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Abstract

I explore the reduction of thermodynamics to statistical mechanics by
treating the former as a control theory: a theory of which transitions be-
tween states can be induced on a system (assumed to obey some known
underlying dynamics) by means of operations from a fixed list. I re-
cover the results of standard thermodynamics in this framework on the
assumption that the available operations do not include measurements
which affect subsequent choices of operations. I then relax this assump-
tion and use the framework to consider the vexed questions of Maxwell’s
demon and Landauer’s principle. Throughout I assume rather than prove
the basic irreversibility features of statistical mechanics, taking care to
distinguish them from the conceptually distinct assumptions of thermo-
dynamics proper.

1 Introduction

Thermodynamics is misnamed. The name implies that it stands alongside the
panoply of other “X-dynamics” theories in physics: classical dynamics, quantum
dynamics, electrodynamics, hydrodynamics, chromodynamics and so forth.!
But what makes these theories dynamical is that they tell us how systems of a
certain kind — classical or quantum systems in the abstract, or charged mat-
ter and fields, or fluids, or quarks and gluons, or whatever — evolve if left to
themselves. The paradigm of a dynamical theory is a state space, giving us
the possible states of the system in question at an instant, and a dynamical
equation, giving us a trajectory (or, perhaps, a family of trajectories indexed by
probabilities) through each state that tells us how that state will evolve under
the dynamics.

Thermodynamics basically delivers on the state space part of the recipe: its
state space is the space of systems at equilibrium. But it is not in the business
of telling us how those equilibrium states evolve if left to themselves, except in
the trivial sense that they do not evolve at all: that is what equilibrium means,
after all. When the states of thermodynamical systems change, it is because

Hn fact, the etymology of “thermodynamics”, according to the Oxford English Dictionary,
is just that it is the study of heat (thermo) and work (dynamics) and their interaction. (I am
grateful to Jos Uffink for this observation.



we do things to them: we put them in thermal contact with other systems, we
insert or remove partitions, we squeeze or stretch or shake or stir them. And
the laws of thermodynamics are not dynamical laws like Newton’s: they concern
what we can and cannot bring about through these various interventions.

There is a general name for the study of how a system can be manipulated
through external intervention: control theory. Here again a system is charac-
terised by its possible states, but instead of a dynamics being specified once and
for all, a range of possible control actions is given. The name of the game is
to investigate, for a given set of possible control actions, the extent to which
the system can be controlled: that is, the extent to which it can be induced
to transition from one specified state to another. The range of available tran-
sitions will be dependent on the forms of control available; the more liberal a
notion of control, the more freedom we would expect to have to induce arbitrary
transitions.

This conception of thermodynamics is perfectly applicable to the theory
understood phenomenologically: that is, without any consideration of its mi-
crophysical foundations. However, my purpose in this paper is instead to use
the control-theory paradigm to explicate the relation between thermodynamics
and statistical mechanics. That is: I will begin by assuming the main results of
non-equilibrium statistical mechanics and then consider what forms of control
theory they can underpin. In doing so I hope to clarify both the control-theory
perspective itself and the reduction of thermodynamics to statistical mechanics,
as well as providing some new ways to get insight into some puzzles in the liter-
ature: notably, those surrounding Maxwell’s Demon and Landauer’s Principle.

In sections 2 and 3, I review the core results of statistical mechanics (making
no attempt to justify them). In sections 4 and 5 I introduce the general idea
of a control theory and describe two simple examples: adibatic manipulation
of a system and the placing of systems in and out of thermal contact. In
sections 6-8, I apply these ideas to construct a general account of classical
thermodynamics as a control theory, and demonstrate that a rather minimal
form of thermodynamics possesses the full control strength of much more general
theories; I also explicate the notion of a one-molecule gas from the control- (and
statistical-mechanical) perspective). In the remainder of the paper I extend the
notion of control theory to consider systems with feedback, and demonstrate in
what senses this does and does not increase the scope of thermodynamics.

I develop the quantum and classical versions of the theory in parallel, and
fairly deliberately flit between quantum and classical examples. When I use
classical examples, in each case (I believe) the discussion transfers straightfor-
wardly to the quantum case unless noted otherwise. The same is probably true
in the other direction; if not, no matter, given that classical mechanics is of
(non-historical) interest in statistical physics only insofar as it offers a good
approximation to quantum mechanics.
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Statistical-mechanical preliminaries

Statistical mechanics, as I will understand it in this paper, is a theory of dy-
namics in the conventional sense: it is in the business of specifying how a given
system will evolve spontaneously. For the sake of definiteness, I lay out here
exactly what I assume to be delivered by statistical mechanics.

1.

