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Estimating Divergence Functionals and the
Likelihood Ratio by Convex Risk Minimization
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Abstract—We develop and analyze� -estimation methods for di-
vergence functionals and the likelihood ratios of two probability
distributions. Our method is based on a nonasymptotic variational
characterization of � -divergences, which allows the problem of es-
timating divergences to be tackled via convex empirical risk op-
timization. The resulting estimators are simple to implement, re-
quiring only the solution of standard convex programs. We present
an analysis of consistency and convergence for these estimators.
Given conditions only on the ratios of densities, we show that our
estimators can achieve optimal minimax rates for the likelihood
ratio and the divergence functionals in certain regimes. We derive
an efficient optimization algorithm for computing our estimates,
and illustrate their convergence behavior and practical viability by
simulations.

Index Terms—Convex optimization, density ratio estimation, di-
vergence estimation, Kullback-Leibler (KL) divergence, -diver-
gence, M-estimation, reproducing kernel Hilbert space (RKHS),
surrogate loss functions.

I. INTRODUCTION

D IVERGENCES (or pseudodistances) based on likelihood
ratios between pairs of multivariate probability distribu-

tion densities play a central role in information theory and sta-
tistics. For instance, in the asymptotic analysis of hypothesis
testing, the Kullback-Leibler (KL) and Chernoff divergences
control the decay rates of error probabilities (e.g., see Stein’s
lemma [8] and its variants). As a particular case of the KL di-
vergence, the mutual information specifies capacities in channel
coding and data compression [8]. In statistical machine learning
and signal processing, divergences between probability distribu-
tions are frequently exploited as metrics to be optimized, such
as in independent component analysis [7] and decentralized de-
tection [30].

In all of these settings, an important problem is that of diver-
gence estimation: how to estimate the divergence between two
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multivariate probability distributions, say and , based on a
set of samples from each distribution? A canonical example is
estimation of the KL divergence from samples. This problem
includes as a special case the problem of estimating the mu-
tual information, corresponding to the KL divergence between
a joint distribution and the product of its marginals, as well as
the problem of estimating the Shannon entropy of a distribution

, which is related to the KL divergence between and the uni-
form distribution. Several researchers have studied the problem
of Shannon entropy estimation [10], [14], [11] based on various
types of nonparametric techniques. Somewhat more generally,
the problem of estimating an integral functional of a single den-
sity has been studied extensively, dating back to early work [13],
[18] from the 1970’s, and continuing on in later research [2],
[3], [17]. More recent work by Wang et al. [34] has developed
algorithms for estimating the KL divergence between a pair of
continuous distributions and , based on building data-de-
pendent partitions of equivalent (empirical) -measure. Wang
et al. [35] also proposed an interesting nonparametric estimator
of the KL divergence using a nearest neighbor technique. Both
estimators were empirically shown to outperform direct plug-in
methods, but no theoretical results on convergence rates were
provided.

In this paper, we propose methods for estimating divergence
functionals as well as likelihood density ratios based on simple

-estimators. Although our primary interest is the KL diver-
gence, our methodology is more broadly applicable to the class
of Ali-Silvey distances, also known as -divergences [1], [9].
Any divergence in this family, to be defined more formally in
the sequel, is of the form , where

is a convex function of the likelihood ratio .
Our estimation method is motivated by a nonasymptotic char-

acterization of -divergences, arising independently in the work
of several authors [6], [15], [20], [23]. Roughly speaking, the
main theorem in [23] states that there is a correspondence be-
tween the family of -divergences and a family of losses such
that the minimum risk is equal to the negative of the diver-
gence. In other words, any negative -divergence can serve as a
lower bound for a risk minimization problem. This correspon-
dence provides a variational characterization of divergences, by
which the divergence can be expressed as the max-
imum of a Bayes decision problem involving two hypotheses
and . In this way, as we show in this paper, estimating the di-
vergence has an equivalent reformulation as solving
a certain Bayes decision problem. This reformulation leads to

1It is also worth noting that, in addition to variational characterization just de-
scribed, there are also other decision-theoretic interpretations for � -divergences.
See, for instance, [19] and references therein for a treatment of � -divergences
from this viewpoint.
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an -estimation procedure, in which the divergence is esti-
mated by solving the convex program defined by the Bayes de-
cision problem. This approach not only leads to an -estima-
tion procedure for the divergence but also for the likelihood ratio

.1

Oursecondcontribution is toanalyze theconvergenceandcon-
sistency properties of our estimators, under certain assumptions
on the permitted class of density ratios, or logarithms of density
ratios. The analysis makesuseof some known results in empirical
process theory for nonparametric density estimation [31], [33].
The key technical condition is the continuity of the suprema of
two empirical processes, induced by the and distributions,
respectively, with respect to a metric defined on the class of per-
mitted functions. This metric arises as a surrogate lower bound
of a Bregman divergence defined on a pair of density ratios. If
is a smooth function class with smoothness parameter ,
it can be shown that our estimates of the likelihood ratio and the
KL divergence are both optimal in the minimax sense with the
rate and , respectively.

