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Abstract: A unified framework based on discrete-time gradient-based extremum seeking
control is proposed to localise an extremum of an unknown scalar field distribution using
a group of equipped with sensors. The controller utilises estimates of gradients of the field
from local dithering sensor measurements collected by the mobile agents. It is assumed that
distributed coordination which ensures uniform asymptotic stability with respect to a prescribed
formation of the agents is employed. The framework is useful in that a broad range of nonlinear
programming algorithms can be combined with a wide class of cooperative control laws to
perform extreme source seeking. Semi-global practical asymptotically stable convergence to
local extrema is established in the presence of bounded field sampling noise.
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1. INTRODUCTION

The problem of localising the source of an unknown or
uncertain scalar field environment may arise from the
need to identify a source flow (e.g. chemical pollution) in
the ocean with a fleet Autonomous Underwater Vehicles
(AUVs) (Fiorelli et al., 2006; Leonard et al., 2010), for
example. The signal or field distribution can be the con-
centration of a chemical or electromagnetic entity with its
strength decaying away from the source. As such, an ex-
treme source seeking which relies on gradient information
is also called gradient climbing/descending in the litera-

ture (Ögren et al., 2004). It is common that knowledge
about the scalar signal field to be optimised is not readily
available, suggesting that extremum seeking (Ariyur and
Krstić, 2003) is a suitable tool for tackling the problem.

In Zhang et al. (2007), the case of a single autonomous
vehicle without position measurements is investigated. An
extremum-seeking input with periodic dithers based on
the continuous-time ideas of Ariyur and Krstić (2003) is
proposed to estimate the gradient of the potential field
on the fly and steer the vehicle to the source with this
information. Extensions to a non-holonomic vehicle are
considered in Cochran and Krstic (2009), and in Liu and
Krstić (2010) using stochastic methods. The deployment
of multiple agents is examined in Ghods and Krstić (2012)
with heat-diffusion coordination rules, which results in a
formation that has higher density near the source.

? This work was supported by the Swedish Research Council through
the Linnaeus Centre LCCC and the Australian Research Council.

There are potential advantages to using multiple agents
for extremum seeking instead of a single one such as ro-
bustness to vehicle failure, scalability, increased reliability
and search speed etc. In Ögren et al. (2004), a network
of sensor-enabled agents is employed to seek out local
extrema in a distributed environment. Collectively the mo-
bile sensors form an intelligently interacting sensor array
and they are coordinated using virtual bodies and artifi-
cial potentials. Continuous-time gradient descent updates
are applied to selected virtual leaders for the network to
cooperatively perform the gradient climbing task. In Biyik
and Arcak (2008), a control algorithm is developed for a
vehicle to lead a group of others in a prescribed formation
to the source via a passivity-based distributed coordina-
tion framework (Arcak, 2007) and discrete-time Newton
method. There, the sensor-enabled leader is driven by a
reference velocity returned by the extremum seeker while
the sensor-disabled followers reconstruct this information
adaptively (Bai et al., 2011).

This paper considers a fleet of autonomous point-mass
vehicles endowed with uniformly asymptotically stabil-
ising cooperative control laws. It is assumed that only
samples of measurements of the field are available as
in Mayhew et al. (2008), i.e. a vehicle cannot measure
a continuum of the signal field. Such an assumption is
justified, for example, when data collection is costly and/or
time-consuming. Extremum seeking is performed in the
discrete time within the general frameworks of Khong
et al. (2013). Using gradient-based extremum seeking,
local dither measurements are taken by a group of mobile
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sensors and then used to estimate the gradients of the
objective field distribution. This information is utilised by
the discrete-time extremum seeking controller to deter-
mine the subsequent fleet manoeuvre. The fleet formation
is designed in such a way that the measurements required
to approximate the gradients can be taken simultaneously,
i.e. the dithering motions of the leader in Biyik and Arcak
(2008) are avoided altogether. A broad class of optimisa-
tion algorithms fit within the framework, allowing the user
to base the selection on the complexity of implementation,
speed of convergence, robustness, etc. at the control design
stage. Furthermore, the fleet formation can be maintained
by applying various consensus algorithms known in the
literature (Ren and Beard, 2008; Bai et al., 2011). Semi-
global practical asymptotic stability of local extrema is
established in the presence of norm-bounded noise to the
sampled measurements on the objective field distribution.
The main contribution of the paper is that of identifying
generic conditions about an optimisation algorithm and a
cooperative control law such that combining the two yields
a convergent extremum seeking scheme which manoeuvres
a group of agents towards the extreme source.