The systems are classical or quantum systems, characterised inter alia by
a classical phase space or quantum-mechanical Hilbert space Hamiltonian
H|[V7] which may depend on one or more external parameters V7 (in the
paradigm case of a gas in a box, the parameter is volume). In the quantum
case [ assume the spectrum of the Hamiltonian to be discrete; in either case
I assume that the possible values of the parameters comprise a connected
subset of RV and that the Hamiltonian depends smoothly on them.

The states are probability distributions over phase space, or mixed states
in Hilbert space. (Here I adopt what is sometimes called a Gibbsian ap-
proach to statistical mechanics; in Wallace (2013a), I defend the claim
that this is compatible with a view of statistical mechanics as entirely
objective.)

Given two systems, their composite is specified by the Cartesian product
of the phase spaces (classical case) or by the tensor product of the Hilbert
spaces (quantum case), and by the sum of the Hamiltonians (either case).

The Gibbs entropy is a real function of the state, defined in the classical
case as

Se(p) = / dz p(z) In p(z) 1)

and in the quantum case as
Sa(p) = —Tr(plnp). (2)

The dynamics are given by some flow on the space of states. In Hamilto-
nian dynamics this would be the flow generated by Hamilton’s equation
from the Hamiltonian H[V7], under which the Gibbs entropy is a constant
of the motion; in statistical mechanics, however, we assume only that the
flow (a) is entropy-non-decreasing, and (b) conserves energy, in the sense
that the probability given by the state to any given energy is invariant
under the flow.

For any given system there is some time, the equilibration timescale, after
which the system has evolved to that state which maximises the Gibbs
entropy subject to the conservation constraint above.

Now, to be sure, it is controversial at best how statistical mechanics delivers
all this. In particular, we have good reason to suppose that isolated (classical or
quantum) systems ought really to evolve by Hamiltonian dynamics, according



to which the Gibbs entropy is constant and equilibrium is never achieved; more
generally, the statistical-mechanical recipe I give here is explicitly time-reversal-
noninvariant, whereas the underlying dynamics of the systems in question have
a time reversal symmetry.

There are a variety of responses to offer to this problem, among them:

e Perhaps no system can be treated as isolated, and interaction with an
external environment somehow makes the dynamics of any realistic system
non-Hamiltonian.

e Perhaps the probability distribution (or mixed state) needs to be under-
stood not as a property of the physical system but as somehow tracking
our ignorance about the system’s true state, and the increase in Gibbs
entropy represents an increase in our level of ignorance.

e Perhaps the true dynamics is not, after all, Hamiltonian, but incorporates
some time-asymmetric correction.

My own preferred solution to the problem (and the one that I believe most nat-
urally incorporates the insights of the “Boltzmannian” approach to statistical
mechanics) is that the state p should not be interpreted as the true probability
distribution over microstates, but as a coarse-grained version of it, correctly
predicting the probabilities relevant to any macroscopically manageable process
but not correctly tracking the fine details of the microdynamics, and that the
true signature of statistical mechanics is the possibility of defining (in appro-
priate regimes, under appropriate conditions, and for appropriate timescales)
autonomous dynamics for this coarse-grained distribution that abstract away
from the fine-grained details.

But from the point of view of understanding the reduction of thermodynam-
ics to statistical mechanics, all this is beside the point. The most important
thing to realise about the statistical-mechanical results I give above is that
manifestly they are correct: the entire edifice of statistical mechanics (a) rests
upon them, and (b) is abundantly supported by empirical data. (See Wallace
(2013b) for more on this point.) There is a foundational division of labour here:
the question of how this machinery is justified given the underlying mechan-
ics is profoundly important, but it can be distinguished from the question of
how thermodynamics relates to statistical mechanics. Statistical mechanics is a
thoroughly successful discipline in its own right, and not merely a foundational
project to shore up thermodynamics.

3 Characterising statistical-mechanical equilib-
rium
The “state which maximises the Gibbs entropy” can be evaluated explicitly.

If the initial state p has a definite energy U, it will evolve to the distribution
with the largest Gibbs entropy for that energy, and it is easy to see that (up



to normalisation) in the classical case this is the uniform distribution on the
hypersurface H[V;](z) = U, and that in the quantum case it is the projection
onto the eigensubspace of H [V7] with energy U. Writing py to denote this state,
it follows that in general the equilibrium state achieved by a general initial p
will be that statistical mixture of py that gives the same probability to each
energy as p did. In the classical case this is

p—> /dUPr(U)pU (3)

where
Pr(U) = /pé(H — Uy,

in the quantum case, it is
p— 3 Pr(U)pu (4)

where the sum is over the distinct eigenvalues U; of the Hamiltonian, Pr(U;) =
Tr(pIl;), and TI; projects onto the energy U; subspace. I will refer to states of
this form (quantum or classical) as called generalised equilibrium states.

