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Abstract: Fission-track and (U–Th–Sm)/He thermochronology on apatites are radiometric dating
methods that refer to thermal histories of rocks within the temperature range of 408–125 8C. Their
introduction into geological research contributed to the development of new concepts to interpreting
time-temperature constraints and substantially improved the understanding of cooling processes
within the uppermost crust. Present geological applications of apatite thermochronological
methods include absolute dating of rocks and tectonic processes, investigation of denudation
histories and long-term landscape evolution of various geological settings, and basin analysis.

Thermochronology may be described as the
quantitative study of the thermal histories of rocks
using temperature-sensitive radiometric dating
methods such as 40Ar/39Ar and K–Ar, fission
track, and (U–Th)/He (Berger & York 1981).
Amongst these different methods, apatite fission
track (AFT) and apatite (U–Th–Sm)/He (AHe)
are now, perhaps, the most widely used thermo-
chronometers as they are the most sensitive to low
temperatures (typically between 40 and c. 125 8C
for durations of heating and cooling in excess of
106 years), ideal for investigating the tectonic and
climate-driven surficial interactions that take place
within the top few (,5 km) kilometres of the
Earth’s crust. These processes govern landscape evo-
lution, influence climate and generate the natural
resources essential to the wellbeing of mankind.

This introductory chapter provides a brief
overview of apatite thermochronology and its appli-
cation to geological studies. We focus on three
topics: (1) methodological developments; (2) con-
cepts and strategies for the interpretation of thermo-
chronological data; and (3) applications to various
geodynamic settings. For more detailed insights
on apatite thermochronology the reader is referred
to published reviews by Green et al. (1986,
1989b), Laslett et al. (1987), Duddy et al. (1988),
Wagner & Van den Haute (1992), R. W. Brown
et al. (1994), Gallagher et al. (1998), Gleadow
et al. (2002), Ehlers & Farley (2003) and Reiners
& Brandon (2006).

Fission-track thermochronology

Basics of the method

Fission-track thermochronology/-chronometry (for
differentiation cf. Reiners et al. 2005) is based on

the analysis of radiation damage trails (‘fission
tracks’) in uranium-bearing, non-conductive
minerals and glasses. It is routinely applied on the
minerals apatite, zircon and titanite. Fission tracks
are produced continuously through geological time
as a result of the spontaneous fission of 238U
atoms. They are submicroscopic features with an
initial width of approximately 10 nm and a length
of up to 20 mm (Paul & Fitzgerald 1992) that can
be revealed by chemical etching. Crucially, fission
tracks are semi-stable features that can self-repair
(shorten and eventually disappear) by a process
known as annealing at a rate that is a function of
both time and temperature. The extent of any track
shortening (exposure to elevated temperatures) in
a sample can be quantified by examining the distri-
bution of fission-track lengths.

The determination of a fission-track age (a number
that relates to the observable track density) depends
on the same general equation as any radioactive
decay scheme: it requires an estimate of the relative
abundance of the parent isotope and of the daughter
product. However, unlike most methods of radio-
metric dating, it measures the effect, rather than the
product, of a radioactive decay scheme, that is it
refers to the number of 238U atoms and the number
of spontaneous fission tracks per unit volume. This
fission-track density is obtained by counting the
number of spontaneous tracks intersecting a polished
internal surface of a mineral grain viewed under high
magnification (1000�–1250�) using an optical
microscope. Depending on the sample and aims of
the study, a typical fission-track sample age consists
of a weighted mean of 20–100 single-grain ages.
Further details and background information on prac-
tical aspects of fission-track age determination are
provided by, for example, Fleischer et al. (1975),
Naeser (1979) and Donelick et al. (2005).
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An important dimension to fission-track thermo-
chronology is the semi-stable nature of tracks,
whereby annealing can change the significance of
a measured age. The observable density of spon-
taneous tracks in a sample (age) is a function of
track length (probability of intersecting the plane
of observation). All newly formed tracks in apatite
have a length of approximately 16 mm (c. 11 mm
in zircon). If a sample (e.g. a volcanic apatite) was
created at 10 Ma and then resided at low tempera-
tures (,40 8C), the population of tracks reduces in
length to a mean value of approximately 15 mm
causing an insignificant (not resolvable) reduction
in track density and a measured age within an
error of 10 Ma. However, if, during its history, the
same sample experienced elevated temperatures
(but not sufficient to cause total resetting) in its
history there will be significant track shortening to
a level defined by the maximum heating. This will
cause a reduction in observable track density and,
therefore, measurable age.

Some milestones in the evolution of the

fission-track method

Despite early recognition of fission tracks
(Baumhauer 1894; Silk & Barnes 1959), it was not
until the early 1960s that their application to geo-
logical dating was first proposed (Price & Walker
1963) and subsequently developed (Wagner 1966;
Gentner et al. 1967; Naeser 1967). Early dating
studies were tasked with finding practical ways to
etch tracks, measure uranium contents that mirror
the dated grain and define the time–temperature
stability fields of fission tracks in different uranium-
bearing minerals, tektites and glasses. Studies
conducted between 1970 and 1983 highlighted the
fundamental issues that needed to be resolved in
order to enable routine and accurate age determi-
nation. Foremost was a lack of consensus on the
value of the spontaneous fission decay constant for
238U, to be used in the equation for age calculation.
In order to circumvent this and other fundamental
problems associated with the measurement of
neutron fluence, Hurford & Green (1983) advanced
a suggestion made by Fleischer and Hart at a
meeting in Austria in 1971 for a comparative
approach to AFT dating through the use of a propor-
tionality constant. The resultant ‘Zeta’ calibration
method (Hurford & Green 1983) has become the
standard approach to fission-track age determination
(Hurford 1990).

Until 1980 most fission-track ages were calcu-
lated using a pooled age, based on the ratio of total
counts of spontaneous and induced tracks.
However, Green (1981) highlighted the need for an
alternative method for calculating an age when

there is significant (or over-) dispersion within the
population of single-grain ages. Green pointed out
that where there is evidence for heterogeneity
(extra Poissonian variation) within a dataset,
detected by statistical tests such as x2 (Galbraith
1981), the conventional pooled age, based on the
ratio of the number of spontaneous and induced
tracks (Ns/Ni), with its Poisson standard error,
becomes meaningless. An alternative approach
based on the mean of ratios of individual track den-
sities (rs/ri) was used to give a larger estimate of the
error to allow for an extra-Poisson component in the
dispersion of single-grain ages, but this approach
implied a sample should have a single age. In
reality, there are a number of different causes of het-
erogeneity within a dataset (beyond a bad exper-
iment), such as variable responses to partial
resetting due to variations in apatite grain compo-
sition (see later) and/or a range of provenance
ages. Thus, it is important to assess to what the over-
dispersion is due rather than make to allowance for
it with larger errors.

In 1984 Hurford et al. proposed the use of prob-
ability density diagrams, a type of continuous histo-
gram that plots each grain-age error as a Gaussian
density function, as a way of visualizing a mixed
age dataset. However, this type of approach can
obscure useful information by inappropriately
weighting it with poor information (i.e. an overlap
effect associated with broad, imprecise, peaks). To
overcome this problem Galbraith developed the
radial plot (Galbraith 1988, 1990) (Fig. 1), which
is now routinely used across the chronological com-
munity. Coupled to this development Galbraith &
Laslett (1993) also produced the widely adopted
random effects model that gives a central age esti-
mate of the population of grains ages with a relative
standard deviation of the population of ages known
as the age dispersion (normally expressed as a per-
centage variation).