Our third contribution is to provide an efficient implemen-
tation of one version of our estimator, in which the function
class is approximated by a reproducing kernel Hilbert space
(RKHS) [25]. After computing the convex dual, the estimator
can be implemented by solving a simple convex program in-
volving only the Gram matrix defined by the kernel associated
with the RKHS. Our method thus inherits the simplicity of other
kernel-based methods used in statistical machine learning [26],
[27]. We illustrate the empirical behavior of our estimator on
various instances of KL divergence estimation.

There have been several recent work that utilize the variational
representationof -divergences inanumberof statisticalapplica-
tions, including estimation, testing methods based on minimum

-divergence procedures [6], [16], and novelty detection [28].
Broniatowski [5] also considered a related and somewhat sim-
pler estimation problem of the KL based on an i.i.d.
sample with unknown probability distribution .

The remainder of this paper is organized as follows. In
Section II, we provide the variational characterization of

-divergences in general, and KL divergence in particular.
We then develop an -estimator for the KL divergence and
the likelihood ratio. Section III is devoted to the analysis
of consistency and convergence rates of these estimators. In
Section IV, we develop an efficient kernel-based method for
computing our -estimates, and provide simulation results
demonstrating their performance. In Section V, we discuss
our estimation method and its analysis in a more general light,
encompassing a broader class of -divergences. We conclude
in Section VI.

Notation: For convenience of the reader, we summarize some
notation to be used throughout the paper. Given a probability
distribution and random variable measurable with respect
to , we use to denote the expectation of under .
When is absolutely continuous with respect to Lebesgue mea-
sure, say with density , this integral is equivalent to the usual
Lebesgue integral . Given sam-
ples from , the empirical distribution is
given by , corresponding to a sum of delta
functions centered at the data points. We use as a conve-
nient shorthand for the empirical expectation .

II. -ESTIMATORS FOR KL DIVERGENCE

AND THE DENSITY RATIO

We begin by defining -divergences, and describing a vari-
ational characterization in terms of a Bayes decision problem.
We then exploit this variational characterization to develop an

-estimator.

A. Variational Characterization of -Divergence

Consider two probability distributions and , with abso-
lutely continuous with respect to . Assume moreover that both
distributions are absolutely continuous with respect to Lebesgue
measure , with densities and , respectively, on some com-
pact domain . The KL divergence between and is
defined by the integral

(1)

This divergence is a special case of a broader class of diver-
gences known as Ali-Silvey distances or -divergences [9], [1],
which take the form

(2)

where is a convex and lower semicontinuous (l.s.c.)
function. Different choices of result in a variety of divergences
that play important roles in information theory and statistics, in-
cluding not only the KL divergence (1) but also the total vari-
ational distance, the Hellinger distance, and so on; see [29] for
further examples.

We begin by stating and proving a variational representation
for the divergence . In order to do so, we require some basic
definitions from convex analysis [24], [12]. The subdifferential

of the convex function at a point is the set

(3)

As a special case, if is differentiable at , then
. The function is the conjugate dual function asso-

ciated with , defined as

(4)

With these definitions, we have the following.

Lemma 1: For any class of functions mapping from to
, we have the lower bound

(5)

Equality holds if and only if the subdifferential con-
tains an element of .

Proof: Since is convex and l.s.c., Fenchel convex duality
[24] guarantees that we can write in terms of its conjugate
dual as . Consequently, we have
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where the supremum in the first two equalities is taken over
all measurable functions . It is simple to see that
equality in the supremum is attained at a function such that

where and are evaluated at any .
By convex duality, this is true if for any

.

B. -Estimators for the KL Divergence and Likelihood Ratio

We now describe how the variational representation (5) spe-
cializes to an -estimator for the KL divergence. As a partic-
ular -divergence, the KL divergence is induced by the convex
function

.
(6)

A short calculation shows that the conjugate dual takes the form

and
otherwise

(7)

As a consequence of Lemma 1, we obtain the following repre-
sentation of the KL divergence:

. After the substitution , this can be
written as

(8)

for which the supremum is attained at .
We now take a statistical perspective on the variational

problem (8), where we assume that the distributions and are
unknown. We suppose that we are given independent and iden-
tically distributed (i.i.d.) samples, say
drawn i.i.d. from , and drawn i.i.d.
from . Denote by the empirical distribution defined
by the samples , given explicitly by

, with the empirical distribution
associated with defined analogously. We
consider two classes of estimators.