We can define the density of states V(U) at energy U for a given Hamiltonian
H in the classical case as follows: we take V(U)dU to be the phase-space volume
of states with energies between U and U + dU. We can use the density of states
to write the Gibbs entropy of a generalised equilibrium state explicitly as

So /dUPr U) InV(U) (/dUPr )lnPr(U)). (5)

In the quantum case it is instead

ZPr ) In(Dim Uj;) (ZPr )In Pr(U, )) (6)

where Dim(U;) is the dimension of the energy-U; subspace. Normally, I will as-
sume that the quantum systems we are studying have sufficiently close-spaced
energy eigenstates and sufficiently well-behaved states that we can approximate
this expression by the classical one (defining VSU as the total dimension of eigen-
subspaces with energies between U and U + U, and Pr(U)dU as the probability
that the system has one of the energies in the range (U, U + dU)).

Now, suppose that the effective spread AU over energies of a generalised
equilibrium state around its expected energy Uy is narrow enough that the
Gibbs entropy can be accurately approximated simply as the logarithm of V(Uyp).
States of this kind are called microcanonical equilibrium states, or microcanon-
ical distributions (though the term is sometimes reserved for the ideal limit,
where Pr(U) is a delta function at Uy, so that p(z) = (1/V(Uy))d(H (z) — Uy)).
A generalised equilibrium state can usefully be thought of as a statistical mix-
ture of microcanonical distributions.



If p is a microcanonical ensemble with respect to H[V7] for particular values
of the parameters V7, in general it will not be even a generalised equilibrium state
for different values of those parameters. However, if close-spaced eigenvalues of
the Hamiltonian remain close-spaced even when the parameters are changed, p
will equilibrate into the microcanonical distribution. In this case, I will say that
the system is parameter-stable; I will assume parameter stability for most of the
systems I discuss.

A microcanonical distribution is completely characterised (up to details of
the precise energy width U and the spread over that width) by its energy U
and the external parameters V;. On the assumption that V(U) is monotonically
increasing with U for any values of the parameters (and, in the quantum case,
that the system is large enough that we can approximate V(U) as continuous)
we can invert this and regard U as a function of Gibbs entropy S and the
parameters. This function is (one form of) the equation of state of the system:
for the ideal monatomic gas with N mass-m particles, for instance, we can
readily calculate that

V(U,V) x VN (2mU)3N/2—1 (7)
and hence (for N > 1)
S>~Sy+NInV+ (3N/2)InU, (8)

which can be inverted to get U in terms of V' and S.
The microcanonical temperature is then defined as

(%),

(for the ideal monatomic gas, it is 2U/3N).

At the risk of repetition, it is not (or should not be!) controversial that
these probability distributions are empirically correct as regards predictions
of measurements made on equilibrated systems, both in terms of statistical
averages and of fluctuations around those averages. It is an important and
urgent question why they are correct, but it is not our question.

4 Adiabatic control theory

Given this understanding of statistical mechanics, we can proceed to the control
theory of systems governed by it. We will develop several different control
theories, but each will have the same general form, being specified by:

e A controlled object, the physical system being controlled.
e A set of control operations that can be performed on the controlled object.

o A set of feedback measurements that can be made on the controlled object.



e A set of control processes, which are sequences of control operations and
feedback measurements, possibly subject to additional constraints and
where the control operation performed at a given point may depend on
the outcomes of feedback measurements made before that point.

Our goal is to understand the range of transitions between states of the con-
trolled object that can be induced. In this section and the next I develop two
extremely basic control theories intended to serve as components for thermody-
namics proper in section 6.

The first such theory, adiabatic control theory, is specified as follows:

e The controlled object is a statistical-mechanical system which is parameter-
stable and initially at microcanonical equilibrium.

e The control operations consist of (a) smooth modifications to the exter-
nal parameters of the controlled object over some finite interval of time;
(b) leaving the controlled object alone for a time long compared to its
equilibration timescale.

e There are no feedback measurements: the control operations are applied
without any feedback as to the results of previous operations.

e The control processes are sequences of control operations ending with a
leave-alone operation.

Because of parameter stability, the end state is guaranteed to be not just at
generalised equilibrium but at microcanonical equilibrium. The control pro-
cesses therefore consist of moving the system’s state around in the space of
microcanonical equilibrium states. Since for any value of the parameters the
controlled object’s evolution is entropy-nondecreasing, one result is immediate:
the only possible transitions are between states x,y with Sg(y) > Sg(x). The
remaining question is: which such transitions are possible?

To answer this, consider the following special control processes: a process
is quasi-static if any variations of the external parameters are carried out so
slowly that the systems can be approximated to any desired degree of accuracy
as being at or extremely close to equilibrium throughout the process.

Now, consider some very small segment 6t of an quasi-static control process
(and suppose for simplicity that there is only one external parameter V). At
the beginning of the segment, if the energy of the system is U, then the system’s
state p is (or is very near to) the unique equilibrium state specified by U and
V. During the segment, V' changes to V + dV and p transitions to some new
state p 4+ dp, which has energy U + dU. We will attempt to find dp and dU to
first order in §V; taking dt sufficiently small and summing will then give us an
expression for the total change in each.