Having established protocols to measure fission-
track ages and assess data quality and structure, the
next major developments were related to under-
standing the significance of the determined ages.
Whilst track-length measurement had been used to
detect track annealing more or less since the
methods inception, it was not until the mid 1980s
that studies demonstrated the utility of such data.
Advances included moving away from using semi-
tracks (projected track) to length measurement
based on surface-parallel confined tracks. Although
more numerous, semi-tracks contain less infor-
mation and have significant sources of bias, particu-
larly towards longer lengths (Laslett et al. 1994). A
key paper by Gleadow et al. (1986b) demonstrated
the utility of confined track measurement and laid
the foundation for data interpretation based on
thermal history.
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Contrary to other radiometric dating methods
where the measured age equates to the time a
sampled cooled below its closure temperature, the
fission-track age records cooling through a tempera-
ture interval between total resetting of fission tracks
and relative stability, known as the partial annealing
zone or PAZ (Wagner 1979). The temperatures
relating to the PAZ were defined by systematic
investigation of the annealing of fission tracks
across laboratory and geological timescales, moni-
tored by changes in confined track-length distri-
bution (Green & Durrani 1977; Gleadow & Duddy
1981; Laslett et al. 1982, 1987; Gleadow et al.
1986a; Green et al. 1986, 1989a, b; Duddy et al.
1988; Green 1988; Crowley et al. 1991; Carlson
et al. 1999; Barbarand et al. 2003). Quantification
of the time–temperature conditions that control
the annealing of fission tracks in apatite provide
the means to interpret fission track-ages by link-
ing the level of track-length shortening and
density (age) reduction to sample thermal history
(e.g. Gleadow et al. 1986b). Typical temperature
ranges for the PAZ for heating durations of
107 Ma are 60–110 8C for fluorapatite (e.g.
Gleadow & Duddy 1981), 170–330 8C for zircon
(Zaun & Wagner 1985; Yamada et al. 1995) and
265–310 8C for titanite (Coyle & Wagner 1998).
Above the upper-temperature values fission tracks
undergo total annealing, which removes all traces
of fission tracks from the host crystal lattice.

Annealing studies recognized that track fading
in apatite is not only governed by temperature, but
also by heating duration, chemical composition
and crystallographic orientation. Early descriptions
of time-dependence on annealing were presented
as Arrhenius plots, which generally had a fanning
like form. Green et al. (1985) noted that fanning
plots were probably the result of variable apatite
grain composition, such that in effect these
fanning plots were no more than a series of overlap-
ping parallel plots. A series of isothermal fission-
track annealing studies on apatites (Green et al.
1986; Crowley et al. 1990; Carlson et al. 1999;
Barbarand et al. 2003) showed that substitution of
fluoride and hydroxide ions by chloride ions
appears to induce the greatest effects, although
other substitutions on the halogen site can also
have an influence but have proven much harder to
deconvolve from laboratory timescale track-
annealing experiments (O’Sullivan & Parrish
1995; Carlson et al. 1999). As a consequence of
these studies, AFT data interpretation generally
takes into account grain composition either by
direct measurement of the Cl-content [generally
by electron probe micro-analyser (EPMA)] or by
assessing grain bulk composition by measuring
the solubility of apatite through the c-axis
parallel length of track etch pits (Dpar

w of Donelick
1991; Burtner et al. 1994; cf. also Murrell et al.
2009). Green & Durrani (1977) first described the
influence of the crystallographic orientation of
spontaneous fission tracks on the annealing of
those tracks. Tracks orthogonal to the c-axis
anneal more rapidly than tracks parallel to the
c-axis (Green 1988). This anisotropy increases
with annealing (Green 1981; Laslett et al. 1984;
Donelick et al. 1990; Galbraith et al. 1990;
Donelick 1991).

The developments outlined above (and many
others not cited) have helped establish AFT analysis
as a routinely used tool in geological studies,
examples of which are published in this Special
Publication. Methodological developments con-
tinue and it is now possible, following marked
improvements in the precision of laser ablation
inductively coupled plasma mass spectrometry
(LA-ICP-MS) technology, to make direct measure-
ments of uranium content within the counted grains
of apatite, providing a fast and precise alternative to
neutron irradiation (e.g. Hasebe et al. 2004, 2009).
A further advance is the arrival of a functioning
system for automatically determining the fission-
track density and measuring fission-track lengths
(Gleadow et al. 2009). This will not only increase
speed and reliability of data acquisition, but also
provides new options, especially with respect to
the size (quality) of density and track length
datasets.

Fig. 1. Radial plots were designed to graphically display
single-grain age estimates, taking into account different
standard errors (Galbraith 1988, 1990; example from
Ventura et al. 2009). Single-grain ages (z) with standard
error,s, are plotted (point x, y) according to x (precision)
¼ 1/s and y (standard estimate) ¼ (z 2 z0)/s, where
z0 is the central age. The error attached to each point is
standardized on the y-scale. The value of the age (z)
and the 2s uncertainty can be read off the z-scale by
extrapolating lines from point 0, 0 through the plotted
age (point x, y) and projecting onto the radial age axis.
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(U–Th–Sm)/He thermochronology

The last decade has seen the extension of low-
temperature studies to include AHe dating. Radio-
active decay of the elements uranium and thorium
to stable helium represents one of the earliest
radiometric schemes available to geologists to
investigate the ages of rocks and minerals (Ruther-
ford 1905). Despite initial promise (e.g. Keevil
1943), the (U–Th)/He method was discounted as
a dating technique until Lippolt et al. (1982) pro-
posed its application as a low-temperature thermo-
chronological tool. Zeitler et al. (1987) followed
Lippolt et al.’s suggestion that, rather than defining
a sample’s age (implicitly its formation age), (U–
Th)/He data provide useful constraints on the
sample’s thermal history, similar to AFT analysis,
and further developed the technique. Fundamental
experimental work by Farley and co-workers at
Caltech through the 1990s resulted in the develop-
ment of accurate and precise instrumentation
for the extraction and measurement of helium. In
practice, an AHe age is obtained by measuring
radiogenic 4He trapped in apatite grains by laser or
furnace outgassing, and then measuring the relative
amounts of uranium and thorium in the sample by
solution ICP-MS. A careful selection of inclusion
and crack-free idiomorphic apatite crystals with
homogeneous U, Th and Sm distribution is essential
for this procedure.

AHe thermochronology relies on the accumu-
lation of 4He during the a-disintegration of 238U,
235U, 232Th, their daughter products and 147Sm.
The closure temperature (TC) of mineral grains is
dependent on activation energy, a geometry factor
for the crystal shape, thermal diffusivity (D0), the
length of the average diffusion pathway from the
interior to the surface of the grain and the cooling
rate at closure temperature. In addition, 4He diffu-
sion in apatite is impeded by radiation-induced
damage to the apatite structure. Therefore, the kin-
etics is an evolving function of time. The 4He
production–diffusion model predicts that the effec-
tive 4He closure temperature of apatite will vary with
cooling rate and effective U- and Th-concentration,
and may differ from the commonly assumed TC of
75 8C Ma21 by up to +15 8C (e.g. Farley et al.
1996; Wolf et al. 1996, 1998; Farley 2000, 2002;
Shuster et al. 2006; Flowers et al. 2009; Shuster &
Farley 2009). During radioactive decay alpha
(a)-particles are emitted with high kinetic energy
and travel significant distances. This poses a compli-
cation for the He dating method, as a-particles may
be ejected out of the crystal being dated or injected
from the surrounding mineral grains.