Estimator E1: Given the empirical distributions, we consider
the estimator obtained by replacing the true distributions and

with their empirical versions, and maximizing over some pre-
specified class of functions , as follows:

(9a)

(9b)

Assuming that is a convex set of functions, the implemen-
tation of the estimator requires solving a convex optimization
problem, albeit over an (infinite-dimensional) function space.
For this estimation method to work, several conditions on are
required. First, so as to control approximation error, it is natural
to require that is sufficiently rich so as to contain the true like-
lihood ratio in the sense of KL divergence, i.e., there is some

such that a.e. On the other hand, should not be
too large, so that estimation is possible. To formalize this con-
dition, let be a measure of complexity for , where is a
nonnegative functional and . Given some fixed finite
constant , we then define

(10)

Estimator E2: In practice, the “true” is not known, and,
hence, it is not clear as a practical matter how to choose the fixed

defining estimator E1. Thus we also consider an approach
that involves an explicit penalty . In this approach, let

(11)

The estimation procedure involves solving the following
program:

(12)

(13)

where is a regularization parameter.
As we discuss in Section IV, for function classes defined by

reproducing kernel Hilbert spaces, (9a) and (12) can actually
be posed as a finite-dimensional convex programs (in dimen-
sions), and solved efficiently by standard methods. In addition
to the estimate of the KL divergence, if the supremum is
attained at , then is an -estimator of the density ratio

.
In the next section, we present results regarding the consis-

tency and convergence rates of both estimators. While these
methods have similar convergence behavior, estimator E1 is
somewhat simpler to analyze and admits weaker conditions
for consistency. On the other hands, estimator E2 seems more
practical. Details of algorithmic derivations for estimator E2
are described in Section IV.

III. CONSISTENCY AND CONVERGENCE RATE ANALYSIS

For the KL divergence functional, the difference
is a natural performance measure. For estimating

the density ratio function, this difference can also be used,
although more direct metrics are customarily preferred. In our
analysis, we view as a density function with respect
to measure, and adopt the (generalized) Hellinger distance
as a performance measure for estimating the likelihood ratio
function

(14)

A. Consistency of Estimator E1

Our analysis of consistency relies on tools from empirical
process theory. Let us briefly review the notion of the metric en-
tropy of function classes (see, e.g., [33] for further background).
For any and distribution function , define the empirical

metric

and let denote the metric space defined by this distance.
For any fixed , a covering for function class using the
metric is a collection of functions which allow to be
covered using balls of radius centered at these func-
tions. Letting be the smallest cardinality of such
a covering, then is called
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the entropy for using the metric. A related notion is en-
tropy with bracketing. Let be the smallest value

for which there exist pairs of functions such
that , and such that for each there
is a such that . Then

is called the entropy with bracketing of .
Define the envelope functions

and

(15)

For the estimator E1, we impose the following assumptions
on the distributions and the function class .

Assumptions:
A) The KL divergence is bounded: .
B) There is some such that almost surely (a.s.).
In the following theorem, the almost sure statement can be

taken with respect to either or since they share the same
support.

Theorem 1: Suppose that assumptions (A) and (B) hold.
a) Assume the envelope conditions

(16a)

(16b)

and suppose that for all there holds

(17a)

(17b)

Then, , and .
b) Suppose only that (16a) and (17a) hold, and

(18)

Then .
To provide intuition for the conditions of Theorem 1, note

that the envelope condition (16a) is relatively mild, satisfied (for
instance) if is uniformly bounded from above. On the other
hand, the envelope condition (16b) is much more stringent. Due
to the logarithm, this can be satisfied if all functions in are
bounded from both above and below. However, as we see in
part (b), we do not require boundedness from below; to ensure
Hellinger consistency we can drop both the envelope condition
(16b) and the entropy condition (17b), replacing them with the
milder entropy condition (18).

It is worth noting that both (17a) and (18) can be deduced
from the following single condition: for all , the bracketing
entropy satisfies

(19)

Indeed, given (16a) and by the law of large numbers, (19) di-
rectly implies (17a). To establish (18), note that by a Taylor ex-
pansion, we have

so that .
Since , we have . In addition,

. By the law of large
numbers, the metric entropy is bounded in
probability, so that (18) holds.

In practice, the entropy conditions are satisfied by a variety
of function classes. Examples include various types of repro-
ducing kernel Hilbert spaces [25], as described in more detail in
Section IV, as well as the Sobolev classes, which we describe
in the following example.

Example 1 (Sobolev classes): Let be a
-dimensional multi-index, where all are natural numbers.