The paper has the following structure. First, a unify-
ing discrete-time gradient-based extremum seeking control
framework from Khong et al. (2013) is reviewed in the
forthcoming section. In Section 3. it is shown how the
framework can be adapted for extreme source seeking with
a single autonomous vehicle. Source seeking with multiple
sensor-enabled agents is considered in Section 4. Simula-
tion examples are provided in Section 5 and conclusions in
Section 6.

2. DISCRETE-TIME EXTREMUM SEEKING

The real and natural numbers are denoted R and N
respectively. Given a vector x in Rn, its components are
denoted by xi for i = 1, 2, . . . , n. A function γ : R≥0 →
R≥0 is of class-K (denoted γ ∈ K) if it is continuous,
strictly increasing, and γ(0) = 0. If γ is also unbounded,
then γ ∈ K∞. A continuous function β : R≥0×R≥0 → R≥0

is of class-KL if for each fixed t, β(·, t) ∈ K and for each
fixed s, β(s, ·) is decreasing to zero (Khalil, 2002). The
Euclidean norm is denoted ‖ ·‖2. Let X be a Banach space
with norm ‖·‖. Given any subset Y of X and a point x ∈ X ,
define the distance of x from Y as ‖x‖Y := infa∈Y ‖x−a‖.
Consider the optimisation problem:

y∗ := max
x∈Ω

Q(x), (1)

where Q : Ω ⊂ Rn → R is an unknown, stationary, and
Lipschitz continuous function or scalar field distribution
which takes its maximum value on C ⊂ Ω, i.e. Q(x) = y∗

for all x ∈ C. It is assumed that Q can only be sampled
discretely in its domain Ω. Let Σ be a discrete-time
extremum seeking algorithm for (1).

In the presence of bounded additive perturbations on the
measurements as illustrated in Figure 1, i.e. yk = Q(xk) +
wk with |wk| ≤ ν for k = 0, 1, . . . and some ν > 0, the
following assumption is important to establish convergence
of the extremum seeking schemes in subsequent sections.

Assumption 1. The extremum seeking controller Σ satis-
fies the following conditions:

ykxk Extremum Seeking

Algorithm Σ

Q + wk

Fig. 1. Extremum seeking algorithm with noisy output
measurement.

(i) Σ is time-invariant. Denote by {x̂k}∞k=0 ⊂ Ω the
output sequence Σ generates based on input to Σ,
{ŷk}∞k=0, where ŷk := Q(x̂k). Σ is causal in the
sense that the output at any time N ∈ N, i.e. x̂N ,
is determined based only on x̂k and ŷk for k =
0, 1, . . . , N − 1, that is the past probe values to Q
and the corresponding measurements.

(ii) Denote by S(x̂0) the set of all admissible output
sequences of Σ with respect to the initial point x̂0.
There exists a class-KL function β such that for any
initial point x̂0 ∈ Ω, all outputs x̂ ∈ S(x̂0) satisfy for
some δ ≥ 0,

‖x̂k‖C ≤ β(‖x̂0‖C , k) + δ ∀k ≥ 0. (2)

(iii) Let yk := Q(xk) + wk, where wk ∈ R. Denote by
{xk}∞k=0 the output sequence Σ generates based on
input {yk}∞k=0. The pair (x, y) is multi-step consis-
tent/close (Nešić et al., 1999) with (x̂, ŷ), in the sense
that for any positive (∆, η) and N ∈ N, there exists
a ν > 0 such that if ‖x0‖C ≤ ∆ and |wk| ≤ ν for
k = 0, . . . , N , then there exists a x̂ ∈ S(x0) satisfying

‖xk − x̂k‖2 ≤ η for k = 0, 1, . . . , N.