Farley et al. (1996) and Reiners et al. (2004)
pointed out that implantation or ejection of
a-particles may generally obscure (U–Th–Sm)/

He dating, whereas He implantation needs to be
considered if dealing with low U–Th–Sm phases.
Therefore, Farley et al. (1996) propose a correction
for these effects either numerically by correcting the
measured He ages against the specific a retentivity
(FT) or by removal of the outer rim of the crystal
(by chemical dissolution or mechanical abrasion)
prior to dating. While correcting for a ejection
has become a routinely performed practice in
recent years, Spiegel et al. (2009) demonstrate the
potential for possible overcorrection, indicating
that abrading the outer rim of a crystal may be
favourable. However, mechanical abrasion may
lead to erroneous ages when crystals are strongly
zoned with respect to uranium and thorium (Farley
et al. 1996). In this case, a U–Th–Sm zonation-
dependent a correction, as proposed by Hourigan
et al. (2005), needs to be applied.

Usually, an apatite TC in the range of 70 + 7 8C
(for a monotonic cooling rate of 10 8C Ma21, a
subgrain domain size .60 mm, an activation
energy of about 36 kcal mol21 and a log (D0) of
7.7 + 0.6 cm2 s21), and a He partial retention zone
of between 40 and 75 8C, are assumed. The He pro-
duction–diffusion model relies on homogenous
distribution of U, Th and Sm in secular equilibrium,
He loss confined to volume diffusion, and spherical
diffusion geometry. Meesters & Dunai (2002a, b)
generalized a production–diffusion equation to dif-
fusion domains of various shapes and arbitrary
cooling histories. Their set of equations allows a
ejection corrected ages to be calculated and
accounts for the non-homogeneous distribution of
U, Th and Sm.

Preliminary studies on the applicability of
(U–Th)/He thermochronology on zircon and tita-
nite suggest closure temperatures about 80 and
130 8C higher than for apatite. These systems have
the potential to close the gap between the various
mineral diffusion temperatures of the 40Ar/39Ar
thermochronological system, and the zircon and
titanite fission-track annealing temperatures on one
side, and AFT and AHe on the other side (e.g. Farley
2002; Reiners & Brandon 2006; Dobson et al.
2009). Moreover, (U–Th)/He analysis of magnetite
(TC: 200 8C/10 Ma) opens new perspectives for
dating volcanic rocks (Blackburn et al. 2007).

Modelling of low-temperature

thermochronological data

Recovery of thermal history information from AFT
and AHe datasets is contingent upon a quantitative
understanding of how the combination of time and
temperature controls fission-track annealing and
helium diffusion. Early attempts to use AFT
data to track cooling were based on qualitative
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indicators (e.g. Wagner & Reimer 1972; Gleadow
et al. 1986a, b): samples with a single population
of long track lengths indicate rapid cooling in con-
trast to slower and/or stepped cooling paths,
which result in shorter and/or more complex
length distributions. However, this type of approach
limits interpretation to relative rates of cooling and
provides no constraints on timing or temperatures.
With the advent of annealing studies, algorithms
were formulated to describe the time–temperature
dependencies of track annealing. The models
based on laboratory experiments were extrapolated
to geological timescales and verified against well-
constrained data from the geological record. The
first and, previously, most widely used model
(Laslett et al. 1987) describes the annealing behav-
iour of a single type of apatite (Durango). With the
realization that annealing is also influenced by grain
composition, new experiments extended the anneal-
ing database. Carlson et al. (1999) published the first
multi-kinetic annealing model. In 2007 this model
was updated to include the dataset of Barbarand
et al. (2003) and improved data-fitting techniques.
The new multi-kinetic model, now in wide use, is
based on 579 experiments and 26 compositionally
different types of apatite (Ketcham et al. 2007).

Equipped with quantitative descriptions of track
annealing it is possible to extract sample thermal
histories by using forward or data inversion model-
ling techniques. Early programs focused on forward
modelling data to check annealing models against
well-constrained geological examples (e.g. Green
et al. 1989b) and as a guide to the interpretation of
real samples (e.g. Willett 1992). However, forward
modelling is not a very efficient means of finding
solutions for unknown or poorly constrained
samples and, since there is no unique solution to a
given dataset, such an approach is open to user
bias. Data-driven inverse modelling helps to
reduce this bias. Most commonly adopted and pub-
licly available AFT modelling programs are Monte
Trax (Gallagher 1995, designed for Apple Mac-
intosh), AFTINV (Issler 1996; Willet 1997), AFT-
Solve (Ketcham et al. 2000) and HeFTy (Ketcham
2005, all Windows). These programs differ in mod-
elling approach (Monte Carlo and/or genetic algor-
ithm), annealing models, input parameters and
statistical tests to evaluate the level of fit between
model results and observed data (cf. Ehlers et al.
2005; Ketcham 2005). Some of the modelling
programs refer only to AFT data, whilst others
derive cooling histories from combined AFT, AHe
and VR data (e.g. HeFTy). DECOMP (Meesters &
Dunai 2002a, b) is a popular program to model
thermal histories from AHe data. Most recent devel-
opments in modelling include a strategy for model-
ling sample thermal histories jointly (Gallagher
et al. 2005) and the use of Markov Chain Monte

Carlo (MCMC) methods to address the problem of
characterizing uncertainties in modelled thermal
histories in two and three dimensions (2D and 3D)
(e.g. Stephenson et al. 2006).

Some concepts in apatite

thermochronology

Methodological advancements were accompanied
by the development of new strategies for the
interpretation of thermochronological data, as the
derivation of time–temperature constraints and the
conversion of temperature information into geologi-
cal and geomorphological processes.

Fission-track age types

An important part of fission-track thermochronol-
ogy relates to using the distribution of measured
track lengths in a sample to determine whether the
measured age directly records an ‘event’ or a more
complex thermal history. Early on in the AFT
methods developmental history Günther Wagner
suggested a classification of AFT ‘ages’ as event
ages, cooling ages and mixed ages based on
sample thermal history (Wagner 1972).

According to this concept, an event age refers to a
rock that cools rapidly through the PAZ (e.g. a volca-
nic rock) and resides at low, near-surface, tempera-
tures thereafter. The AFT age is essentially
identical to the age of entrance into the PAZ, and is
associated with a narrow distribution of track
lengths about a mean value of 15 mm. Slow linear
cooling of a sample through the PAZ produces a
cooling age that is significantly younger than the
entrance into the PAZ, with a broader and shorter
track-length distribution. Such a pattern is relatively
common in old basement terrains that have under-
gone cooling over very long periods of geological
time. Mixed ages refer to an at least two-stage
cooling history, in which the first generation of
tracks resides at relative higher temperatures within
the PAZ, prior to final cooling to lower temperatures.
The resulting track-length distribution in such cases
is typically bimodal with a short peak representing
the higher temperature tracks and a second, long
peak being added after final cooling. Crucially,
both cooling and mixed ages have no direct signifi-
cance in terms of the timing of any geological event.