To find dp, we can consider the transition to occur in two steps: first V' is
changed suddenly to V + dV, and then p evolves under the new dynamics for
time §t. The energy change can therefore be attributed entirely to the change in
6V, and the entropy change entirely to the subsequent evolution of the system.



(Of course, at a sufficiently high level of accuracy the pattern of imposition of
the change in V' will affect the evolution, but we can make this effect arbitrarily
small by a sufficiently small choice of §t.)

However, since the process is quasi-static, p + dp is the equilibrium state at
the new values of U and V, and as such lies at an entropy maximum among
such states. So to first order in 0V, p has the same entropy as p + dp (the
derivative of entropy in any direction along the expected-energy hypersurface
from an equilibrium state is zero).

To summarise: quasi-static adiabatic processes are isentropic: they do not
induce changes in system entropy. What about non-quasi-static adiabatic pro-
cesses? Well, if at any point in the process the system is not at (or very close
to) equilibrium, by the baseline assumptions of statistical mechanics it follows
that its entropy will increase as it evolves. So an adiabatic control process is
isentropic if quasi-static, entropy-increasing otherwise.

In at least some cases, the result that quasi-static adiabatic processes are
isentropic does not rely on any explicit equlibration assumption. To be specific:
if the Hamiltonian has the form

HVI] = 3 Us(A ) [9:(An)) (a(As) (10)

then the adiabatic theorem of quantum mechanics? tells us that if the parameters
are changed sufficiently slowly from A% to A} then (up to phase, and to an arbi-
trarily high degree of accuracy) the Hamiltonian dynamics will cause [¢;(A}))
to evolve to |7,/Ji(/\})>; hence, in this regime the dynamics takes microcanonical
states to microcanonical states of the same energy.

In any case, we now have a complete solution to the control problem. By
quasi-static processes we can move the controlled object’s state around arbi-
trarily on a given constant-entropy hypersurface; by applying a non-quasi-static
process we can move it from one such hypersurface to a higher-entropy hyper-
surface. So the condition that the final state’s entropy is not lower than the
initial state’s is sufficient as well as necessary: adiabatic control theory allows
a transition between equilibrium states iff it is entropy-nondecreasing.

A little terminology: the work done on the controlled object under a given
adiabatic control process is just the change in its energy, and is thus the same
for any two control processes that induce the same transition, and it has an ob-
vious physical interpretation: the work done is the energy cost of inducing the
transition by any physical implementation of the control theory. (In phenomeno-
logical treatments of thermodynamics it is usual to assume some independent
understanding of “work done”, so that the observation that adiabatic transi-
tions from x to y require the same amount of work however they are performed
becomes contentful, and is one form of the First Law of Thermodynamics; from
our perspective, though, it is just an application of conservation of energy.)

Following the conventions of thermodynamics, we write dW for a very small
quantity of work done during some part of a quasi-static control process. We

2See, e.g., Messiah (1962, ch.XVII sections 10-14) or Weinberg (2013, pp.193-6).



have

oU
dW = dU|§S:0 = Z <W> dV[ = — ZPIdVI (11)
1 1/ v;,8 T

where the derivative is taken with all values of V; other than V; held constant
and the last step implicitly defines the generalised pressures. (In the case where
V7 just is the volume, P! is the ordinary pressure.)

5 Thermal contact theory

Our second control theory, thermal contact theory, is again intended largely as a
tool for the development of more interesting theories. To develop it, suppose that
we have two systems initially dynamically isolated from one another, and that
we introduce a weak interaction Hamiltonian between the two systems. Doing
S0, to a good approximation, will leave the internal dynamics of each system
largely unchanged but will allow energy to be transferred between the systems.
Given our statistical-mechanical assumptions, this will cause the two systems
(which are now one system with two almost-but-not-quite-isolated parts) to
proceed, on some timescale, to a joint equilibrium state. When two systems
are coupled in this way, we say that they are in thermal contact. Given our
assumption that the interaction Hamiltonian is small, we will assume that the
equilibration timescales of each system separately are very short compared to the
joint equilibration timescale, so that the interaction is always between systems
which separately have states extremely close to the equilibrium state.

The result of this joint equilibration can be calculated explicitly. If two
systems each confined to a narrow energy band are allowed to jointly equilibrate,
the energies of one or other may end up spread across a wide range. For instance,
if one system consists of a single atom initially with a definite energy E and
it is brought in contact with a system of a great many such atoms, its post-
equilibration energy distribution will be spread across a large number of states.
However, for the most part we will assume that the microcanonical systems we
consider are not induced to transition out of microcanonical equilibrium as a
consequence of joint equilibration; systems with this property I call thermally
stable.