Assumption 1 covers a wide class of optimisation algo-
rithms. The next subsection provides some examples.

2.1 Examples of extremum seeking algorithms

It is often the case that gradient-based extremum seeking
algorithms can be serially decomposed into a derivative
estimator and a nonlinear programming method as shown
in Figure 2. This paradigm is analogous to its continuous-
time counterpart in Nešić et al. (2010), where the singular
perturbation technique and time-scale separation are used
to establish convergence of the extremum seeking scheme
therein.

Let the initial output of the extremum seeking controller
be x0. As determined by the derivative estimator, the
following length-p sequence of points can be used to probe
the field distribution Q along the directions given by the
basis vectors z1, . . . , zm:

(x0 + d1(x0), . . . , x0 + dp(x0)), (3)

where di : Ω → Rn denote the dither signals. The cor-
responding outputs of Q are then sampled and collected
by the derivative estimator to numerically approximate
the first N -order partial derivatives of Q at x0 using the
Euler methods, trapezoidal rule, or the more sophisti-
cated Runge-Kutta method, as needed by the optimisation
algorithm. Exploiting this information, the optimisation
algorithm can then update its output to x1, and the
series of steps described above repeats. The well-known
gradient descent and Newton methods operating with
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approximated derivatives are two examples that satisfy
Assumption 1 (Khong et al., 2013) for twice continuously
differentiable Q:

xk+1 = xk − λk∇Q(xk);

xk+1 = xk −∇2Q(xk)−1∇Q(xk),

where λi denotes the step size and ∇Q(·) and ∇2Q(·)
denote, respectively, the Jacobian and Hessian of Q. For
instance, using the simplest first-order gradient approxi-
mation method, the Euler’s finite-difference, the gradient
of a field distribution Q : R2 → R at x ∈ R2 can be
approximated with three samples x, x+hz1, and x+hz2,
where z1 and z2 denote the canonical basis vectors for R2

and h is a small step size. In particular, the approximation
is given by

∇Q(x) ≈
[
Q(x+hz1)−Q(x)

h
Q(x+hz2)−Q(x)

h

]
. (4)

More examples of extremum seeking algorithms can be
found in Teel and Popović (2001); see Khong et al. (2013).

ykxk

Extremum Seeking Algorithm

Derivative
estimator

Optimisation
algorithm

+

di

Fig. 2. A gradient-based extremum seeking controller.

3. SINGLE-AGENT EXTREME SOURCE SEEKING

This section demonstrates how extreme source seeking of
a Q : Ω ⊂ Rn → R described in the previous section
can be accomplished with a single controllable point-mass
vehicle. It is assumed that measurements are corrupted
by norm-bounded noise. Here, n = 1, 2, or 3. The class
of controllable vehicles include, for example, autonomous
vehicles considered in Ögren et al. (2004); Biyik and Arcak
(2008). Semi-global practical asymptotic stability of the
extrema of field distributions is established.

Assumption 2. The vehicle dynamics are

ẋ = f(ξ, u, v); ξ̇ = g(ξ, u), (5)

where x(t) ⊂ Rn and ξ(t) ∈ Rp denote, respectively, the
position with respect to an inertial frame and internal
dynamics of the vehicle, u(t) ∈ Rm the (cooperative)
control input, and v(t) ∈ Rn the reference velocity. Both f
and g are locally Lipschitz in each argument. The vehicle is
controllable in the following sense. Suppose x(0) = x0 for
some x0 ∈ Rn. Given any sequence {xk}∞k=0 in Rn, there
exist an increasing sequence {τk}∞k=1 in R and a piecewise
continuous reference velocity v such that when applied to
(5) with u = 0 results in x(τk) = xk for k = 1, 2, . . ..
Suppose also that given any ε > 0, there exists a T > 0
such that ‖v(t)‖2 ≤ ε for t ∈ [τk, τk+1] if τk+1 − τk ≥ T .
In other words, a vehicle travelling at a lower speed takes
longer time to get from one point to another.