Uplift, exhumation and denudation

With the availability of low-temperature chrono-
logical data, the resolution of cooling events
improved considerably, and it became possible to
analyse increasingly younger and shallower pro-
cesses. Early AFT studies usually interpreted
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cooling patterns in terms of ‘uplift and erosion’.
However, as this interpretation implicitly assumes
that ‘uplift’ will always be matched by an equivalent
amount of ‘erosion’ (cf. Parrish 1983), a much more
precise usage of terminology was required. Terms
like denudation, erosion, exhumation and uplift
(surface, crustal and rock uplift) were (re-) defined
by England & Molnar (1990), and explained
further by Summerfield (1991), Summerfield &
Brown (1998) and Ring et al. (1999) (Fig. 2).

According to these definitions, surface uplift
refers to changes in the elevation of a surface. It is
equal to rock uplift minus exhumation. Crustal
(rock/bedrock) uplift refers to changes in the verti-
cal position of rocks with respect to a fixed reference
frame, such as the geoid.

Denudation and exhumation both result from the
removal of material from a region or point, respect-
ively, on the Earth’s surface. Whereas exhumation
refers to the unroofing of a point (a single sample
or a vertical rock section), denudation applies to
an area (cf. Ahnert 2003; see Summerfield &
Brown 1998). Reference frame for both is the geo-
metry of the past land surface. Denudation can
occur in response to erosion and/or tectonics (e.g.
Ring et al. 1999). Erosion describes the removal
of weathered products by geomorphic agents. Tec-
tonic denudation typically occurs through processes
of extension and normal faulting, and it can result in
the rapid removal of large rock volumes. Ductile
crustal thinning as a third mode of denudation is
not applicable for the uppermost crustal level and
related processes.

Thermal histories modelled from thermochrono-
logical data, and potentially supplemented by infor-
mation from vertical profiles, can be converted into
an amount of denudation by using a value (measured
or inferred) for the local geothermal gradient and
taking into account average surface temperature.

Vertical profiles

Much more information than for a single sample
alone is available when a suite of samples in a
vertical profile can be analysed, such as may be
obtained by sampling from a deep drill hole or
over a significant range of vertical relief. Such ver-
tical arrays are collected across the thermal gradient
through which the samples have cooled. A con-
sequence of fission-track annealing/helium diffu-
sion is that AFT and AHe ages gradually decrease
from some observed value at the Earth’s surface to
an apparent value of zero at the depth where no
fission tracks/He are retained (Wagner & Reimer
1972).

The decrease in the AFT age with depth, and the
associated variation of the length distribution, often
deviate from a simple, linear pattern. Gleadow &
Fitzgerald (1987) recognized that the exposed base
of a fossil (exhumed) PAZ within a vertical
sample profile produces a characteristic change in
the regression of the age–elevation plot. Both the
onset as well as the amount of cooling can be
derived from this break in slope (Fig. 3). The age
of the break in slope approximates the initiation of
the last cooling below about 100 8C. Samples from
below this break contain only tracks accumulated
during and after this cooling stage. In contrast,
samples above the break in slope contain two gener-
ations of tracks, one from before and one from after
the onset of final cooling. The amount of cooling
and exhumation can thus be obtained from the
elevation of the break in slope within a vertical
AFT (or, similarly, an AHe) profile. The actual
shape of the age–elevation plot, and the trend of
the track-length distributions with elevation, will
depend on the geothermal gradient, and on the
amount and rate of exhumation (R. W. Brown
et al. 1994).

Fig. 2. Sketch illustrating the relationship between surface uplift, crustal (rock) uplift and denudation (see the text for
definitions). Abbreviations: h, elevation; R, rock; S, surface; t, time.
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Another advantage of analysing vertical AFT
profiles is the possibility of calculating the palaeo-
geothermal gradient that existed prior to the onset
of cooling (Gleadow & Duddy 1981; Bray et al.
1992). The palaeogeothermal gradient can be deter-
mined by weighted least-squares regression of mod-
elled maximum palaeotemperatures against sample

elevation. Palaeogeothermal gradients are not
only invaluable for estimating burial depths and
amounts of denudation, but also bear important con-
straints on modes and mechanisms of the related
processes (e.g. rifting). A comparison of the palaeo-
geothermal gradient with a recent one allows the
cause of high palaeotemperatures, and the cause of

Fig. 3. The concept of an exhumed PAZ (adapted from Fitzgerald et al. 1995; Gallagher et al. 1998). The left panel
illustrates the pre-denudation apatite fission-track age crustal profile, with the initial age as t0. Denudation at time t1
exposes different levels of this pre-cooling profile, while the deeper samples begin to retain tracks (central panel). The
right panel shows the expected trend in the fission-track data with respect to elevation, that is age increases. The length
distribution has two components: tracks formed prior to cooling (dark shading) and those formed after cooling (light
shading). The latter are all long, and the composite length distribution depends on the relative proportion of these two
components. Only the data below the break in slope (marked by an asterisk) provide the timing for the onset of the
cooling/denudation event.
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the subsequent cooling to the present temperatures,
to be determined.

Thermochronological data patterns

Thermochronological transects (horizontal profiles)
across geological units or structures, or regional pat-
terns of the AFT parameters, often allow exhuma-
tion trends to be detected or distinct igneous or
tectonic events to be verified. Before modelling pro-
grams were available, the characteristic relationship
between AFT ages, track-length distributions and
thermal history was used to qualitatively constrain
amount and timing of cooling (denudation) on a
regional scale. A plot of AFT age against mean
track length of an area that has undergone cooling
shows a characteristic ‘banana’ or ‘boomerang’
shape that results from the mixing of two cooling
components (Green 1986). In such plots, the
longest mean track lengths are preserved in
samples that experienced rapid cooling without sub-
sequent reheating. Between the two end points of a
boomerang there exists a series of transitional
bimodal track-length distributions where the abun-
dance of inherited annealed tracks becomes
reduced in favour of newly formed tracks while
the AFT ages of the samples decrease.

Apatite thermochrononology and topography

Topographic effects and fast rates of cooling. The
temptation to collect vertical profiles in active
mountain belts where there is considerable relief
can introduce a number of interpretative problems
for thermochronological data, especially if
measured ages are young (,5 Ma). Young AFT
(or AHe) ages require rapid rates of cooling and
high rates of rock uplift and exhumation, but the
calculation of true exhumation rates in such young
samples is problematic owing to the combined influ-
ences of topographic wavelength and thermal
advection. High rates of rock uplift cause pertur-
bation of upper-crust thermal structure as heat is
advected at rates that exceed normal heat loss by
conduction, driving isotherms closer to the Earth’s
surface (e.g. modelling studies of Stüwe et al.
1994; Mancktelow & Grasemann 1997; cf. also
Wang & Zhou 2009). Depending on wavelength
and amplitude (height), the underlying thermal
structure can undulate with the topography,
causing the distance between closure isotherm and
surface to vary with sample location. For example,
beneath valley floors (lowest elevation samples)
the depth to the PAZ will be less than beneath topo-
graphic ridges, that is the geothermal gradients will
vary with location. Failure to take this effect into
account when constructing age–elevation plots to
determine exhumation rates can lead to incorrect

interpretations. Detailed thermal modelling studies
by Braun (2002) show how variable thermal struc-
ture can bias the interpretation of low-temperature
thermochronological data.

