all have their main focus on

making a decision about other agents in the environment, reducing the actuators to more or less

placeholders. Therefore, these system do not prove (or defeat) CBR’s suitability at the actuator

level of actions. Shortly, we review other CBR accounts that put a special emphasis on actuator-

level CBR. However, we first elaborate some imitation-related research in various disciplines.

Imitation is important first of all from the case qrounding perspective. It is a promising candidate

for automated knowledge (i.e. “case” in CBR) acquisition which is a challenge in CBR and in

AI in general. Manual population of the initial case base is not always possible and it is not

even desirable. For example, in inverse kinematic tasks, the cases are not discrete representations

which makes manual construction of such cases impossible. We have already seen in this section

some CBR applications that eliminate manual case generation, through extraction from activity.

Imitation is particularly effective at actuator-level control.

Some of the systems reviewed in this section were examples of case extraction from activity,

for example, of opponent, human agents’ or self playing experiences. Imitation is a justified target

for AI research because it plays an important role in natural computation and intelligence.

5 Imitation in psychology, neuroscience and AI

Learning by imitation is a multi-disciplinary field of research. In developmental psychology, Piaget

(1962) describes imitation learning as an ongoing process where the infant adjusts internal

sensory-motor schemas to what it perceives in the outside world. Meltzoff & Moore (1977)

found that newborn infants are able to imitate facial gestures shortly after birth, suggesting

that imitation is an innate mechanism that combines vision and proprioception in a way that can

be used to guide the motor system of the infant. Meltzoff & Moore (1997) describe this mechanism

in a framework called active intermodal mapping (AIM) that unifies perception and action and
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is able to notice differences between observed and produced motor actions. The AIM process can

subsequently correct the erroneous motor action, guiding the infant towards the correct imitative

behaviour.

Imitation was put in a neuroscientific context when Rizzolatti et al. (1996a) discovered neurons

that were active both when observing and performing the same action, which were named

“mirror neurons”. Even though the initial discovery was in monkeys, Rizzolatti et al. (1996b)

found similar activations in human brains as well. These neurons were thus hypothesized to be

a “neural implementation” of the imitative capability (Schaal, 1999). Since the location of the

mirror neurons is close to the language areas of the brain (Broca’s area, specifically), Arbib (2002)

consider the mirror neurons crucial for our ability to develop a language. Kohler et al. (2002)

found that mirror neurons were active also when hearing the sounds of an action, not only seeing

the action being performed, i.e. the sound of cracking open a peanut elicited the same neural

activity as when seeing or opening the peanut by the monkey itself. However, only seeing the

peanut being opened without hearing the sound itself did not trigger the same activity, showing

the importance of hearing the associated sound when understanding the action performed - if

there was no sound of the opening of the peanut, the action was not perceived as successful. This

is further evidence of the importance of mirror neurons as a basis for language, i.e. a combination

of motor activity and sound perception. Gallese & Goldman (1998) link the mirror neurons to

our ability to empathize with others; mirror neurons provide the basis for identifying oneself

with another person. It has been hypothesized that the lack of this ability can identify (amongst

other symptoms) autism spectral disorder (ASD), and Williams et al. (2001) suggest that people

with ASD might suffer from a dysfunctional mirror neuron system. This idea finds support in

EEG (Oberman, Hubbard, McCleery, Altschuler, Ramachandran, & Pineda, 2005) and fMRI

(Dapretto, Davies, Pfeifer, Scott, Sigman, Bookheimer, & Iacoboni, 2005) studies. However, other

fMRI studies demonstrate a lack in direct mapping of brain activity when humans are observing

and performing the same action (Dinstein et al., 2008, 2007; Lingnau et al., 2009). A mirror

neuron as described above could still exist, but in humans these are not the only neurons active

during observation and execution of movement. The concept of a mirror neuron system in humans

analogous to the brain activity in monkeys remains controversial.

In artificial intelligence research, the imitative process has gained interest as a biologically

plausible method for transferring motor skills that can be implemented on artificial entities.

Robotics has had a special interest in this issue in recent years. Schaal (1999) considers model-

based approaches as most suitable to implement imitative behaviour in robots, consisting of

pairing an inverse model (i.e. behaviour or controller) with a forward model (i.e. predictor).

This is an established approach in the control literature (Jordan & Rumelhart, 1992), which has

also been implemented in AI architectures for imitation learning (Demiris & Khadhouri, 2006;

Wolpert, Doya, & Kawato, 2003; Tidemann & Öztürk, 2008). Wolpert et al. (1998) argue that

inverse/forward models are present in the cerebellum, leading to an architecture based on those

principles (Wolpert & Kawato, 1998). fMRI studies suggest that such an ordering is present in

the brain (Imamizu, Kuroda, Yoshioka, & Kawato, 2004). Gaussier et al. (1998) and Matarić

(2002) propose architectures for motor imitation that have predefined modules for the various

stages of sensorimotor processing, i.e. perception, recognition and action selection. There are

other approaches to imitation learning that focus on neural network architectures instead of a

modular solution. Cangelosi & Riga (2006) use a neural network to ground symbols; the student

learns the association between actions and words by imitating the actions of the teacher. Billard

& Hayes (1999) employ a recurrent associative network to connect symbols to sensory perception.