There is a well-known result that characterises systems that equilibrate with
thermally stable systems which is worth rehearsing here. Suppose two systems
have density-of-state functions Vi, Vo and are initially in microcanonical equi-
librium with total energy U. The probability of the two systems having energies
Ui, Us is then

Pr(U17U2) O(V(Ul)V(UQ)(S(Ul"‘UQ —U) (12)

and so the probability of the first system having energy U; is

Assuming that the second system is thermally stable, we express the second
term on the right hand side in terms of its Gibbs entropy and expand to first



order around U (the assumption that the second system’s energy distribution
is narrow tells us that higher terms in the expansion will be negligible):

V(U—Ul):exp(S(U—Ul))zexp{S(U)— <8U>V Ul}. (14)

Since the partial derivative here is just the inverse of the microcanonical tem-
perature T of the second system, the conclusion is that

Pr(Uy) o V(U )e Vt/T, (15)

which is recognisable as the canonical distribution at canonical temperature T'.
In any case, so long as we assume thermal stability then systems placed into
thermal contact may be treated as remaining separately at equilibrium as they
evolve towards a joint state of higher entropy.
We can now state thermal contact theory:

e The controlled object is a fixed, finite collection of mutually isolated ther-
mally stable statistical mechanical systems.

e The available control operations are (i) placing two systems in thermal
contact; (ii) breaking thermal contact between two systems; (iii) waiting
for some period of time.

e There are no feedback measurements.
e The control processes are arbitrary sequences of control operations.

Given the previous discussion, thermal contact theory shares with adiabatic con-
trol theory the feature of inducing transitions between systems at equilibrium,
and we can characterise the evolution of the systems during the control process
entirely in terms of the energy flow between systems. The energy flow between
two bodies in thermal contact is called heat. (A reminder: strictly speaking,
the actual amount of heat flow is a probabilistic quantity very sharply peaked
around a certain value.)

The quantitative rate of heat flow between two systems in thermal contact
will of course depend inter alia on the precise details of the coupling Hamiltonian
between the two systems. But in fact the direction of heat flow is independent
of these details. For the total entropy change (in either the microcanonical or
canonical framework) when a small quantity of heat d@) flows from system A to

system B is
_ B 0S54 0S4
08 =054+095p = {— (aUA>Vi+ <8UA)VL}JQ. (16)

But since the thermodynamical temperature 7" is just the rate of change of
energy with entropy while external parameters are held constant, this can be
rewritten as

S = (1/T5 — 1/TA Q. (17)
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So heat will flow from A to B only if the inverse thermodynamical temperature
of A is lower than that of B. In most cases (there are exotic counter-examples,
notably in quantum systems with bounded energy) thermodynamical temper-
ature is positive, so that this can be restated as: heat will flow from A to B
only if the thermodynamical temperature of A is greater than that of B. For
simplicity I confine attention to this case.

If we define two systems as being in thermal equilibrium when placing them
in thermal contact does not lead to any heat flow between them, then we have
the following thermodynamical results:

1. Two systems each in thermal equilibrium with a third system are at ther-
mal equilibrium with one another; hence, thermal equilibrium is an equiv-
alence relation. (The Zeroth Law of Thermodynamics).

2. There exist real-valued empirical temperature functions which assign to
each equilibrium system X a temperature ¢(X) such that heat flows from
X to Y when they are in thermal contact iff ¢(X) > t(Y).

(2) trivially implies (1); in phenomenological approaches to thermodynamics
the converse is often asserted to be true, but of course various additional as-
sumptions are required to make this inference. For our purposes, though, both
are corollaries of statistical mechanics, and “empirical temperatures” are just
monotonically increasing functions of thermodyamical temperature.

Returning to control theory, we can now see just what transitions can and
cannot be achieved via thermal contact theory. Specifically, the only transitions
that can be induced are the heating and cooling of systems, and a system can
be heated only if there is another system available at a higher temperature.
The exact range of transitions thus achievable will depend on the size of the
systems (if I have bodies at temperatures 300K and 400K, I can induce some
temperature increase in the first, but how much will depend on how quickly the
second is cooled).

A useful extreme case involves heat baths: systems at equilibrium assumed
to be so large that no amount of thermal contact with other systems will ap-
preciably change their temperature (and which are also assumed to have no
controllable parameters, not that this matters for thermal control theory). The
control transitions available via thermal contact theory with heat baths are
easy to state: any system can be cooled if its temperature is higher than some
available heat bath, or heated if it is cooler than some such bath.