Given a vector , define and
. For a suitably differentiable function , let denote

the multivariate differential operator

(20)

and define the norm .
With this notation, we define the norm

(21)

and the Sobolev space of functions with finite
-norm. Suppose that the domain is a compact

subset of . Let the complexity measure be the Sobolev
norm—that is, . With this choice of com-
plexity measure, it is known [4] that the function class defined
in (10) satisfies, for any , the metric entropy bound

(22)

for all smoothness indices . As a result, both (19) and
(17b) hold if, for instance, is restricted to a subset of smooth
functions that are bounded from above, and is bounded from
below.

B. Proof of Theorem 1

We now turn to the proof of Theorem 1, beginning with part
(a). Define the following quantities associated with the function
class :

(23)

(24)

The quantity is the approximation error, which measures the
bias incurred by limiting the optimization to the class . The
term is the estimation error associated with the class . Our
focus in this paper is the statistical problem associated with the
estimation error , and thus we have imposed assumption (B),
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which implies that the approximation error . More-
over, from (8) and (9b), straightforward algebra yields that

(25)

Accordingly, the remainder of the proof is devoted to analysis
of the estimation error .

In order to analyze , define the following processes:

(26)

(27)

Note that we have

(28)

Note that the quantity is the difference between an
empirical and a population expectation. Let us verify that the
conditions for the strong law of large numbers (SLN) apply.
Using the inequality

due to Csiszár (cf. [10]), it follows that is integrable.
In addition, the function is integrable, since

. Thus, the SLN applies, and we conclude that
. By applying Theorem 5 from the Appendix, we

conclude that . From the decomposition in (28), we
conclude that , so that .

To establish Hellinger consistency of the likelihood ratio, we
require the following lemma, whose proof is in the Appendix.

Lemma 2: Defining the “distance”

the following statements hold:
i) For any , we have .

ii) For the estimate defined in (9a), we have
.

The Hellinger consistency of Theorem 1(a)
is an immediate consequence of this lemma.

Turning now to Theorem 1 (b), we require a more refined
lemma relating the Hellinger distance to suprema of empirical
processes.

Lemma 3: If is an estimate of , then

(29)

See the Appendix for the proof of this claim. To complete the
proof of Theorem 1, define .
Due to Lemma 3 and standard results from empirical process

theory (see the Appendix, Theorem 5) it is sufficient to prove
that . To establish this claim, note that

where the last inequality (a) is due to envelope condition (16a).

C. Convergence Rates

In this section, we describe convergence rates for both esti-
mator E1 and estimator E2. The key technical tool that we use
to analyze the convergence rate for the likelihood ratio estimate
is Lemma 3, used previously in the proof of Theorem 1. This
lemma bounds the Hellinger distance in terms of the
suprema of two empirical processes with respect to and . In
a nutshell, the suprema of these two empirical processes can be
bounded from above in terms of the Hellinger distance, which
allows us to obtain the rates at which the Hellinger distance goes
to zero.

1) Convergence Rates for Estimator E1: In order to charac-
terize convergence rates for the estimator E1, we require one of
the following two conditions:2

(30a)

(30b)

We also require the following assumption on function class
: for some constant , there

holds for any

(31)

Combining this metric entropy decay rate with (30a), we deduce
that for , the bracketing entropy satisfies

(32)

With these definitions, we can now state a result characterizing
the convergence rate of estimator E1, where the notation
means “bounded in probability” with respect to measure.

Theorem 2 (Convergence rates for estimator E1):
a) If (30a) and (31) hold, then

.
b) If (30b) and (31) hold, then

.

Remarks: In order to gain intuition for the convergence rate
in part (a), it can be instructive to compare to the minimax rate

2Such conditions are needed only to obtain concrete and simple convergence
rates. Note that for consistency we did not need these conditions. In practice,
our estimators are applicable regardless of whether or not the boundedness con-
ditions hold.
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where the supremum is taken over all pairs such that
. As a concrete example, if we take as the Sobolev

family from Example 1, and if (30b) holds, then the minimax
rate is , where (see the
Appendix). Thus, we see that for the Sobolev classes, the es-
timator E1 achieves the minimax rate for estimating the likeli-
hood ratio in Hellinger distance. In addition, the rate for
the divergence estimate is also optimal.

2) Convergence Rates for Estimator E2: We now turn to a
discussion of the convergence rates of estimator E2. To analyze
this estimator, we assume that

(33)

and moreover we assume that the true likelihood ratio —but
not necessarily all of —is bounded from above and below:

(34)

We also assume that the sup-norm over is Lipschitz with re-
spect to the penalty measure , meaning that there is a con-
stant such that for each , we have

(35)

Finally, we assume that the bracketing entropy of satisfies, for
some

(36)

Given these assumptions, we then state the following conver-
gence rate result for the estimator E2.