Landscape evolution modelling. Much effort has
been devoted recently to understand the coupling
between tectonic and surface processes in the for-
mation of recent topography (e.g. Braun 2002;
Burbank & Anderson 2001; Burbank 2002; Ehlers
& Farley 2003; Braun et al. 2006). Quantification
of the rate at which landforms adapt to a changing
tectonic, heat flow and climate environment (i.e.
‘dynamic topography evolution’) are performed by
combining geomorphological analytical work, low-
temperature thermochronological data and 3D ther-
mokinematic modelling. Thermokinematic model-
ling with the 3D finite-element computer code
Pecube (Braun 2003, 2005) predicts time–tempera-
ture (t–T ) paths for all rock particles that, at the end
of the computations, occupy the locations of the
nodes at the surface of the finite-element mesh.
From the t–T paths, apparent AHe and AFT ages
are generated by varying topography, erosion
rates, uplift rates and heat flow values. Thus,
Pecube allows an overall uplift rate to be created
or a block of infinite space, which is bordered by
normal faults and/or thrusts, to be defined. When
movement is localized at the faults or thrusts,
computer-code-generated age data are subsequently
compared with the determined real thermochronolo-
gical age data. As a result, it is now possible to
match age data with geomorphological results and
cosmogenic nuclide-based age dating in order to
test landscape evolution models by processing
different timescale resolutions.

Detrital thermochronology

The ‘standard’ approach to deriving an AFT age is
typically based on the measurement of the track
density (age) for 20–30 (more if track densities
are low) single-grain ages. Detrital thermochronol-
ogy requires 50–120 grains per sample to enable
statistical deconvolution into source-age com-
ponents. Depending on the objectives of the study,
up to 117 grains should be dated if the analyst
wants to ensure that no fraction of the dated popu-
lation comprising more than 0.05 of the total is
missed at the 95% confidence level (Vermeesch
2004). Once the desired numbers of grains have
been counted, the dataset can be divided into princi-
pal age components. Binomfit is a freeware program
written by Mark Brandon that calculates ages and
uncertainties for mixed distributions of fission-track
grain ages. It uses an algorithm based on the
decomposition method of Galbraith & Green
(1990). Age components are compared with the
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age patterns of the hinterland and correlated with
specific source areas (e.g. Brandon 1996; Bernet &
Spiegel 2004; Bernet & Garver 2005).

Detrital thermochronology is routinely used in
provenance analysis, and for denudation and land-
scape evolution studies (e.g. Hurford & Carter
1991; Garver et al. 1999; Bernet et al. 2006). Specific
tectonic and geomorphological applications include
dating of hinterland uplift to reconstruct early
exhumation rates in active orogenic belts, determin-
ing sediment-source regions, and reconstructing
(palaeo-) drainage systems. A particularly useful
interpretative method is to plot the lag time (or
erosion–transport interval) between sediment depo-
sition age and youngest detrital exhumation age. This
provides key information on exhumation history, and
conceptually it is possible to use the lag time to
monitor the evolution of a mountain belt as it
passes from growth stages (decreasing lag times)
into topographic and exhumation steady state (con-
stant lag time) into orogenic decay (increasing lag
time). Other provenance applications include con-
straining minimum depositional ages of sediments
and the correlation of stratigraphic horizons.

Most sediment is derived from the erosion of
pre-existing rocks, and therefore detrital apatite
and zircon grains may contain tracks that accumu-
lated in the original source rock. Weathering and
physical erosion do not affect the retention and stab-
ility of fission tracks (Gleadow & Lovering 1974),
but the preservation of provenance-related tracks
does depend on the temperature history experienced
by eroding source regions and subsequently by the

sediment as the basin evolves (Fig. 4). Whereas
zircons provide excellent provenance indicators
(e.g. Hurford & Carter 1991; Garver & Brandon
1994; Garver et al. 1999), the use of apatite for
source-rock information is restricted to shallow
basins (typically less than c. 2 km of burial) and
drainage systems (e.g. Corrigan & Crowley 1992;
Lonergan & Johnson 1998; Malusà et al. 2009).
Detrital analyses often combine thermochronologi-
cal and geochronological data (U–Pb dating of
zircon, 40Ar/39Ar dating of white mica), heavy
mineral assemblages, grain size/shapes (zircon
typology), and isotope signatures of detrital min-
erals (e.g. Dunkl et al. 2001; Carter & Foster
2009). The amount of provenance information can
be increased by using double or triple dating tech-
niques that involve more than one dating method
on the same mineral grain, for example combined
U–Pb or 40Ar/39Ar and AFT dating (Carter &
Moss 1999; Carrapa et al. 2009) and/or AHe
dating (Rahl et al. 2003). A detrital dating technique
that utilizes petrographic information is fission-
track analysis of single pebbles or pebble popu-
lations using conglomerates from foreland basin
deposits (Spiegel et al. 2001; Dunkl et al. 2009).

Applications

Application of low-temperature thermochronology
is not confined to the obvious, immediate purpose
of dating rock formations, as this is rarely possible
due to thermal resetting. Much more powerful

Fig. 4. Cartoon to show the relationship between the progressive exhumation of a source region and deposition of
the eroded exhumation record in an adjacent sedimentary basin (modified after Garver et al. 1999). The time slices
(t1– t3) correspond to three progressive and continuous intervals of erosion and deposition. Subsequently, a
‘stratigraphy’ of apatite fission-track ages develops within the basin, which is the inverse of the source-region
exhumation age trend. It should be noted that with progressive burial, sediments may be heated sufficiently to cause
annealing of the inherited AFT provenance records. Rarely is such burial-related heating sufficient to reset fission tracks
in detrital zircons and titanites. Also, note how topography may cause the upwarping of the lower temperature isotherms.
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(and more widely used) are the applications that
exploit thermal resetting to reconstruct rock exhu-
mation histories. The main fields of application of
AFT and AHe thermochronology include prove-
nance studies, thermal history analysis of sedimen-
tary basins, the evolution of orogenic mountain
belts and applications in non-orogenic settings.
Recent work in these areas has focused on the coup-
ling between climate and tectonics (e.g. Koons
1989; Willet 1999; Beaumont et al. 2000), and ther-
mochronlogical datasets have been used to evaluate
the role of climatically driven erosion as a com-
ponent of exhumation (Blythe & Kleinspehn 1998;
Reiners & Brandon 2006).

Fission-track and (U–Th–Sm)/He data are
often combined with other sources of data such as
thermochronology and geochronological dating to
constrain higher temperature histories and/or
rock formation age (e.g. 40Ar/39Ar and K–Ar:
Daszinnies et al. 2009; De Grave et al. 2009), and
terrestrial cosmogenic nuclide dating to compare
with more recent erosion rates (e.g. Cockburn
et al. 2000; Kuhlemann et al. 2009). In addition,
interpretations increasingly integrate data from
stratigraphic archives, geomorphology, structural
geology, remote sensing, petrology, fluid inclusion
analysis, vitrinite reflectance, clay mineralogy, con-
odont colour alteration, zircon typology and seismic
data. These multi-method approaches strengthen the
interpretation of AFT and AHe data, and help to
extend geological histories through time.