The student learns the association between labels and motor actions by imitating the teacher,

using Hebbian learning to store the knowledge.
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6 The role of representations in motor control: a neuroscience view

Humans are able to flexibly interact with a rich variety of objects in very different environments.

This can be explained by their huge repertoire of motor behaviors (Wolpert & Kawato, 1998).

Proper motor control demands the selection of the correct motor action (command) that would

cause the goal output, i.e. the desired sensory feedback. For example, when a person wants to reach

and lift a cup, the motor system decides the motor action that will achieve a smooth reaching

movement to the desired location. In control theory and neuroscience terminology, the decision

is taken by the controller. The movement should have a certain speed and timing in order not to

overshoot and to be smooth. Some parameters of the motor control are internal to the body, such

as the joint angles of the arm, masses, moment of inertia etc. Other necessary parameters relate to

the external world. For example, if the goal is to lift a cup, properties of the cup (i.e. its geometry,

shape, affordances and the content) should also be known. Wolpert & Kawato (1998) calls these

properties “context”, since these variables are outside of the motor system. The dynamics of

an arm involves both internal and contextual parameters. They further suggest that, given the

abundance of the context that the humans should cope with, the motor system should have

multiple controllers, each specialized for different types and contexts of movements. Otherwise, a

single controller would try to adapt each time it encounters a new context before it could produce

appropriate motor actions and this would produce large performance errors. Hence, Wolpert &

Kawato (1998) suggest a modular approach with several controllers. The system should then

select the controller(s) that suit best the current situation.

Controller Plant

Forward

Model

-
Goal Motor command

Prediction

Actual state

Feedback

Figure 2 The representations underlying motor control. The controller is an inverse model.

As Wolpert and Kawato maintain, “we can view the motor system as forming a loop in which

motor commands cause muscle contractions, with consequent sensory feedback which, in turn,

influence future motor commands” (Wolpert, Doya, & Kawato, 2003). Figure 2 illustrates this.

The neuroscience community has proposed that the central nervous system mimics the aspects

of the sensorimotor loop in planning, control and learning (Miall & Wolpert, 1996; Wolpert,

Doya, & Kawato, 2003). Borrowed from terminology in control theory, the neural circuits in the

central nervous system responsible for mimicking the behavior of the sensorimotor loop are called

internal models. There are two types of internal models: inverse models and forward models.

Inverse models provide the motor action/command that leads to the desired outcome (i.e. the

state of the arms). As such, they act as controllers. Forward models simulate the causal (forward)

process and predict the consequences of a motor action. They model the causal relationship

between actions and their consequences in the motor system. Forward models predict how the

motor system’s state changes when a motor action is sent to the muscles, given its current state.

Prediction is essential in the motor domain for various reasons. One reason is the delays in

the sensorimotor loop which render perceptual feedback alone insufficient in the control of fast

movements. Forward models can estimate the outcome of an action and give internal feedback

before the perceptual feedback arrives (Ito, 1984; Miall, Weir, Wolpert, & Stein, 1993). Another

reason is that by predicting the sensory outcome of a candidate action, before actually performing

it, a forward model can be used to judge the suitability of the action (Wolpert & Kawato, 1998)

and plays a crucial role in action selection. These explain partly, for example, why a person can

move her arm in the dark: she can estimate the position of her arm with some degree of accuracy.
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Neuroscience studies provide evidence that there exist multiple inverse models, learned and

switched when the context changes. In laboratory experiments (Shadmehr & Mussa-Ivaldi, 1994),

subjects used longer times to learn a motor task when they were visually perturbed, but could

swiftly re-adapt when they were back to the conditions prior to perturbation, illustrating that

the previous models were kept during perturbation and switched back to after the perturbation.

Context has been stressed as having a vital effect in motor control. Data/information from

various modalities have been used as context. For example, Wolpert et al. (2003) highlight how

the emptiness/fullness of a cup to be lifted influences the selection of motor commands. Sound

data have also been used in neuroscience to study context (Kravitz & Yaffe, 1972). These studies

suggest that subjects can switch immediately between two learned behaviors based on the context.

This means that the brain hosts different plans when the same task (e.g. “send the ball”) is

performed in different contexts (e.g. material and size of the ball) or using different actuators

or tools (use a stick or a foot) (Wolpert & Flanagan, 2001; Blakemore, Goodbody, & Wolpert,

1998). Motor plans that are suggested to be stored, for example in the cerebellum (Wolpert, C.,

& Kawato, 1998; Ito, 2008), have the same function as the planning cases.

Neurophysiological studies also provide evidence about the existence of alternative action

options in the brain. It is maintained that during this time more information is gathered that

will ease the selection process (Cisek, 2005).