Theorem 3:
a) Suppose that assumptions (33) through (36) hold, and that

the regularization parameter is chosen such that

Then under , we have

(37)

b) Suppose that in addition to assumptions (33) through (36),
there holds . Then we have

(38)

Remarks: Note that with the choice
and the special case of as the Sobolev space (see
Example 1), estimator E2 again achieves the minimax rate for
estimating the density ratio in Hellinger distance.

D. Proof of Convergence Theorems

In this section we present a proof of Theorem 3. The proof of
Theorem 2 is similar in spirit, and is provided in the Appendix.
The key to our analysis of the convergence rate of estimator E2
is the following lemma, which can be viewed as the counterpart
of Lemma 3.

Lemma 4: If is an estimate of using (12), then:

(39)

See the Appendix for the proof of this lemma. Equipped with
this auxiliary result, we can now prove Theorem 3(a). Define

, and let . Since is a
Lipschitz function of , (34) and (36) imply that

(40)

Applying [31, Lemma 5.14 ] using the distance
, we have that the following statement holds under

, and hence holds under as well, since is bounded
from above

(41)

where

(42)

(43)

In the same vein, we obtain that under ,

(44)

Now using (35), it can be verified that

Combining Lemma 4 and (44) and (41), we conclude that

(45)

From this point, the proof involves simple algebraic manipu-
lation of (45). To simplify notation, let

, and . We break the analysis into four cases,
depending on the behavior of and .

Case A: In this case, we assume
and . From (45), we have either

or

These conditions imply, respectively, either

or
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In either case, we conclude the proof by setting
.

Case B: In this case, we assume that
and . From (45), we have either

or

These conditions imply, respectively, that

and

or

and

In either case, the proof is concluded by setting
.

Case C: In this case, we assume that
and . From (45), we have

which implies that and
. Consequently, by setting

, we obtain

and

Case D: In this final case, we assume that
and , and the claim of Theorem 3(a)

follows.
We now proceed to the proof of Theorem 3(b). Note that part

(a) and (35) imply that . Without loss
of generality, assume that and for
all . Then we have

Also

We have by the central limit theorem.
To bound , we apply a modulus of continuity result on the
suprema of empirical processes with respect to function and

, where is restricted to smooth functions bounded from
below (by ) and above (by ). As a result, the bracketing en-
tropy for both function classes and has the same order

as given in (36). Apply [31, Lemma 5.13, p. 79] to ob-
tain that for , there holds

thanks to part (a) of the theorem. For , we have
. So the overall rate is .

IV. ALGORITHMIC IMPLEMENTATION AND

SIMULATION EXAMPLES

In this section, we turn to the more practical issue of im-
plementation, focusing in particular on estimator E2. When
has a kernel-based structure, we show how, via conversion to
its dual form, the computation of the estimator E2 reduces to
the solution of an -dimensional convex program. We illustrate
the performance of this practical estimator with a variety of
simulations.

A. Algorithms for Kernel-Based Function Classes

We develop two versions of estimator E2: in the first, we as-
sume that is a RKHS, whereas in the second, we assume that

forms an RKHS. In both cases, we focus on the Hilbert
space induced by a Gaussian kernel. This choice is appropriate
as it is sufficiently rich, but also amenable to efficient optimiza-
tion procedures as we shall demonstrate, in particular due to
our ability to exploit convex duality to convert an optimiza-
tion problem in the infinite dimensional and linear space to a
(convex) dual optimization problem whose computational com-
plexity depends only on the sample size. On the other hand,
RKHS is by no means the only possible choice. For (pairs of)
distributions whose ratio are believed to exhibit very complex
behavior for which the RKHS might not be rich enough, it could
be interesting to explore alternative function classes, including
splines, Sobolev classes, or other nonlinear function spaces, and
to devise associated efficient optimization methods.

We begin with some background on reproducing kernel
Hilbert spaces; see [25] and [26] for further details. Consider
a positive definite function mapping the Cartesian product

to the nonnegative reals. By Mercer’s theorem, any
such kernel function can be associated with a feature
map , where is a Hilbert space with inner
product . Moreover, for all , the inner product
in this Hilbert space is linked to the kernel via the relation

. As a reproducing kernel Hilbert
space, any function can be expressed as an inner product

, where . The kernel used in
our simulations is the Gaussian kernel

(46)

where is the Euclidean metric in , and is a
parameter for the function class.

1) Imposing RKHS Structure of : Suppose that the function
class in estimator E2 is the Gaussian RKHS space , and
let the complexity measure be the Hilbert space norm

. With these choices, (12) becomes

(47)
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where the samples and are i.i.d. from and , re-
spectively. The function is extended to take the value
for negative arguments.