Remark 3. The vehicle dynamics in Assumption 2 may
also take the form

ẍ = f(ξ, u, v); ξ̇ = g(ξ, u),

where v(t) ∈ Rn now denotes the reference applied force,
which serves the same controllability function as above.

Various types of vehicular dynamics satisfy Assumption 2.
For instance, the single and double integrator dynamics
that are well-studied in the multi-agent literature (Ren
and Beard, 2008; Olfati-Saber and Murray, 2002; Bai et al.,
2011).

ykxk Extremum Seeking

Algorithm Σ

Q

+ wk

Agent

v

x(τk) = xk

{τk}

Reference 
velocity design

Fig. 3. Source seeking with a single agent.

The main result of this section is stated next. Let Q :
Ω ⊂ Rn → R be a Lipschitz continuous field distribution
with the set of maximisers C. Given a vehicle satisfying
Assumption 2 and an extremum seeking controller satis-
fying Assumption 1, consider the extreme source seeking
setup in Figure 3, where the vehicle samples Q at the user-
defined time instants {τk}∞i=1. Let wk be the additive mea-
surement noise. Suppose a piecewise continuous reference
velocity v has been designed so that the position trajectory
of the vehicle satisfies x(τk) = xk for k = 1, 2, . . ., where xk
is the output of the extremum seeking controller with its
input being yk = Q(xk) +wk, the noise-corrupted samples
of Q.

Theorem 4. Let the extremum seeking configuration be as
described above. Given any (∆, µ) such that ∆, µ > δ,
where δ ≥ 0 is as in Assumption 1(ii), there exist a bound
ν > 0 and a β̄ ∈ KL such that for any ‖x0‖C ≤ ∆, if
|wk| ≤ ν, then

‖xk‖C ≤ β̄(‖x0‖C , k) + µ (6)

for all k = 0, 1, . . ..

Proof. The proof can be established using similar ar-
guments in (Khong et al., 2013, Thm. 19). It exploits
the multi-step consistency and time-invariance of the ex-
tremum seeking algorithm. 2

Theorem 4 demonstrates that semi-global practical asymp-
totic convergence of the extremum seeking scheme can be
achieved with a single controllable agent. In the succeeding
section, a network of multiple agents is examined within
the context of extremum seeking control.

4. MULTI-AGENT EXTREMUM SEEKING

While the problem of extreme source seeking can be
tackled using a single expensive mobile agent as in the
previous section, there are cases where multiple sensor-
enabled vehicles are needed to move slowly in a formation
towards the source (Ögren et al., 2004). For instance,
a fleet of economical AUV’s may be deployed to locate
a source in the ocean. By working collaboratively, they
are less prone to failures due to vehicular malfunction as
opposed to the single-agent case. This section considers
the problem of steering a group of sensor-equipped agents
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to the source of the signal field using the extreme seeking
framework described in Section 2, together with a generic
set of distributed coordination rules which maintain the
agents’ formation. It is assumed that the extremum seek-
ing controller has access to all the samples collected by
the sensing agents. However, it does not function as a
supervisory controller and the agents are coordinated in
a distributed fashion (Bai et al., 2011; Ren and Beard,
2008). As in the single-agent section, semi-global practical
asymptotic stability is established by exploiting the uni-
form asymptotic stability of the fleet formation.

The formation of the mobile sensors can be chosen in such
a way that facilitates the estimation of the gradients of
the environment field. For example, if (4) is used as a
derivative estimator, a network of three agents can be
deployed and their formation selected to be the vertices of
a right-angled triangle. Likewise, in R3, four agents may
be deployed to form a tetrahedron. If more complicated
gradient approximation methods are employed such as
the family of Runge-Kutta, more samples points would
be needed and the number and formation of the agents
can be decided accordingly.