The work referred to in this section argues for the existence of multiple paired inverse/forward

models in the brain, and that each of these contains motor knowledge acquired through a learning

process. When a similar situation is encountered, the most appropriate controller is selected. This

is similar to how cases (i.e. acquired knowledge) are stored in a CBR system, and how cases are

reused by retrieval of similar cases.

The architecture by (Wolpert & Kawato, 1998) described in the following section is worth

discussing for two reasons. First, this is suggested by neuroscientists to explain human imitation

and its role in motor control. Second, the architecture has been implemented in AI as a CBR

system (Tidemann & Öztürk, 2008).

7 A neuroscience architecture of learning motor control by imitation

In neuroscience terminology, voluntary movements involve “motor planning”. This planning

however is different from the mainstream AI planning in that there exist no plans comprising

several steps of action ahead, and the “plans” here are not represented symbolically. In the motor

domain, planning (read “action selection”) and plan execution are intertwined, and planning

occurs in real time and continuously, until the intended overall goal is attained. That is, motor

planning is not a one-shot process.

Briefly, as we mentioned in section 6, motor control involves selection of the motor command

(i.e. controller) at each time step that best suits the current state, the goal and the desired state

of the body, as well as the current context. The whole movement therefore involves a series of

controller selections which are called (following motor control terminology) switching of controller.
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module

.

.

.

X

X

X

action
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sum plant/limb
actual stateissued

action

Figure 3 Modules and their confidence determines the final action to be issued to the motor.
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Figure 3) illustrates an architecture suggested by neuroscientists (Wolpert & Kawato, 1998) to

explain imitation by humans. The architecture comprises a set of modules each of which captures

specific parts and characteristics of the movement. At each time step, the system selects a module

(or a small set of modules) from memory to compute the next motor command to be issued to

the involved limbs. A module is a controller, and at each time step one (or several) controller(s)

decides the next action ut. We will shortly describe how it is decided which module(s) will control

the limbs, and how the next action will be decided. Each module has three main components an

inverse model, a forward model, and a responsibility predictor (see Figure 4). The inverse model

generates an action (i.e. motor command) uit, given the current state xt and the desired state

x
′

t+1, while the forward model predicts (i.e. simulates) the next state x̂it+1 of the limbs given the

motor command uit and the current state xt.

At each time step, each module suggests an action and its judgment of its own confidence (see

Figure 3) to take the control. The final action is computed as a mixture of suggestions from the

most confident modules.

The system is context-sensitive where context models, responsibility predictor (RP) in Figure

4, represents the relationship between context signals (yi) and the modules. The scalar value of

the RP of a module in a given context is written as pit.

In addition to the prediction of the relevance on the basis of the context signal, another

predictive mechanism further elaborates the module’s relevance. This second prediction relies on

the forward model which models a limb and can compute what the next state will be, given a

motor command. The likelihood model shown in Figure 4 computes the suitability of the module

based on how well its inverse and forward models would do in the current situation, based on

the difference between the predicted and the actual states of the limb at time step t+1, i.e.

|x̂it+1 − xt+1|.
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Figure 4 A module with its three components, an inverse a forward model and a responsibility predictor.
They collectively decide the next action and how confident the module is at taking over the control in
the next time step.

The model outputs a scalar lit, by assuming the presence of Gaussian noise. The scalar quantifies

how well the forward model predicted the next state, see equation (1). If |x̂it+1 − xt+1| is small,

the likelihood value will be high.

lit =
1√

2πσ2
e−|x̂

i
t+1−xt+1|2/2σ2

(1)

The final confidence, λit, of the module is a combination of these two relevance estimations.

The simulated performance of the suggested action and the output of the responsibility predictor

(which we prefer to name the relevance predictor pit) determine the λit signal. The λit vector

describes how much a controller influences the limb. λit is calculated according to Equation (2).

λit = pitl
i
t (2)
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The ultimate motor command to be issued to the motor is computed according to Equation 3

(see also Figure 3)

ut =
∑
i

λitu
i
t (3)

In the next section we review some CBR systems applied at the level of end effectors, hence

the same level as this architecture operates on.

8 CBR at actuator level

As Hamilton & Grafton (2007) puts it, the same action may be viewed from different perspectives

and levels:

An ordinary action such as a pouring a glass of wine can be understood on many

levels. The barman will reach for and grasp the bottle, then transport it and tilt

it over the glass, carefully controlling the angle to avoid spilling. These kinematic

components each require a precisely orchestrated pattern of muscle activity guided

by proprioceptive and visual feedback. But a drinker waiting for the barman to finish

pouring would likely consider only the goal of the action to provide some refreshment

This part of the paper is closer to or at the kinematics level. Jurisica & Glasgow (1995) is

one of the early examples of rather few CBR applications at the truly low level of cognition-

action continuum where the controlled object is the actuators and cases involve non-symbolic

representations. Their TA3 system employs CBR for an inverse kinematic task where the

system computes the joint angles of the robot’s arm that would correspond to a desired state

(i.e. coordinates) of the arm. This application is different from the other CBR applications

in dynamic, real-time applications because it relates to the brain-actuator interaction. The

controlled entity is not the merged body and environment but a particular actuator which behave

nondeterministically in the sense that the results of the actions are not necessarily like anticipated.