Lemma 5: The primal value has the equivalent dual form:
, where

(48)

Moreover, the optimal dual solution is linked to the optimal
primal solution via the relation

(49)

Proof: Let
, and . We have

where the last line is due to the inf-convolution theorem [24].
Simple calculations yield

if
otherwise

if and otherwise

Thus, we conclude that
,

from which the claim follows. The primal-dual relation (49)
also follows from these calculations.

For an RKHS based on a Gaussian kernel, the entropy condi-
tion (36) holds for any (cf. Zhou [38]). Furthermore, (35)
holds since, via the Cauchy-Schwarz inequality, we have

Thus, by Theorem 3(a), we have
, so the penalty term vanishes at the

same rate as . Thus, we obtain the following estimator for
the KL divergence:

(50)

2) Imposing RKHS Structure on : An alternative
starting point is to posit that the function class has an
RKHS structure. In this case, we consider functions of the
form , and use the complexity measure

. Unfortunately, Theorem 3 does
not apply directly because (35) no longer holds, but this choice
nonetheless seems reasonable and worth investigating from an
empirical viewpoint.

A derivation similar to the previous case yields the following
convex program:

Letting be the solution of the above convex program, the
KL divergence can be estimated by

(51)

B. Simulation Results

In this section, we describe the results of various simulations
that demonstrate the practical viability of the estimators (50) and
(51), as well as their convergence behavior. We experimented
with our estimators using various choices of and , including
Gaussian, beta, mixture of Gaussians, and multivariate Gaussian
distributions. Here we report results in terms of KL estimation
error. For each of the eight estimation problems described here,
we experiment with increasing sample sizes (the sample size,

, ranges from 100 to or more). Error bars are obtained by
replicating each set-up 250 times.

For all simulations, we report our estimator’s performance
using the simple fixed rate , noting that this may be a
suboptimal rate. We set the kernel width to be relatively small

for 1-D data, and choose larger for higher dimen-
sions.3 We use M1 and M2 to denote the estimators (50) and
(51), respectively. We compare these methods to algorithm
in Wang et al. [34], which was shown empirically to be one of
the best methods in the literature. This method, to be denoted by
WKV, is based on data-dependent partitioning of the covariate
space. Naturally, the performance of WKV is critically depen-
dent on the amount of data allocated to each partition; here we
report results with , where .

The four plots in Fig. 1 present results with univariate distri-
butions. We see that the estimator M2 generally exhibits the best
convergence rate among the estimators considered. The WKV
estimator performs somewhat less well, and shows sensitivity

3A more systematic method for choosing � is worth exploring. For instance,
we could envision a method akin to cross-validation on held-out samples using
the objective function in the dual formulation as the criterion for the comparison.
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to the choice of partition size , with the ranking of the dif-
ferent WKV estimators changing over the experiments. The per-
formance of estimator M1 is comparable to that of the WKV
estimator, although clearly better in the first plot. In Fig. 2 we
present the results with 2-D and 3-D data. Again, estimator M2
has the best convergence rates in all examples. The M1 estimator
does not converge in the last example, suggesting that the under-
lying function class exhibits very strong bias. In these examples,
the WKV estimator again shows sensitivity to the choice of par-
tition size; moreover, its performance is noticeably degraded in
the case of three-3-D data (the lower two plots).

It is worth noting that as one increases the number of dimen-
sions, histogram-based methods such as WKV become increas-
ingly difficult to implement, whereas increased dimension has
only a mild effect on the complexity of implementation of our
method.

V. SOME EXTENSIONS

In this section, we discuss some extensions and related esti-
mators, all based on the same basic variational principle.

A. Estimation of Likelihood Ratio Functions

Suppose that we are primarily interested in estimating the
likelihood ratio function , as opposed to the KL diver-
gence. In this case, we may consider any divergence functional

, where is a convex function on , possibly dif-
ferent than the logarithm leading to KL divergence. Again ap-
plying Lemma 1, choosing a different divergence leads to the
following alternative estimator of the likelihood ratio:

(52)

(53)

The quantity is an estimate of the quantity ,
whereas is an estimate of the divergence (of sec-
ondary interest for the moment).

We make the following observations:
• If is a differentiable and strictly convex function, i.e.,

, then the likelihood ratio function can be
recovered by applying the inverse of to . Thus, we
obtain a family of estimation methods for the likelihood
ratio function by simply ranging over choices of .

• If (on the other hand) the function is chosen to be non-
differentiable, we cannot directly invert the mapping ,
but we can nonetheless obtain estimators for other inter-
esting objects. For instance, suppose that has the piece-
wise-linear form

if
otherwise

so that is the variational distance. Noting that
for any , we see that the quantity

in (52) provides an estimate of the thresholded likelihood
ratio.4

B. Extensions to Different

Let us assume that is chosen to be differentiable and strictly
convex, so that we can estimate the likelihood ratio by ap-
plying to . Since there are many such , it is natural
to ask how the properties of affect the quality of the estimate
of . The analysis provided in the preceding sections can be
adapted to other choices of , as we describe here.