Absolute dating

Owing to fission-track annealing and He diffusion at
relatively low temperatures, geological events can
be dated in well-defined settings, when rocks very
rapidly passed the PAZ and/or partial retention
zone and resided at the surface or at a very shallow-
crustal level thereafter. Rapid cooling to low temp-
eratures mainly occurs subsequent to volcanic or
hydrothermal activity (Duddy et al. 1998), dyke
emplacement, faulting and friction or meteorite
impacts (e.g. Miller & Wagner 1979). For these
cases, thermochronological ages are more or less
identical to those obtained by conventional radio-
metric techniques, and can be used directly as dis-
crete time constraints. Fission-track analysis is
also used as a conventional method for dating
glasses (e.g. Fleischer & Price 1964; Bigazzi & De
Michele 1996), and has been applied to date stone
tools and fossils (e.g. Morwood et al. 1998). More-
over, both fission-track and (U–Th)/He techniques
have been used successfully to date the formation of
supergene minerals such as some phosphates or
vanadates, hematite, goethite, limonite, manganese
oxides and carbonate minerals (e.g. Bender 1973;
Lippolt et al. 1995; Shuster et al. 2005; Boni et al.
2007; Copeland et al. 2007).

Denudation and long-term landscape

evolution studies

Denudation and long-term landscape evolution
studies represent the most common and broadest
field of applied low-temperature thermochronology.
Studies range from compressional to extensional
settings and ‘stable’ cratonic interiors.

Orogenic belts. Orogenic mountain ranges are
characterized by substantial relief and immense
uplift/denudation rates, resulting in large-scale
advective transfer of heat and increased thermal gra-
dient. The obvious correlation between exhumation
and cooling predetermined this setting for an early
application of thermochronological research, and
expanded the scope of the method(s) from a purely
‘age determination’ approach to a unique thermo-
tectonic tool. Wagner (1968) and Wagner &
Reimer (1972) first used AFT data to provide esti-
mates of the time and rates at which rocks approach
the surface and cool as a result of ‘uplift and
erosion’. At present, low-temperature thermochro-
nology is the most efficient method to quantify
denudation rates on geological timescales. Changes
in erosion rates with time can be constrained using
multiple chronometers with different closure temp-
eratures on the same rock sample, or from the distri-
bution of cooling ages from a single system along a
vertical transect. Spatial–temporal patterns of ther-
mochronometrically determined erosion rates help
to constrain the flow of material through orogenic
wedges, orogenic growth and decay cycles, palaeo-
relief, and relationships with structural, geomorpho-
logical or climatic features (cf. Reiners & Brandon
2006). Subsequent to the first apatite thermochrono-
logical works in the Alps (e.g. Schaer et al. 1975;
Wagner et al. 1979; Grundmann & Morteani
1985; Hurford 1986; Hurford et al. 1991), most of
the world’s young orogenic belts were studied
(e.g. Parrish 1983; Seward & Tulloch 1991; Corri-
gan & Crowley 1992; Hendrix et al. 1994; Blythe
et al. 1996; O’Sullivan & Currie 1996; Sorkhabi
et al. 1996; Dunkl & Demény 1997; Kamp 1997;
Sanders et al. 1999; Fayon et al. 2001; Spiegel
et al. 2001; Glasmacher et al. 2002b; Reiners
et al. 2002; Thomson 2002; Willet et al. 2003; Van
der Beek et al. 2006; Gibson et al. 2007; Vincent
et al. 2007; Glotzbach et al. 2008, 2009; del Rı́o
et al. 2009; Ruiz et al. 2009).

Continental rifts and passive continental margins.
Continental rifts are elongated tectonic depressions
that result from extension and crustal thinning
caused either by a regional extensional stress field
or in response to asthenospheric upwelling (cf.
Olsen 1995; Ziegler & Cloething 2004). Continental
separation and the onset of sea-floor spreading mark
the transition from a continental rift into a passive

F. LISKER ET AL.10



margin. Consequently, the general morphotectonic
evolution and appearance of rifts and passive
margins is similar. In detail, the style of lithospheric
extension, geometry of rifting, rate and amount of
extension are influenced by local crust rheology
coupled to erosion, which in turn is influenced by
pre-existing morphology, rift-related magmatism,
local drainage and climate (e.g. Gilchrist & Sum-
merfield 1990; Kooi & Beaumont 1994; Olsen
1995; O’Sullivan & Brown 1998; Ziegler &
Cloething 2004). Deconvolving these different con-
trols has been the focus of AFT and AHe studies.
Apatite thermochronological studies have been
reported from most of the world’s continental-size
rift structures and highly extended terranes (for an
overview cf. Stockli 2005) including the West
Antarctic Rift System (e.g. Gleadow et al. 1984;
Fitzgerald & Gleadow 1988; Fitzgerald 1992,
1994; Foster & Gleadow 1992a; Balestrieri et al.
1994; Fitzgerald & Stump 1997; Lisker 2002; Fitz-
gerald et al. 2006), the East African Rift System
(e.g. Kohn & Eyal 1981; Omar et al. 1989; Foster
& Gleadow 1993, 1996; Van Der Beek et al.
1998; Feinstein et al. 1996; Kohn et al. 1997; Bales-
trieri et al. 2005; Spiegel et al. 2007), and the Basin
and Range Province (e.g. Armstrong et al. 2003;
House et al. 2003; Colgan et al. 2006), as well as
many other continental extension zones (e.g.
Rohrmann et al. 1994; Van der Beek et al. 1996;
Lisker & Fachmann 2001; Emmel et al. 2009).
Two studies on the influence of heat-flow variation
across major rifts were published by Gallagher
et al. (1994) and Lisker et al. (2003).

Gallagher & Brown (1997) demonstrated how
AFT data are used to study the evolution of rift-
margin topography (linked to isostatic-flexural
responses to erosional unloading) and to test the
different geomorphic models of passive margin
evolution. Most passive rift margins of the major
continents have been extensively studied by
apatite thermochronology, with a wealth of papers
detailing different aspects of their evolution. These
studies include Moore et al. (1986), Brown et al.
(1990, 2002), Dumitru (1991), Kalaswad et al.
(1993), Gallagher et al. (1994), Gallagher &
Brown (1999), Carter et al. (2000), Johnson &
Gallagher (2000), O’Sullivan et al. (2000), Persano
et al. (2002), Gunnell et al. (2003), Seward et al.
(2004), Japsen et al. (2006), Raab et al. (2005),
Emmel et al. (2006, 2007) and Kounov et al.
2009). Transform margins have seen comparatively
little study, with published work confined to the
Ghana margin (Clift et al. 1997; Bouillin et al.
1997; Bigot-Cormier et al. 2005).

Cratons. Cratonic interiors were traditionally con-
sidered as tectonically and thermally stable features.
They are characterized by extensive surfaces of
minimal relief that infer low rates of erosion.

However, thermochronological studies conducted
during the last two decades on different cratons
revealed that throughout the Phanerozoic many of
these ancient terrains have experienced discrete
episodes of kilometre-scale crustal erosion (e.g.
Crowley et al. 1986; Wagner 1990; Noble et al.
1997; Harman et al. 1998; Cederbom et al. 2000;
Bojar et al. 2002; Glasmacher et al. 2002a; Kohn
et al. 2002; Belton et al. 2004; Lorencak et al.
2004; Soderlund et al. 2005; Flowers et al. 2006).
On the other hand, cratonic areas often show appar-
ent inconsistencies between AFT and AHe ages.
These crossover ages are discussed controversially
as either resulting from non-thermal radiation-
enhanced annealing of fission tracks (e.g. Hendriks
& Redfield 2005) or reflecting the dependency of
He retention properties from the chemical compo-
sition of apatites (e.g. Green et al. 2006; Kohn
et al. 2009).