Therefore, the control of actuators rely on feedback, which comes only with delay. The system

presented in Jurisica & Glasgow (1995) and Jurisica & Glasgow (1997) doesn’t deal with the

delayed feedback problem but it makes significant contributions regarding the use of CBR for

such a nonlinear phenomenon. The second system we will review, SHEILA, deals also with the

delayed feedback mechanism.

9 TA3

TA3 (Jurisica & Glasgow, 1997) investigate a dynamic context mechanism that allows partial

matching between the new case and a past case. It introduces a special parameter of relevance

relation the authors called “context”.

TA3 deals with a three-link robot and predicts the joint angles of the robot that will enable

the robot to reach the desired positions (i.e. the coordinates of the end effectors). An example

is welding where a robot (or human as well) needs to follow a smooth trajectory and should be

fast. Jurisica & Glasgow (1997) characterizes this as a classification task with infinite number of

classes because the results are continuous values. This is an inverse kinematics task having either

more than one solution or it may not have a known analytical solution. TA3 uses CBR for this

purpose and employs a special notion of relevance assessment. Relevance is assessed with respect

to an explicitly represented context. The underlying similarity process is different than most

systems reviewed above computing the distance between two vectors representing the current

problem and a past case, respectively. Regarding the population of the initial case base in TA3,

the first method used was to create cases distributed uniformly over the working space of the

robot. A set of special equations are used for computing the end-effector coordinates, which is a

forward kinematics task. Another set of equations are used for inverse kinematics computations,

which uses results from the first equation set. These are used to compute the solutions. The
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second method for initial population of the case base was through online learning when a robot

performs a normal task, i.e. learned by observing the process. Details of the online learning are

not elaborated, though. The authors suggest a combination of online and off-line learning of cases.

They indicate a need for further empirical study but it is not clear whether they followed up this

line of research - we were not able to find more recent literature related to this work.

Before we dwell on TA3’s details, it is important to note that this CBR account has been

employed for different tasks. In addition to robot kinematics, it is also applied, among others, in

the servo domain and for letter recognition. This illustrates that Jurǐsica and Glasgow share our

hypothesis that CBR underlies different tasks on the cognition-action continuum, although they

do not articulate this with the same emphasis as is done in this paper.

9.1 Context

Similar to other CBR systems, a case consists of a set of attribute-value pairs:

C = {< a0 : V0 >, < a1 : V1 >, ..., < An : Vn >}
where ai is an attribute name and Vi is the value of this attribute in case C. The paper

mentions that the important attributes and their characteristic values may be selected using

machine learning or knowledge mining. However, it seems that in the described work human

experts specify the attribute importance off-line.

The context defines the important attributes and how close they should be in the new and a

past case to consider them a match. Context is defined as a set of attributes, a subset of the case

attributes, with associated constraints on the attribute values:

Cxt= {< a0 : CV0 >, < a1 : CV1 >, ..., < An : CVm >}
where ai is an attribute name and CVi specifies the set of ”allowable” values for attribute ai.

Context varies across different tasks and for each domain and task, it specifies which attributes

may be ignored or be considered important. It seems that the context in TA3 is specified by the

user but other possible methods, both automated and semi-automated (i.e. with partly user

involvement), are also mentioned.

9.2 Similarity assessment

In the robot domain of TA3, a problem has six attributes containing real values: three lengths

describing robotic arms and three attributes describing a desired end-effector position while the

solution is a class with three continuous values: the three joint angles. Individual attributes of

the problem are grouped into two categories: robot parameters, and end-effector positions.

Two cases are judged to be similar when they satisfy the same context, that is when each

attribute defined in the context behaves according to the corresponding constraints in the context.

The paper defines satisfaction as the following:

sat(C, Cxt) iff ∀< ai : CVi > ∈Cxt, ∃ < ai : CVi > ∈ C | Vi ∈ CVi

9.3 Retrieval and adaptation

Input to the retrieval process is the case base, the context, and the new problem. If only few

relevant cases are retrieved or too many are retrieved using the initial context, the system modifies

the context and starts the retrieval anew.

Context can be modified through relaxation or restriction either of values or cardinalities. In

both cases the constraints of the original contexts are changed. Context modification is used

during retrieval to control which cases are considered relevant. When too few cases are retrieved

in the first round, the similarity context is relaxed. Cxt1 is called relaxation of Cxt2, denoted by

Cxt1 � Cxt2, if the following holds:

∀< ai : CVi > ∈Cxt1, ∃ < ai : CVj > ∈ Cxt2 | CVi ⊇ CVj ∧ Cxt1 6= Cxt2
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If Cxt1 is a relaxation of Cxt2 then all cases that satisfy Cxt2 also satisfy Cxt1. Context

relaxation can be implemented through either reduction or generalization where the latter

transforms the context by enlarging the set of allowable values for an attribute. Reduction means

that only a subset of the attributes of the original context need to be matched, hence reduction is

managed by reducing the number of attributes required to be matched. It is not clear in the papers

how the required context hierarchies are constructed. They may be manually generated. Context

restriction works in the opposite way of context relaxation implemented through expansion and

specialization. Expansion strengthens constraints by enlarging the number of attributes required

to match while specialization strengthens constraints by removing values from a constraint set

for an attribute, both amounts to a decreased number of cases that satisfy the resulting context.