In order to describe these extensions, we first define a distance
between and :

(54)

Note that this distance is simply the generalization of the quan-
tity previously defined in Lemma 2). For future refer-
ence, we note the equivalence

where the final line uses the facts that and
. This expression shows that is the Bregman

divergence defined by the convex function .
Recall that the key ingredient in our earlier analysis was the

relation between the empirical processes defined by (26) and the
“distance” (see Lemma 2). Similarly, the key technical
ingredient in the extension to general involves relating the
quantity

to the distance defined in (54). In particular, we can
state the following analog of Lemma 2 and Lemma 3.

Lemma 6: Let be the estimate of obtained by solving
(52). Then

(55)

4In fact, there is strong relationship between variational distance and a
threshold function of the likelihood ratio. Note that the conjugate dual for �

has the form

� ��� �

��� if � � ��

�� if � � ���� ��

��� otherwise

which is related to a hinge loss in the literature of binary classification in ma-
chine learning. Indeed, a binary classification problem can be viewed as esti-
mating the threshold function of the likelihood ratio. See [23] for a discussion
of divergences and surrogate losses from this viewpoint.
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Fig. 1. Results of estimating KL divergences for various choices of probability distributions. In all plots, the x axis is the number of data points plotted on a log
scale, and the y axis is the estimated value. The error bar is obtained by replicating the simulation 250 times. � ��� � � denotes a truncated normal distribution of
� dimensions with mean ��� � � � � �� and identity covariance matrix.

Under suitable technical conditions, we have ,
so that Lemma 6 implies that is a consistent estimator for

in the sense of . This lemma also provides the technical
means to derive convergence rates in the same manner as in the
previous sections. Note that is usually not a proper
metric. To apply standard results from empirical process theory,
the trick is that one can replace by a lower bound which is a
proper metric (such as or Hellinger metric). In the case of KL
divergence, we have seen that this lower bound is the Hellinger
distance [via Lemma 2(i)].

Let us illustrate this idea by stating a result about likelihood
ratio estimation in terms of the -square divergence, which is
defined by

(56)

Note that this divergence is an -divergence with ;
a short calculation (see the Appendix) shows that the associated
“distance” is given by , which is
simply the metric. With this setup, the estimator now has
the following “least square” form:

The following theorem is an analog of Theorem 2 (with an al-
most identical proof).

Theorem 4: Assume that for some constant

(57)

and moreover that (30a) holds. Then the estimator ob-
tained from the -square divergence is consistent with rate

.

Remark: Comparing with Theorem 2, we see that the con-
ditions of Theorem 4 are weaker. Indeed, the metric is
dominated by the Hellinger metric, so that imposing bounds on

-metric and its induced entropy are milder conditions.

C. Estimation of the Divergence Functional

Suppose that we are primarily interested in estimating the di-
vergence functional , given that we have already obtained an
optimal estimator of the likelihood ratio function
(such as the one defined by (9a) or (12), or more generally (52)).
We have demonstrated that can be estimated by (9b) and
(13), or more generally by (53). Note that can be viewed as
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Fig. 2. Results of estimating KL divergences for various choices of probability distributions. In all plots, the x axis is the number of data points plotted on a log
scale, and the y axis is the estimated value. The error bar is obtained by replicating the simulation 250 times. � ��� � � denotes a truncated normal distribution of
� dimensions with mean ��� � � � � �� and identity covariance matrix.

an integral of the likelihood ratio under the distribution . In-
deed, we can write

Although is an integral functional of , an in-
teresting feature here is that the integration is with respect to
unknown . In this section, we show that estimators such as
(9b) and (13) for the KL divergence can be viewed as a first-
order Taylor expansion of the integral functional around the es-
timate of the likelihood ratio. This discussion is motivated
by a line of work on the estimation of integral functional of a
single density function (cf. [14], [3]), and also leads to an open
question.

Suppose that is a convex function differentiable
up to third order, is a smooth function class bounded from both
above and below as in Example 1 (with smoothness parameter

). Suppose that is an estimator of (such as the one defined
by (52)), and that . Using
a Taylor expansion around , we obtain

We arrive at

In the above expression, the first two integrals can be estimated
from two -samples of empirical data drawn from and . Be-
cause of the boundedness assumption, these estimations have
at most error. The error of our Taylor approxima-
tion is . This rate is less
than for . Thus when , the optimal
rate of convergence for estimating hinges on the conver-
gence rate for estimating the integral of the form .
This is interesting because we have reduced the problem of esti-
mating any -divergence to a particular integral of two densities

, where is a known function.
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Let us return to the case of KL divergence, i.e.,
. If we use Taylor approximation up to first order, the

estimator has the following form:

which has exactly the same form as our original estimator (9b),
except that here can be any (optimal) estimator of the like-
lihood ratio. Note that we have shown the optimal convergence
rate of for the KL divergence estimator, given
(so that ). Questions regarding the estimator and
its analysis for the case remain unexplored. In partic-
ular, for the regime , the optimal rate of
for estimating KL divergence (and in general) is certainly
achievable by using Taylor expansion up to second order, as-
suming that a separate method exists to achieve the optimal rate

for the integral .