6 Thermodynamics

We are now in a position to do some non-trivial thermodynamics. In fact, we
can consider two different thermodynamic theories that can thought of as two
extremes. To be precise: mazimal no-feedback thermodynamics is specified like
this:
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e The controlled object is a fixed, finite collection of mutually isolated sta-
tistical mechanical systems, assumed to be both thermally and parameter
stable.

e The control operations are (i) arbitrary entropy-non-decreasing transition
maps on the combined states of the system; (ii) leaving the systems alone
for a time longer than the equilibration timescale of each system.

e There are no feedback measurements.

e The control processes are arbitrary sequences of control operations ter-
minating in operation (ii) (that is, arbitrary sequences after which the
systems are allowed to reach equilibrium).

The only constraints on this control theory are that control operations do not
actually decrease phase-space volume, and that the control operations to apply
are chosen once-and-for-all and not changed on the basis of feedback.

By contrast, here is minimal thermodynamics, obtained simply by conjoining
thermal contact theory and adiabatic control theory:

e The controlled object is a fixed, finite collection of mutually isolated sta-
tistical mechanical systems, assumed to be both thermally and parameter
stable.

e The control operations are (i) moving two systems into or out of thermal
contact; (ii) making smooth changes in the parameters determining the
Hamiltonians of one or more system over some finite interval of time; (iii)
leaving the systems alone for a time longer than the equilibration timescale
of each system.

e There are no feedback measurements.

e The control processes are arbitrary sequences of control operations ter-
minating in operation (iii) (that is, arbitrary sequences after which the
systems are allowed to reach equilibrium).

The control theory for maximal thermodynamics is straightforward. The
theory induces transitions between equilibrium states; no such transition can
decrease entropy; transitions are otherwise totally arbitrary. So we can induce
a transition © — y between two equilibrium states z,y iff S(x) < S(y). It
is a striking feature of thermodynamics that under weak assumptions minimal
thermodynamics has exactly the same control theory, so that the apparently
much greater strength of maximal no-feedback thermodynamics is illusory.

To begin a demonstration, recall that in the previous sections we defined the
heat flow into a system as the change in its energy due to thermal contact, and
the work done on a system as the change in its energy due to modification of the
parameters. By decomposing any control process into periods of arbitrarily short
length — in each of which we can linearise the total energy change as the change
that would have occurred due to parameter change while treating each system

12



as isolated plus the change that would have occurred due to entropy-increasing
evolution while holding the dynamics fixed — and summing the results, we can
preserve these concepts in minimal thermodynamics. For any system, we then
have

AU =Q+ W, (18)

where U is the expected energy, @ is the expected heat flow into the system,
and W is the expected work done on the system. This result also holds for
any collection of systems, up to and including the entire controlled object; in
the latter case, @) is zero and W can again be interpreted as the energy cost of
performing the control process.

The reader will probably recognise this result as another form of the First
Law of Thermodynamics. In this context, it is a fairly trivial result: its content,
insofar as it has any, is just that there is a useful decomposition of energy changes
by their various causes. In phenomenological treatments of thermodynamics the
First Law gets physical content via some independent understanding of what
“work done” is (in the axiomatic treatment of Lieb and Yngvason (1999), for
instance, it is understood in terms of the potential energy of some background
weight). But the real content of the First Law from that perspective is that
there is a thermodynamical quantity called energy which is conserved. In our
microphysical-based framework the conservation of (expected) energy is a base-
line assumption and does not need to be so derived.

The concept of a quasi-static transition also generalises from adiabatic con-
trol theory to minimal thermodynamics. If dU is the change in system energy
during an extremely small step of such a control process, we have

oU oU
AU = <> dV1+<> ds (19)
ZI: i)y, s 5 )y,

and, given that quasi-static adiabatic processes are entropy-conserving, we can
identify the first term as the expected work done on the system in this small step
and the second as the expected heat flow into the system. Using our existing
definitions we can rewrite this as

dU = —> " P'dv; + 148, (20)
I

yet another form of the First Law, but it is important to recognise that from our
perspective, the expression itself has no physical content and is just a result of
partial differentiation. The content comes in the identification of the first term
as work and the second as heat.

Putting our results so far together, we know that

1. Any given system can be induced to make any entropy-nondecreasing tran-
sition between states.

2. Any given system’s entropy may be reduced by allowing it to exchange
heat with a system at a lower temperature, at the cost of increasing that
system’s temperature by a greater amount.

13



3. The total entropy of the controlled object may not decrease.

The only remaining question is then: which transitions between collections of
systems that do not decrease the total entropy can be induced by a combination
of (1) and (2)? So far as I know there is no general answer to the question.
However, we can answer it fully if we assume that one of the systems is what I
will call a Carnot system: a system such that for any value of S, (‘g—g)vl takes all
positive values on the constant-S hypersurface. The operational content of this
claim is that a Carnot system in any initial equilibrium state can be controlled
so as to take on any temperature by an adiabatic quasi-static process.