Basin analysis

Sedimentary basins are major archives of geological
history related either directly to the evolution of the
basin itself (e.g. subsidence history, tectonics,
climate, sea-level change) and/ or indirectly to the
geological history of the sediment-source regions
(e.g. provenance information, palaeo-basement,
geomorphology, tectonics). Traditionally, the burial
and deposition history of basin sediments is deter-
mined by investigation of the sedimentology and
deposition ages derived from biostratigraphy, com-
bined with structural and geophysical datasets.
However, establishing the timing of maximum
depths of burial, and the timing and extent of uplifts,
is often hard to recover owing to stratigraphic gaps,
poor biostratigraphic control and sediment types.
In this regard, AFT chronology has proven a valu-
able tool.

Thermochronology becomes most useful when a
basin has undergone a period of uplift or inversion,
during which a section of strata has been removed
by erosion (e.g. Kamp & Green 1990; Bray et al.
1992; Green et al. 1995). Specific information
gained from thermochronological data include
estimates of maximum palaeotemperatures, calcu-
lations of palaeogeothermal gradients and palaeo-
heat flow, style (fast/slow) and time of cooling
from maximum palaeotemperatures, characteriz-
ation of mechanisms of heating and cooling, quanti-
fication of missing sections, stratigraphic dating,
sediment provenance, and evaluation of hydro-
carbon maturation (Gleadow et al. 1983; Green
et al. 1989a; Kamp & Green 1990; Duane &
Brown 1991; Mitchell 1997; Logan & Duddy 1998).

Particularly useful in basin analysis is the
integration of thermochronological data with
maximum palaeotemperature indicators (Fig. 5),
like vitrinite reflectance (VR) and illite crystallinity
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(e.g. Bray et al. 1992; Pagel et al. 1997; Duddy et al.
1998; Mathiesen et al. 2000; Ventura et al. 2001;
Arne et al. 2002; Osadetz et al. 2002; Tingate &
Duddy 2002). VR is the measure of the coalification
rank of organic matter, and it is mainly dependent
on temperature and time (Burnham & Sweeney
1989). VR data provide a direct estimation of
maximum palaeotemperatures across the same
temperature range as annealing in fission tracks in
apatite, which enables the thermal history model-
ling of joint VR and AFT datasets to provide a
more robust constraint on temperature–time his-
tories. Basin modelling using combined thermo-
chronological and VR constraints has become a
routine, and is a valuable tool in the hydrocarbon
exploration industry (Gleadow et al. 1983; Green
et al. 2002; Emmerich et al. 2005; Underdown
et al. 2007). Also of economic relevance is the
application of apatite thermochronology to the
exploration of hydrothermal ore deposits (cf.
McInnes et al. 2005).

Tectonic processes

Thermochronological methods can be used to detect
tectonic activities in two ways. In areas of substan-
tial block uplift, thermochronological ages may be

disrupted across tectonic structures. Such offsets
in the palaeo-isotherm/-depth stratigraphy can be
used to determine relative uplift between different
blocks and the amount of throw on bounding
faults (Fitzgerald & Gleadow 1988, 1990; Dumitru
1991; Foster & Gleadow 1992a, b, 1996; Fitzgerald
et al. 1993; O’Sullivan et al. 1995, 2000; Johnson
1997; Rahn et al. 1997; Wagner et al. 1997;
Thomson 1998; Kohn et al. 1999; Redfield et al.
2007; Ventura et al. 2009; Xu et al. 2009). More-
over, the timing of tectonic activity may be deter-
mined by the direct dating of faults, lineaments or
pseudotachylites (Harman et al. 1998; O’Sullivan
et al. 1998; Raab et al. 2002, 2009; Zwingmann &
Mancktelow 2004; Tagami 2005; Timar-Geng
et al. 2009; Yamada et al. 2009).

Summary

As can be seen from the papers contained in this
Special Publication, apatite thermochronology has
grown to become a reliable and routinely used
method to helping in solving a diverse range of
geological problems. Although mature, the method
continues to undergo developments. Over the last
decade there have been considerable improvements

Fig. 5. Schematic to show how the thermal history of a sedimentary basin can be recovered by integration of data from
multiple palaeothermometers and chronometers. Illite data constrain the burial or heating phase of a basin’s thermal
history, VR records maximum temperature, and combined apatite thermochronology constrains the timing of cooling
and subsequent denudation (modified after Pevear 1999).
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in AFT methodology and data interpretation, but
there is still scope for further advances. Future
studies to refine models of track annealing in
apatite may shift away from laboratory-based
experimentation to well-constrained geological
experiments (e.g. Spiegel et al. 2007) and molecular
dynamic simulations (Rabone et al. 2008). Further
work will also need to be carried out on under-
standing the controls on annealing in zircons and
titanites, as well as the establishment of new fission-
track mineral dating systems (e.g. monazite, merril-
lite: cf. Wagner & Van den Haute 1992; Gleadow
et al. 2002).

We are very grateful to A. Carter and F. Stuart for construc-
tive reviews of the manuscript.
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of NW Europe. In: DORÉ, A. G., CARTWRIGHT,
J. A., STOKER, M. S., TURNER, J. P. & WHITE, N.
(eds) Exhumation of the North Atlantic Margin:
Timing, Mechanisms and Implications for Petroleum
Exploration. Geological Society, London, Special
Publications, 196, 331–354.

GRUNDMANN, G. & MORTEANI, G. 1985. The young
uplift and thermal history of the Central Eastern Alps
(Austria/Italy), evidence from apatite fission track
ages. Jahrbuch der Geologischen Bundesanstalt, 128,
197–216.

GUNNELL, Y., GALLAGHER, K., CARTER, A., WIDDOW-

SON, M. & HURFORD, A. J. 2003. Denudation history
of the continental margin of western peninsular India
since the early Mesozoic – reconciling apatite fission-
track data with geomorphology. Earth and Planetary
Science Letters, 215, 187–201.

HARMAN, R., GALLAGHER, K., BROWN, R., RAZA, A. &
BIZZI, L. 1998. Accelerated denudation and tectonic/
geomorphic reactivation of the cratons of northeastern
Brazil during the Late Cretaceous. Journal of Geophy-
sical Research B, 103, 27,091–27,105.

HASEBE, N., BARBARAND, J., JARVIS, K., CARTER, A. &
HURFORD, A. J. 2004. Apatite fission-track chrono-
metry using laser ablation ICP-MS. Chemical
Geology, 207, 135–145.

HASEBE, N., CARTER, A., HURFORD, A. J. & ARAI, S.
2009. The effect of chemical etching on LA–ICP-
MS analysis in determining uranium concentration
for fission-track chronometry. In: LISKER, F.,
VENTURA, B. & GLASMACHER, U. A. (eds) Thermo-
chronological Methods: From Palaeotemperature
Constraints to Landscape Evolution Models. Geo-
logical Society, London, Special Publications, 324,
37–46.

HENDRIKS, B. W. H. & REDFIELD, T. F. 2005. Apatite
fission track and (U–Th)/He data from Fennoscandia:
An example of underestimation of fission track anneal-
ing in apatite. Earth and Planetary Science Letters,
236, 443–458.