VI. CONCLUSION

We have developed and analyzed -estimation methods for
both the likelihood ratio and -divergence functionals of two
unknown multivariate probability distributions by exploiting a
variational characterization of -divergence functionals. The
methods are shown to be amenable to efficient computational
algorithms for optimization in high-dimensional function
spaces. We have also described our method in the general
context of estimating integral functionals of the likelihood ratio
of two unknown densities, and discussed directions for future
work suggested by our results.

APPENDIX

Proof of Lemma 2:
i) Note that for . Thus,

. As a result

ii) By our estimation procedure, we have
. It follows that

Proof of Lemma 3: The first inequality is straightforward.
We shall focus on the second. By the definition of our estimator,
we have

Both sides are convex functionals of . Use the following fact: If
is a convex function and , then

. We obtain

Rearranging

where the last inequality is an application of Lemma 2.
Proof of Lemma 4: Define

. Note that for . Thus

As a result, for any is related to as follows:

By the definition (12) of our estimator, we have

Both sides are convex functionals of . By Jensen’s inequality,
if is a convex function, then

. We obtain

Rearranging
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where the last inequality is a standard result for the (generalized)
Hellinger distance (cf. [31]).

Proof of Theorem 2: (a) One of the empirical processes on
the right-hand side (RHS) of Lemma 3 involves function class

. For each , let . We endow
with a “norm,” namely, Bernstein distance. This is defined as

follows: for a constant

The Bernstein distance is related to the Hellinger distance in
several crucial ways (see, e.g., [31, p. 97]):

• .
• The bracketing entropy based on Bernstein distance is also

related to the bracketing entropy based Hellinger distance
(i.e., which is the norm for the square root function):

(58)

where and .
By Lemma 3, for any , with respect to measure

where

We need to upper bound the two quantities and on the
RHS of this equation. These can be handled in a similar manner.
Since the diameter of is finite. Let be
the minimum such that exceeds that diameter. We
apply the so-called peeling device: Decompose into layers of
Hellinger balls around and then apply the union bound on

the probability of excess. For each layer, one can now apply the
modulus of continuity of suprema of an empirical process.

Note that if then . Note
that for any , the bracketing entropy integral can
be bounded as

where are constants independent of . Now apply The-
orem 6 (see the Appendix), where

. We need

This is satisfied if and , where
is sufficiently large (independently of ). Finally,

if , where is
some universal constant in Theorem 6. Applying this theorem,
we obtain

for some universal constant . A similar bound can be obtained
for , with respect to measure and with .
Since is bounded from above, this also implies a proba-
bility statement with respect to . Thus, is bounded
in -probability by .

(b) The proof is similar to Theorem 3(b) and is omitted.
Comparison of the Rate in Lemma 2 to the Minimax Rate:

Recall that the minimax rate is defined as

where the supremum is taken over all pairs such that
. Note that , where we

have fixed , the Lebesgue measure on . We can re-
duce this bound to the minimax lower bound for a nonpara-
metric density estimation problem [37]. This reduction is not
entirely straightforward, however, because the space ranges
over smooth functions that need not be valid probability den-
sities. Therefore, an easy-to-use minimax lower bound such as
that of [36] is not immediately applicable. Nonetheless, we can
still apply the hypercube argument and the Assouad lemma to
obtain the right minimax rate. See [32, Sec. 24.3] for a proof for
the case of one dimension. This proof goes through for general

.
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Some Calculations for Theorem 4: Note that the conjugate
dual of takes the form

if and
otherwise.

Consequently, we can restrict to the subset for which
for any . Let and . is a

function class of positive functions. We have

. Define . We also replace
notation by . For our choice of , we have

as claimed. Moreover, we have

Results From Empirical Process Theory: For complete-
ness, we state here two standard results from empirical process
theory that are needed in the paper. These results are versions
of [31, Theorems 3.7 and 5.11], respectively.

Theorem 5: Let be the envelope func-
tion for a function . Assume that , and suppose

moreover that for any . Then
.

Theorem 6: Suppose that the function class satisfies
for some constants and . Given ,

suppose that for some constants and , there holds

Then the empirical process is bounded as

(59)
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