It was maintaned that restriction of the context lead to the increase in similarity between cases.

The retrieval function is founded on an iterative retrieval driven by such context manipulations.

Hence, depending on the result of retrieval, “the system allows for manual or automatic query

modifications through context restriction or relaxation” (Jurisica & Glasgow, 1997). Precision

and recall, which are typically used in information retrieval, are used for evaluation of retrieval.

A weighted average of attribute values is computed to find the final solution, for example in

the servo domain and for inverse kinematics. This may not be possible in other domains when the

values are nonnumeric, the authors note, and sometimes specific adaptation rules may be needed

that use more domain models.

TA3 does not employ a solution adaptation in the classical sense. It merges solutions from

several cases. There is a somewhat similarity between TA3 and the CBR approach employed in

(Ros et al., 2009), which we discussed in section 4.2, in the sense that they both “adapt” the

query, the new problem through reformulating or manipulating the problem description.

10 SHEILA

SHEILA (Software for Hierarchical Extraction and Imitation of drum patterns in a Learning

Agent) is a system where the motor system is trained to produce various rhythmic patterns by

imitating a human drum player’s movements (Tidemann & Öztürk, 2008), i.e. the system acts as

a “groovy” drummer. SHEILA was tested on a simulated robot. It combines sound and movement

processing through imitation of movements that render the intended rhythmical patterns. It has

a motor planning component as well as a movement execution component. The movements that

produce a particular pattern are segmented into a set of planning cases on a self-organized basis,

and these cases are stored in the motor case base. The stored cases (i.e. patterns) can then be

reused to produce novel sequences of drum patterns. An inherent quality of the system is its

neural network representation; this makes it possible to generate novel sequences that will be

similar but not identical to the original training sequence, more on this in the following section.

Motor planning happens in a nondeterministic domain which gives a dynamic characteristic to

it; planning depends on the visual feedback. This leaves out the possibility of one-shot planning

of movements.

The underlying architecture is based on the model in neuroscience (Wolpert & Kawato, 1998)

that is described in Section 7. However, in Wolpert & Kawato (1998), the context signal is a

visual cue, while in SHEILA the context signal is some intrinsic properties pertinent to a drum

track, coding high-level structure of the track, like the ones dancers use as cues to a choreographed

dance. Hence, the context signal represents rhythmic patterns drummers play. During imitation,

the modules self-organize their learning, which leads to representation of an arm movement that

is distributed across a subset of modules. The training data consist of the current state of the

limbs, the desired next state, and the context signal. The motor system learns to generate the

next action to be issued to achieve the desired next state. The context signal is “extra help” for

the motor system, so the most appropriate modules can be chosen before the actual movement

is initiated.
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Motor control involves selection of the motor command at each time step that best suits

the current and the desired states of the body, and the context signal biases this selection.

Motor command is selected through selection of the controller(s). The whole movement, therefore,

involves a series of controller selections. Each “controller selection” involves a retrieval in CBR

terminology.

10.1 Case representation

A motor planning case captures a situation-action-consequence representation, contrary to the

situation-action structure predominant in classical CBR. Figure 5 depicts the case structure.

The problem description part consists of three vectors that specify the desired next state of the

limb, its current state, and the current context signal, respectively. States can be coordinates or

joint angles of limbs.

{[ currentState

desiredNextState

contextSignal

]
,

[ ActGenNet

ActSimulNet

CtxModel

]}

Figure 5 Case Representation in the motor domain. A case has two main components: a problem
description and a solution description. A problem description, in turn comprises three subcomponents:
current state, desired state and context signal. The solution part also embraces three elements:
ActGenNet, ActSimulNet, and CxtModel.

The case solution embraces three models, functionally linked together (see Figure 6). In

SHEILA, all three are implemented as Echo State Networks (ESNs), a novel neural network

architecture characterized by its large hidden layer and fast training algorithm (Jaeger & Haas,

2004). One of the components is the action generator (i.e. ActGenNet in Figure 6) that, given the

current and desired states, generates the next action to the motor. ActGenNet corresponds to an

Inverse model in neuroscience terminology. The second component is a context model (CxtModel)

that makes a preliminary prediction of the degree of relevance of the case in the current situation,

based on the context signal. This is the relevance predictor, similar to the responsibility predictor

in (Wolpert & Kawato, 1998).