The ideal gas is an example of a Carnot system: informally, it is clear that its
temperature can be arbitrarily increased or decreased by adiabatically changing
its volume. More formally, from its equation of state (8) we have

0= %dv + %d(]‘gszo, (21)
so that the energy can be changed arbitrarily through adiabatic processes, and
the temperature is proportional to the energy. Of course, no gas is ideal for all
temperatures and in reality the most we can hope for is a system that behaves
as a Carnot system across the relevant range of temperatures.

In any case, given a Carnot system we can transfer entropy between systems
with arbitrarily little net entropy increase. For given two systems at tempera-
tures T4, Tp with T4 > Tp, we can (i) adiabatically change the temperature
of the Carnot system to just below T4; (ii) place it in thermal contact with the
hotter system, so that heat flows into the Carnot system with arbitrarily little
net entropy increase; (iii) adiabatically lower the Carnot system to a tempera-
ture just above Tg; (iv) place it in thermal contact with the colder system, so
that (if we wait the right period of time) heat flows out of the Carnot system
with again arbitrarily little net entropy increase. (In the thermodynamics liter-
ature this kind of process is called a Carnot cycle: hence my name for Carnot
systems.)

We then have a complete solution to the control problem for minimal ther-
modynamics: the possible transitions of the controlled object are exactly those
which do not decrease the total entropy of all of the components. So “minimal”
thermodynamics is, indeed not actually that minimal.

The major loophole in all this — feedback — will be discussed from section 9
onwards. Firstly, though, it will be useful to make a connection with the Second
Law of Thermodynamics in its more phenomenological form.

7 The Second Law of Thermodynamics

While “the Second Law of Thermodynamics” is often read simply as synonymous
with “entropy cannot decrease”, in phenomenal thermodynamics it has more
directly empirical statements, each of which translates straightforwardly into
our framework. Here’s the first:
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The Second Law (Clausius statement): No sequence of control processes
can induce heat flow Q from one system with an inverse temperature 1/74,
heat flow @ into a second system with a lower inverse temperature 1/7T5,
while leaving the states of all other systems unchanged.

This is a generalisation of the basic result of thermal contact theory, and the
argument is essentially the same: any such process decreases the entropy of
the first system by more than it increases the entropy of the second. Since the
entropy of the remaining systems is unchanged (they start and end the process
in the same equilibrium states), the process is overall entropy-decreasing and
thus forbidden by the statistical-mechanical dynamics. If both temperatures are
positive, the condition becomes the more familiar one that Tz cannot be higher
than Ty.
And the second:

The Second Law (Kelvin statement): No sequence of control processes can
induce heat flow @ from any one system with positive temperature while
leaving the states of all other systems unchanged.

By the conservation of energy, any such process must result in net work @ being
generated; an alternative way to give the Kelvin version is therefore “no process
can extract heat ) from one system and turn it into work while leaving the
states of all other systems unchanged”. In any case, the Kelvin version is again
an almost immediate consequence of the principle that Gibbs entropy is non-
decreasing: since temperature is the rate of change of energy with entropy at
constant parameter value, heat flow from a positive-temperature system must
decrease its entropy, which (since the other systems are left unchanged) is again
forbidden by the statistical-mechanical dynamics.

In both cases the “leaving the states of all other systems unchanged” clause
is crucial. It is trivial to move heat from system A to system B with no net
work cost if, for instance, system C', a box of gas, is allowed to expand in the
process and generate enough work to pay for the work cost of the transition.
Thermodynamics textbooks often use the phrase “operating in a cycle” to de-
scribe this constraint, and it will be useful to cast that notion more explicitly
in our framework.

Specifically, let’s define heat bath thermodynamics (without feedback) as fol-
lows:

e The controlled object consists of (a) a collection of heat baths at various
initial temperatures; (b) another finite collection of statistical-mechanical
systems, the auziliary object, containing at least one Carnot system, and
whose initial states are unconstrained.

e The control operations are (a) moving one or more systems in the auxiliary
object into or out of thermal contact with other auxiliary-object systems
and/or with one or more heat baths; (b) applying any desired smooth
change to the parameters of the systems in the auxiliary object over some
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finite period of time; (c) inducing one or more systems in the auxiliary
object to evolve in an arbitrary entropy-nondecreasing way.

e There are no feedback measurements.
e A control process is an arbitrary sequence of control operations.

In this framework, a control process is cyclic if it leaves the state of the
auxiliary object unchanged. The Clausius and Kelvin statements are then,
respectively, that no cyclic process can have as its sole effect on the heat baths
(a) that net heat @ flows from one bath to one with a higher temperature at
no cost in work, and (b) that net heat @ from one bath is converted into work.
And again, these are fairly immediate consequences of the fact that entropy is
nondecreasing.