HENDRIX, M. S., DUMITRU, T. A. & GRAHAM, S. A.
1994. Late Oligocene–early Miocene unroofing in
the Chinese Tian Shan: an early effect of the India–
Asia collision. Geology, 22, 487–490.

HOURIGAN, J. K., REINERS, P. W. & BRANDON, M. T.
2005. U–Th zonation-dependent alpha-ejection in
(U–Th)/He chronometry. Geochimica et Cosmochi-
mica Acta, 69, 3349–3365.

HOUSE, M. A., KELLEY, S. A. & ROY, M. 2003. Refining
the footwall cooling history of a rift flank uplift, Rio
Grande rift, New Mexico. Tectonics, 22, 1060;
doi:1010.1029/2002TC001418.

HURFORD, A. J. 1986. Cooling and uplift patterns in
the Lepontine Alps South Central Switzerland and an
age of vertical movement on the Insubric fault line.
Contributions to Mineralogy and Petrology, 92,
413–427.

HURFORD, A. J. 1990. Standardization of fission track
dating calibration: Recommendation by the Fission
Track Working Group of the I.U.G.S. Subcommission
on Geochronology. Chemical Geology, 80, 171–178.

HURFORD, A. J. & CARTER, A. 1991. The role of fission
track dating in discrimination of provenance. In:
MORTON, A. C., TODD, S. P. & HAUGHTON,
P. D. W. (eds) Developments in Sedimentary Prove-
nance Studies. Geological Society, London, Special
Publications, 57, 67–78.

HURFORD, A. J. & GREEN, P. F. 1983. The zeta age
calibration of fission-track dating. Chemical Geology,
1, 285–317.

HURFORD, A. J., FITCH, F. J. & CLARKE, A. 1984. Resol-
ution of the age structure of the detrital zircon popu-
lations of two Lower Cretaceous sandstones from the
Weald of England by fission track dating. Geological
Magazine, 121, 269–277.

HURFORD, A. J., HUNZIKER, J. C. & STOCKHERT, B.
1991. Constraints on the late thermotectonic evolution
of the western Alps: evidence for episodic rapid uplift.
Tectonics, 10, 758–769.

ISSLER, D. R. 1996. Optimizing time step size for apatite
fission track annealing models. Computers and Geo-
sciences, 22, 67–74.

JAPSEN, P., BONOW, J. M., GREEN, P. F., CHALMERS,
J. A. & LIDMAR-BERGSTROM, K. 2006. Elevated,
passive continental margins: Long-term highs or
Neogene uplifts? New evidence from West Greenland.
Earth and Planetary Science Letters, 248, 330–339.

JOHNSON, C. 1997. Resolving denudational histories in
orogenic belts with apatite fission-track thermochro-
nology and structural data: an example from southern
Spain. Geology, 25, 623–626.

JOHNSON, C. & GALLAGHER, K. 2000. A preliminary
Mesozoic and Cenozoic denudation history of the
North East Greenland onshore margin. Global and
Planetary Change, 24, 261–274.

KALASWAD, S., RODEN, M. K., MILLER, D. S. &
MORISAWA, M. 1993. Evolution of the continental
margin of western India: new evidence from apatite
fission-track dating. Journal of Geology, 101, 667–673.

F. LISKER ET AL.18



KAMP, P. J. J. 1997. Paleogeothermal gradient and defor-
mation style, Pacific front of the Southern Alps
Orogen: constraints from fission track thermochronol-
ogy. Tectonophysics, 271, 37–58.

KAMP, P. J. J. & GREEN, P. F. 1990. Thermal and tectonic
history of selected Taranaki Basin (New Zealand)
wells assessed by apatite fission track analysis. AAPG
Bulletin, 74, 1401–1419.

KEEVIL, N. B. 1943. The distribution of helium in rocks,
V. American Journal of Science, 241, 277–306.

KETCHAM, R. A. 2005. Forward and inverse modeling of
low-temperature thermochronometry data. Reviews in
Mineralogy and Geochemistry, 58, 275–314.

KETCHAM, R. A., CARTER, A., DONELICK, R. A.,
BARBARAND, J. & HURFORD, A. J. 2007. Improved
modelling of fission-track annealing in apatite.
American Mineralogist, 92, 789–798.

KETCHAM, R. A., DONELICK, R. A. & DONELICK, M. B.
2000. AFTSolve: a program for multi-kinetic modeling
of apatite fission-track data. Geological Materials
Research. 2, 1–32.

KOHN, B. P. & EYAL, M. 1981. History of uplift of the
crystalline basement of Sinai and its relation to the
opening of the Red Sea as revealed by fission track
dating of apatites. Earth and Planetary Science
Letters, 52, 129–141.

KOHN, B. P., FOSTER, D. A., STECKLER, M. S. & EYAL,
M. 1997. Thermal history of the eastern Gulf of Suez,
II. Reconstruction from apatite fission track and
40Ar/39Ar K-feldspar measurements. Tectonophysics,
283, 219–239.

KOHN, B. P., GLEADOW, A. J. W., BROWN, R. W.,
GALLAGHER, K., O’SULLIVAN, P. B. & FOSTER,
D. A. 2002. Shaping the Australian crust over the last
300 million years: insights from fission track thermo-
tectonic imaging and denudation studies of key ter-
ranes. Australian Journal of Earth Sciences, 49,
697–717.

KOHN, B. P., GLEADOW, A. J. W. & COX, S. J. D. 1999.
Denudation history of the Snowy Mountains; con-
straints from apatite fission track thermochronology.
In: KOHN, B. P. & BISHOP, P. (eds) Long-term Land-
scape Evolution of the Southeastern Australian
Margin; Apatite Fission Track Thermochronology
and Geomorphology. Blackwell, Melbourne, 181–198.

KOHN, B. P., LORENCAK, M., GLEADOW, A. J. W.,
KOHLMANN, F., RAZA, A., OSADETZ, K. G. &
SORJONEN-WARD, P. 2009. A reappraisal of low-
temperature thermochronology of the eastern Fenno-
scandia Shield and radiation-enhanced apatite fission-
track annealing. In: LISKER, F., VENTURA, B. &
GLASMACHER, U. A. (eds) Thermochronological
Methods: From Palaeotemperature Constraints to
Landscape Evolution Models. Geological Society,
London, Special Publications, 324, 193–216.

KOOI, H. & BEAUMONT, C. 1994. Escarpment evolution
on high-elevation rifted margins: insights derived
from a surface processes model that combines diffu-
sion, advection, and reaction. Journal of Geophysical
Research, 99, 12,191–12,209.

KOONS, P. O. 1989. The topographic evolution of colli-
sional mountain belts: a numerical look at the southern
Alps, New Zealand. American Journal of Science, 289,
1041–1069.

KOUNOV, A., VIOLA, G., DE WIT, M. & ANDREOLI, M.
2009. Denudation along the Atlantic passive
margin: new insights from apatite fission-track analysis
on the western coast of South Africa. In: LISKER, F.,
VENTURA, B. & GLASMACHER, U. A. (eds) Thermo-
chronological Methods: From Palaeotemperature Con-
straints to Landscape Evolution Models. Geological
Society, London, Special Publications, 324, 287–306.

KUHLEMANN, J., KRUMREI, I., DANIŠÍK, M. & VAN DER
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