The third component, ActSimulNet, which corresponds to a forward model in (Wolpert

& Kawato, 1998), constitutes a departure point between the conventional CBR and CBR at

the motor level. Retrieval has a peculiarity pertinent to motor control; it has an internal

(and somewhat premature) “revise-like” additional stage. As a consequence, the solution

part incorporates the “action simulation” (i.e. ActSimulNet) component. This model, through

predicting the consequences of the action (i.e. the next state of the limbs when this action is issued

to the motor system) suggested by the ActGenNet in the same case solution, enables the system

to anticipate how close the actual next state will be to the desired next state, without executing

the action (i.e. issuing the motor command). This resembles, in mainstream AI, determination

of the consequences of an action in the external world using a symbolic domain model. However,

the two simulations are radically different representation-wise. ActSimulNet is not a symbolic

representation and it models the body/actuators, rather than the environment.

A case does not represent a whole movement and, in that sense, is not similar to a case

representing a whole “summer vacation in New Delhi in August 98” episode. This is because

the unit of representation that can be useful and can be re-used is not at the “summer

vacation” level, but is at the much more fine-grained and “movement characteristics” level. In

this respect SHEILA and TA3 (Jurisica & Glasgow (1997)) are similar; their case representations

heavily involve continues values. They are similar also because they rely on the notion of

context-sensitivity in the similarity measurement and retrieval. However, they radically differ

in the way they define the context, the change/switch of context and its particular role in the
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Figure 6 Similarity judgment underlying retrieval in motor control.

similarity/retrieval process, albeit context changes much more dynamically in SHEILA and it is

not manually defined but extracted from the sound data, i.e. the context signal is data driven.

The nature of the self-organizational approach that is employed in SHEILA yields a system that

dynamically defines context signals and the creation of cases. This is an obvious feature for a

system that implements an imitative capability; the ability to learn unknown movements by

imitating them.

According to Wolpert & Kawato (1998), re-usable memories in the motor subsystem are not

comprised of a single generic function that can produce the required action in all situations, but

represented through multiple networks.

10.2 Retrieval of movement cases

In classical CBR, relevance is measured by similarity, typically between the problem descriptions

of the new and a past case, using various similarity metrics. In SHEILA’s CBR account,

relevance is measured through two factors: (i) context similarity, and (ii) predicted (i.e. simulated)

performance of the case. Each case evaluates its own similarity/confidence at the current time step

on the basis of how good its context model matches the current context and the prediction made

by the ActSimulNet of how well the action generated by the ActGenNet performs in controlling

the limbs. The cases with the best combination of contextual similarity and predicted performance

are assigned high relevance.

Figure 6 illustrates how the three models represented in a case solution are involved

in the similarity judgment process during retrieval. The underlying similarity measurement

algorithmically shown in Figure 7. The first component, Sim1, refers to the similarity between

the current context and the context of casei in the case base, while the second component, Sim2

represents the predicted performance of the couple of ActGenNet and ActSimulNet.

1. Sim1 = sim(contextnew, contextcasei)

2. Sim2 = sim(predicted−next−state, actual−state)

3. Sim (casenew, casei) = f(Sim1, Sim2)

Figure 7 The algorithm of similarity judgement.

The following two sections describe the two components of this similarity judgment process.

10.2.1 Contextual Similarity
Context signal is part of the mechanism behind the relevant judgment of cases. The context model,

CxtModel, reveals how much the current context signal coheres with the context representation

of the past case under consideration. The motor commands issued to an arm in order to lift a

heavy hard-cover book and a paper-back pocket book are different. Humans can, based on their

understanding of the object they intend to interact with, flexibly prepare their motor commands.
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A CxtModel is a predictor. It uses context information to predict how well the case may control

the limbs - that is, how well the action provided by the case solution can do in the current context.

This is depicted as Sim1 in figure 6 and 7. In situations where the current state is ambiguous, the

context information helps the architecture choose the best case without having to try out several

case solutions, and converge towards the correct one. This leads to increased performance, since

non-optimal cases need not be considered for controlling the limb. The output of the CxtModel

is a scalar measuring contextual similarity, hence Sim1 (see Figure 6). Sim1 may be calculated

as explained in Section 10, similar to the way the relevance predictor (or responsibility predictor

in Wolpert’s terms) computes pit.

10.2.2 Predicted performance relevance
The ActSimGen predicts the next state of the system when/if the casei takes the control, based

on the current state and the output action from its paired ActGenNet. Based on a prediction

of next state and the actual state of the limbs, the system calculates a predicted performance

of the couple of ActGenNet and ActSimulGen. Higher performance estimation (i.e. Sim2 in

figures 7 and 6) indicates higher similarity between this case and the current case. This similarity

judgment, hence, involves a simulation of the case solution, without the action suggested by the

case necessarily being executed.