Let the topology of information exchange between N
number of dynamic agents be modelled by a graph. A
desired formation, which may be time-varying, for the
purpose of derivative estimation may be given by

P =
{
zi
∣∣ |zi| = bi; i = 1, 2, . . . , `

}
, (7)

where bi > 0, zi denotes the distance between two agents
connected by a link, and ` the total number of links in
the graph. Note that P can also be chosen to be position-
based and/or updated over time; see Section 4.1 for an
example. The dynamics of the agents are assumed to
satisfy Assumption 2 and are given by

ẋi = f(ξi, ui, vi); ξ̇i = g(ξi, ui) i = 1, 2, . . . , N.

The cooperative control ui is a function of xj and ẋj if the
jth agent is linked to the ith agent or in certain consensus
control frameworks where virtual leaders are exploited,
if the jth agent is a virtual leader. It is nominally zero
when the vehicle network achieved the desired formation.
The following assumption prescribes an objective for a for-
mation coordination framework to be used in conjunction
with extremum seeking.

Assumption 5. Given N number of mobile agents satisfy-
ing Assumption 2 and a desired formation, the distributed
coordination control law is such that the formation is a
uniformly asymptotically stable equilibrium. In the case
where (7) is used, this means there exist a c > 0 and a
β ∈ KL such that

‖zi(t)‖P ≤ β(‖zi(0)‖P , t) ∀‖zi(0)‖P ≤ c, i = 1, . . . , `.

Examples of consensus algorithms that satisfy the assump-
tion above are provided in the next subsections. Extremum
seeking with a group of vehicles is examined below.

Given a Lipschitz continuous Q : Ω ⊂ Rn → R with
Lipschitz contant L > 0, consider the gradient-based
multi-agent extremum seeking scheme illustrated in Fig-
ure 4, where x1, . . . , xN represent the state trajectory
of agent 1 to N respectively and d1, . . . dN denote the
dither functions as in (3). In particular, it is assumed
that given any x ∈ Rn, x + d1(x), . . . , x + dN (x) define

xk Extremum Seeking

Algorithm Σ

Q

Agent 1

x1(τk) ≈ xk + d1(xk)

{τk}

Reference and 
cooperative control

Agent 2 Agent N

N

x2(τk) ≈ xk + d2(xk)

xN (τk) ≈ xk + dN (xk)

. . .

[yik]

Fig. 4. Source seeking with multiple agents.

a formation (e.g. vertices of a triangle/tetrahedron) by
which the derivatives of Q at x can be well-approximated
with the information Q(x+d1(x)), . . . , Q(x+dN (x)). The
dithers can be constant functions as in Biyik and Arcak
(2008). On the other hand, Ögren et al. (2004) studies
dither functions that vary with the positions of the vehicles
and adapt their configuration in response to the mea-
surement noise to optimise gradient climbing. Reference
velocities v1, . . . , vN are assumed to be designed according
to Assumption 2 to steer the vehicles’ positions x1, . . . , xN

towards x + d1(x), . . . , x + dN (x), similarly to the single-
vehicle case. The formation of the vehicles is maintained
with a consensus algorithm satisfying Assumption 5.

Because the agents are driven by both the reference
velocity v and the cooperative control laws u, in general
xi(τk) will lie close to but not precisely on xk + di(xk), by
contrast with the single-agent case. Indeed, xi(·) converges
to xk + di(xk) as time tends to infinity by the uniformly
asymptotically stable property of the equilibria defining
the desired formation. Nevertheless, this is sufficient to
give rise to practical convergence to the extrema of the
field distribution as demonstrated by the next result.

Theorem 6. Suppose the extremum seeking controller in
Figure 4 satisfies Assumption 1 and the agents with dy-
namics in Assumption 2 are coordinated with a control
law satisfying Assumption 5 with respect to the formation
defined by the dither functions. Also assume that the
vehicles commence within the cooperative control law’s
region of attraction and are driven by appropriate refer-
ence velocities/forces towards destinations specified by the
extremum seeking controller. Then given any (∆, µ) such
that ∆, µ > δ, where δ ≥ 0 is as in Assumption 1(ii), there
exist a T > 0 and a β ∈ KL such that for any ‖x0‖C ≤ ∆,
if τi+1 − τi ≥ T ∀i = 0, 1, . . ., then

‖xk‖C ≤ β(‖x0‖C , k) + µ (8)

for all k = 0, 1, . . ..

Proof. First note that the gradient motions of the vehi-
cles as determined by the reference velocity need to be
sufficiently slow so that the vehicles never leave the local
region of attraction of the formation during manoeuvres.
By Assumption 2, this can be guaranteed by an T1 > 0
such that τi+1 − τi ≥ T1 ∀i = 0, 1, . . ..
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Now following the arguments in Theorem 4, there exists
a ν > 0 such that (8) holds if |xk + di(xk) − xi(τk)| ≤ ν
for all i = 1, . . . , N and k = 1, 2, . . .. By the Lipschitz
continuity of the environment distribution Q, the latter
holds if xi(τk) lies within a ball of radius ν

L centered at
xk + di(xk) for all i and k, where L is a Lipschitz bound
for Q. In other words,

xi(τk) ∈ xk + di(xk) +
ν

L
B̄, (9)

where B̄ denotes the closed unit ball in Rn. Since xk +
di(xk) is a uniformly asymptotically stable equilibrium for
the ith agent by Assumption 5, it follows that (9) can be
ensured if the network is given enough time to manoeuvre
towards its final formation during [τk−1, τk]. That is, there
needs a sufficiently large gap T2 > 0 between the time
instants τk−1 and τk. Defining T := max{T1, T2} completes
the proof. 2

Theorem 6 identifies general conditions on an optimisation
algorithm (Assumption 1) and a cooperative control law
(Assumption 5), combining which guarantees convergence
towards an extreme source of a field distribution for a class
of controllable mobile agents satisfying Assumption 2. Ex-
amples of such optimisation algorithms in Section 2 and
examples of such cooperative control laws in subsequent
subsections demonstrate that a wide range of options are
at the user’s disposal. Various properties of these algo-
rithms and control laws can be investigated and exploited
at the design stage to decide which to implement on a
given problem.

4.1 An example of formation manoeuvre

This subsection examines the decentralised approach to
formation manoeuvres of Lawton et al. (2003); Ren and
Beard (2008) and demonstrates that it fits within the
general framework of Theorem 6. It is also used as a basis
of simulations in Section 5. Lawton et al. (2003) considers
N number of wheeled robots with the following dynamics:

ṙix
ṙiy
θ̇i

v̇i

ω̇i

 =


vi cos(θi)
vi sin(θi)

ωi
0
0

+


0 0
0 0
0 0
1
mi 0
0 1

Ji


[
F i

τ i

]
,

where ri = [rix, r
i
y]T is the inertial position of the ith robot,

θi the orientation, vi the linear speed, ωi the angular
speed, τ i the applied torque, F i the applied force, mi the
mass, and J i the moment of inertia for i = 1, 2, . . . , N .
Applying output feedback linearisation about the hand
position yields an approximate model for the position:
ẍi = ui (see Lawton et al. (2003) for details), which
satisfies Assumption 2. A formation pattern is a set

P := {x1
∗, . . . , x

N
∗ },

where xi∗ denotes the desired constant location of the hand
position of the ith robot. Suppose the group of robots
is required to transition through a sequence of formation
patterns Pj which have been designed to avoid collisions.
Lawton et al. (2003); Ren and Beard (2008) consider
a bidirectional ring topology and propose the following
control law which maintain the robots in the same shape
as the destination pattern during the transition from one
formation pattern to another:

ui =−Kgx̃
i −Dgẋ

i

−Kf (x̃i − x̃i−1)−Df (ẋi − ẋi−1)