10.2.3 Overall similarity
Each case computes its own overall relevance/similarity, Sim. It is the function (i.e. f) in figures 7

and 6, and corresponds to λit in Figure 4. It may be computed using Equation (2) in SHEILA. Sim

represents how much control the case should exert over the robot. It is a combination of a prior

prediction of how well the module performs (i.e. output of the CxtModel, Sim1) and “posterior”

knowledge of how well the ActSimulGen and ActGenNet perform together (represented by Sim2).

In this account of CBR, the solution of a case is simulated to find out how good the suggested

action is. In SHEILA experiments, only a few modules contributed significantly at each time

step. The final action (i.e. the motor command represented as a vector) is computed based on

the actions suggested by the relevant cases and in proportion with their relevance. This may be

done as in SHEILA (see Equation (3). The final action computed in this way is sent to the motor

system for execution.

10.3 Reuse

In “reuse”, solutions of these cases (if more than one with λ value higher than a certain threshold)

are fused on the basis of their λ values that serve as weights indicating the confidence (or

relevance) of each case.

A weighted fusion of actions suggested by retrieved cases is performed where the involved cases

influence the computation of the resultant motor command based on the degree to which they are

confident in their match with the current situation (Equation 3). This would provide a resultant

vector representing the λ-weighted motor commands (which were suggested by the cases). In

SHEILA experiments (Tidemann & Öztürk, 2008), only a few modules seem to contribute

significantly at each time step.

These weighted motor commands are summed and applied to the robot (Equation 3) . Hence,

modules that make good predictions will have more influence over the robot than modules with

bad predictions. This is how the architecture implements switching of control between modules.

In this way the architecture allows for multiple modules to collaborate to control the robot,

through a fusion of actions suggested by a set of relevant/confident planning cases.

The action generated in this way, is adjusted according to the perceived performance error

feedback (i.e. the discrepancy between the perceived and intended states in the previous time

step). The resultant action (i.e. motor command) is subsequently adjusted on the basis of available

sensory feedback. Thus, reuse is characterized by (a) fusion of relevant planning cases, if there
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are more than one case, (b) adapting/correcting the computed action, if necessary. These will

now be explained.

Plan retrieval and plan reuse are not two sequential processes; planning is incremental and

consequently, retrieval and adaptation are intertwined. At each time step a planning case (or

multiple cases, if more than one collaborate) is retrieved. The planning case provides the next

motor command to be issued. If necessary, the motor command is adapted before being actuated.

Consequently, plan adaptation/correction also is an incremental process, whereby not a complete

plan is adapted ahead of execution, but an action in the plan is adapted at each time step,

immediately before it is issued to the plan executor.

The retrieved case(s) may not perfectly match the current situation. In addition, in an

embodied setting, perturbations and noise are likely to occur. Therefore, an on-line correction

ability is crucial for good performance of the robot. This is similar to the functionality of the

human cerebellum (Kandel et al., 2000); the cerebellum receives signals about the current state,

the desired next state and the motor commands about to be issued to the muscles. The cerebellum

then detects discrepancies between the desired next state and the consequences of applying the

motor commands given the current state, and makes a last-minute adjustment before the motor

commands are propagated down the spinal cord. If the action computed by the CBR mechanism

does not fulfill the intended goal, the action is corrected before being sent to the robot. Hence, here

are three sources of the need for adaptation: (i) the plan does not suit the current situation well,

(ii) the environment can be modified between two time steps, or (iii) the body part (i.e, effector)

can be perturbed. The latter two will lead to higher performance error - notice the difference

between prediction error (which was used in confidence calculation) and the performance error.

Performance error may be compensated by online adaptation in the reuse stage, also called online

correction in the motor domain, an optional process that ensures stability.

10.4 Retain

Retain takes place during learning. More than one module can learn and how much each inverse

and forward module would learn is determined on the basis of how well, relative to other cases,

it already does in the current situation. Those that are doing best are encouraged to refine

their representation even more. In the SHEILA implementation, the inverse and forward models,

implemented as ESNs, learn through updating the weights in the output layer. The learning rule

of the forward model involves the prediction error, the discrepancy between the actual next state

and the next state that the model itself had predicted. The inverse model, on the other hand,

learns using the discrepancy between the actual motor action and the motor command that the

model itself had suggested. In general, only a small subset of cases truly learn at each step. In

this way, the system self-organizes representation and the learning of cases.

Now we will draw the commonalities between the CBR applications in the real-time, dynamic

nondeterministic domains and point to the characteristics of the tasks peculiar to the lower levels

of cognition-action continuum and discuss how CBR is revised to tackle the action selection and

planning at the motor level.

11 Discussion

A common property of classical CBR applications are the symbolic, conceptual representations.

We suggest that the constraints on the format and the content of cases need to be revised. This

is also in line with recent attempts with regard to the revision of the notion of “representation”.

For example, to broaden the scope of “representation”, Markman & Dietrich (2000) introduce

“transitional representations”, which are examples of non-conceptual, non-symbolic representa-

tions. An episodic memory triggered by a rare scent may be different from a physician’s memory

by a patient’s complaint about red spots on their skin but they may be similar in principal,

regarding the activation process. An assumption of classical CBR seems to be that translation

of a perceptual input to a conceptual form is required before CBR can be applied. This may
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not necessarily be the case. It may be possible that a scent, without a language-like attribution

may activate a past memory in which the same scent was perceived. Obviously, indexing and

representation of such an experience will be anything but in terms of concepts. We suggest,

therefore, to relax the constraint that cases can involve (only) symbolic representations.

Non-symbolic cases in most of the systems reviewed in this paper qualifies as representations,

since they are enduring, although they may be outside the scope of the traditional, symbolic

definition of representation. Our notion of representation is in line with the effort in (Markman

& Dietrich, 2000) which lay down some criteria for representationship.

The genuine mechanism of CBR is shared by various planning task both where cases involve

symbolic and nonsymbolic representations, aligning with the hypothesis that both are managed

by the same functional neural circuit despite three facts: 1) plans are represented differently

in the classical and the new CBR, 2) the plans do not involve only the characteristics and

the states of the external world in the revised CBR, but also that of actuators, 3) the target

of planning changes along the cognition-action continuum and as the target gets closer to the

actuators, the involved representations moves from symbolic to non-symbolic representations.

The reviewed systems reveal that learning cases on-line is a natural part of CBR systems at

lower levels (Sugandh et al., 2008; Gabel & Veloso, 2001; Karol et al. (2003)); imitation, learning

by observation, recording and then annotation of cases by human experts all constitute a step

toward solution of case grounding problem.

When nondeterminism is concerned, prediction becomes an integral part of planning along the

entire cognition-action scope. In actuator level, prediction is facilitated by the “forward models” of

the actuators (Tidemann & Öztürk, 2008) which were part of the case representation. Prediction

enabled better estimation of the relevance of various cases and decreased the need and reduce the

scope of adaption. In slightly higher levels but still lower side of the cognition-action continuum,

case solutions either directly represent action-consequence couples (Kerkez & Cox, 2003), or

outcome of replaying a retrieved solution is predicted by executing an anticipatory function (Ros

et al., 2009 ). All these minimize the need for adaptation of the retrieved solution. Yet another

way is to do pre-adaptation as a way to evaluate the fitness of a candidate case, as has been done

in (Jurisica & Glasgow, 1997; Ros et al., 2009). The second way is to use predictive models (e.g.

forward models in Tidemann & Öztürk, 2008) to better estimate the relevance of various cases

and to decrease the need and reduce the scope of adaption.

Although far from proving our hypotheses that CBR may unify symbolic and subsymbolic AI

through its applicability on the broad scope of cognition and action, the systems we reviewed in

this paper and the common characteristics we have inferred would provide enough motivation for

further pursuit of this line of research.
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Lee-Urban, S., & Muñoz-Avila, H. (2009). Adaptation versus retrieval trade-off revisited: An

analysis of boundary conditions. In ICCBR, (pp. 180–194).

Likhachev, M., & Arkin, R. C. (2001). Spatio-temporal case-based reasoning for behavioral

selection. In Proceedings of the 2001 IEEE International Conference on Robotics and

Automation, (pp. 1627–1634).

Likhachev, M., Kaess, M., & Arkin, R. C. (2002). Learning behavioral parameterization using

spatio-temporal case-based reasoning. In In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), (pp. 1282–1289).

Lingnau, A., Gesierich, B., & Caramazza, A. (2009). Asymmetric fMRI adaptation reveals no

evidence for mirror neurons in humans. Proceedings of the National Academy of Sciences,

106 (24), 9925–9930.

Lopez, B., & Plaza, E. (1993). Case-based planning for medical diagnosis. In Proceedings of the

7th international symposium on methodologies for intelligent systems (ISMIS’93), (pp. 96–105).

Markman, A. B., & Dietrich, E. (2000). In defense of representation. Cognitive Psychology , 40 ,

138–171.

Massie, S., Wiratunga, N., Donati, A., & Vicari, E. (2007). From anomaly reports to cases. In

7th International CBR Conference (ICCBR’07), Springer , (pp. 359–373).
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Veloso, M. M., Muñoz Avila, H., & Bergmann, R. (1996). Case-based planning: Selected methods

and systems. AI Communicatioons., 9 (3), 128–137.

Williams, J., Whiten, A., Suddendorf, T., & Perrett, D. (2001). Imitation, mirror neurons and

autism. Neuroscience and Biobehavioral Reviews, 25 (4), 287–295.

Wolpert, D. M., C., M. R., & Kawato, M. (1998). Internal models in the cerebellum. Trends in

Cognitive Science, 2 .

Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor

control and social interaction. Philosophical Transactions: Biological Sciences, 358 (1431), 593–

602.

Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current biology , 11 (18), 729–732.

Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor

control. Neural Networks., 11 (7-8), 1317–1329.

Zimmermann-Schlatter, A., Schuster, C., Puhan, M. A., Siekierka, E., & Steurer, J. (2008).

Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. Journal of

NeuroEngineering and Rehabilitation, 5 (8), 8–18.

30