−Kf (x̃i − x̃i+1)−Df (ẋi − ẋi+1),

(10)

where x̃i := xi − xi∗, Kg and Dg are symmetric positive-
definite matrices while Kf and Df are symmetric positive-
semidefinite matrices. Note that the indices are defined
modulo N to observe the ring structure of the topology,
whereby x1−1 = xN and xN+1 = x1. It can be seen that
the first two terms in (10) serve to drive the robot to reach
its final position in the formation pattern. This accom-
plishes the reference forces design requirements of Theo-
rem 6. The second two terms maintain the formation with
the i−1 robot and the last two terms with the i+1 robot.
These four terms guarantee that the formation pattern is
an asymptotically stable equilibrium, i.e. Assumption 5 is
satisfied. The coupled dynamics formation control law of
(10) can be modified to take into account interrobot damp-
ing and actuator saturation constraints (Lawton et al.,
2003; Ren and Beard, 2008).

Following the idea of the hardware experimental results
of Lawton et al. (2003), the network manoeuvre from one
formation pattern to another can be regarded as complete
when each vehicle is within a pre-selected error distance
tolerance ε of its destination; see (9). This error decreases
with the increase of the time the fleet of vehicles is allo-
cated to converge towards the destination’s formation pat-
tern. In the case of extreme source seeking, the formation
pattern is updated recursively with the measurements of
the field distribution by the extremum seeking controller.

Procedure 7. Suppose the transition to the formation pat-
tern Pj has been completed, i.e. all the vehicles collected
measurements of the field distribution Q at a distance
no greater than ε := ν

L > 0 from their destinations;
see Theorem 6. The measurements are exploited by the
extremum seeking controller to estimate the gradient of Q
around the local neighbourhood of where the vehicles are
current situated. The next formation pattern Pj+1 is then
supplied by the controller to the vehicles. The reference
and cooperative control law applied to each of the vehicle
is adjusted accordingly to (10). The fleet of vehicles then
proceeds to Pj+1 in the prescribed formation.

5. SIMULATION

Consider the following quadratic scalar field distribution

Q(x, y) := −(x+ 10)2 − (y + 8)2 + 5,

which has a unique global maximum at [−10,−8]T . Sup-
pose three mobile vehicles with single integrator dynamics
are available, i.e. ẋi = ui for i = 1, 2, 3, and assume an
undirected ring communication topology. The cooperative
control and formation manoeuvre laws from Section 4.1
are adapted/simplified for these vehicles so that

ui = 5x̃i − (x̃i − x̃i−1)− (x̃i − x̃i+1),

where x̃ := x − xi∗ and xi∗ denotes the desired position of
the ith vehicle. The gradient descent method is employed

xk+1 = xk + 0.2∇Q(xk), x0 := [1, 1]T , (11)

together with the derivative estimator (4) with h := 0.1
as the extremum seeking controller of the form illustrated
in Figure 2. Assume that the vehicles are initialised at the
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vertices of the right-angle triangle: [1, 1]T , [1 + h, 1]T , and
[1, 1 + h]. The subsequent formation patterns are given
by xk, xk + [h, 0]T , and xk + [0, h]T for k = 1, 2, . . .. A
duration of 0.7s is allocated for the network of vehicles
to manoeuvre from one formation pattern to another.
The vehicles collect measurements of the field distribution
at the end of the 1s and return this information to the
extremum seeking controller as in Figure 4, which is used
in the output update (11). The simulation results are as
follow. Figure 5 shows the 2D positions of the vehicles as
they converge to the global maximum point [−10,−8]T .
The x and y components over time of the vehicles are
plotted in Figure 6. These figures also demonstrate that
no collision has occurred and the right-triangle formation
is maintained during the formation manoeuvres.
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Fig. 5. Vehicles’ positions
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Fig. 6. Vehicles’ position components over time

6. CONCLUSIONS

This paper proposes a unified approach to the extreme
source seeking problem with multiple agents. Gradient-
based local optimisation is considered in which a network
of vehicles gradually converges to the source of a field
environment. The formation is cooperatively maintained
for gradient estimation with bounded errors. Some exam-
ples of optimisation algorithms and cooperative control
algorithms are provided.
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