But perhaps we don’t care about cyclic processes? What does it matter what
the actual final state of the auxiliary system is, provided the process works? We
can make this intuition more precise like this: a control process delivers a given
outcome repeatably if (i) we can perform it arbitrarily often using the final state
of each process as the initial state of the next, and (ii) the Hamiltonian of the
auxiliary object is the same at the end of each process as at the beginning.
The Clausius statement, for instance, is now that no process can repeatably
cause any quantity @ of heat to flow from one heat bath to another of higher
temperature at no cost in work and with no heat flow between other heat baths.

This offers no real improvement, though. In the Clausius case, any such
heat flow is entropy-decreasing on the heat baths: specifically, if they have
temperatures Ty and Tg with Ty > T, a transfer of heat () between them
leads to an entropy increase of @Q/(T4 — Tr). So the entropy of the auxiliary
object must increase by at least this much. By conservation of energy the
auxiliary object’s expected energy must be constant in this process. But the
entropy of the auxiliary object has a maximum for given expected energy® and
so this can be carried out only finitely many times. A similar argument can
readily be given for the Kelvin statement.

I pause to note that we can turn these entirely negative constraints on heat
and work into quantitative limits in a familiar way by using our existing control
theory results. (Here I largely recapitulate textbook thermodynamics.) Given
two heat baths having temperatures T4, Ts with T4 > T, and a Carnot system
initially at temperature T4, the Carnot cycle to transfer heat from the colder
system to the hotter is:

1. Adiabatically transition the Carnot system to the lower temperature 1.

2. Place the Carnot system in thermal contact with the lower-temperature
heat bath, and modify its parameters quasi-statically so as to cause heat
to flow from the heat bath to the system. (That is, carry out modifications

3The canonical distribution can be characterised as the distribution which maximises Gibbs
entropy for given expected energy, so this maximum is just the entropy of that canonical
distribution.
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which if done adiabatically would decrease the system’s temperature.) Do
so until heat @p has been transferred to the system.

3. Adiabatically transition the Carnot system to temperature T4.

4. Place the Carnot system in thermal contact with the higher-temperature
heat bath, and return its parameters quasi-statically to their initial values.

At the end of this process the Carnot system has the same temperature and
parameter values as at the beginning and so will be in the same equilibrium
state; the process is therefore cyclic, and the entropy and energy of the Carnot
system will be unchanged. But the entropy of the system is changed only by
the heat flow in steps 2 and 4. If the heat flow out of the system in step 4 is @ 4,
then the entropy changes in those steps are respectively +Qp /T and —Q /T4,
so that Qa/Qp = Ta/Tp. By conservation of energy the net work done on the
Carnot system in the cycle is W = Q4 — @p, and we have the familiar result
that

W= (fg) Qs (22)

for the amount of work required by a Carnot cycle-based heat pump to move a
quantity of heat from a lower- to a higher-temperature heat bath.

Since the process consists entirely of quasi-static modifications of parameters
(and the making and breaking of thermal contact), it can as readily be run in
reverse, giving us the equally-familiar formula for the efficiency of a heat engine:
Tg/T4. And since (on pain of violating the Kelvin statement) all reversible heat
engines have the same efficiency (and all irreversible ones a lower efficiency), this
result is general and not restricted to Carnot cycles.

8 The one-molecule Carnot system

The Carnot systems used in our analysis so far have been assumed to be
parameter-stable, thermally stable systems that can be treated via the micro-
canonical ensemble (and thus, in effect, to be macroscopically large). But in
fact, this is an overly restrictive conception of a Carnot system, and it will be
useful to relax it. All we require of such a system is that for any temperature
T it possesses states which will transfer heat to and from temperature-T heat
baths with arbitrarily low entropy gain, and that it can be adiabatically and
quasi-statically transitioned between any two such states.

As I noted in section 5, it is a standard result in statistical mechanics that a
system of any size in equilibrium with a heat bath of temperature T is described
by the canonical distribution for that temperature, having probability density
at energy U proportional to e~Y/7. There is no guarantee that adiabatic, quasi-
static transitions preserve the form of the canonical ensemble, but any system
where this is the case will satisfy the criteria required for Carnot systems. I call
such systems canonical Carnot systems; from here on, Carnot systems will be
allowed to be either canonical or microcanonical.
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To get some insight into which systems are canonical Carnot systems, assume
for simplicity that there is only one parameter V and that the Hamiltonian can
be written in the form required by the adiabatic theorem:

HV] =Y Ui(V) [¢:(V)) (wi(V)]. (23)
Then if the system begins in canonical equilibrium, its initial state is

pV) = 7 3 P (V) (V). 29

By the adiabatic theorem, if V is altered sufficiently slowly to V’ while the
system continues to evolve under Hamiltonian dynamics, it will evolve to

p(V') = Ze’ﬁm(v) (V') (i (V)] (25)

This will itself be in adiabatic form if we can find 8’ and Z’ such that

z (26)
for which a necessary and sufficient condition is that
U(V') = U; (V") = f(V. V)(Ui(V) = U;(V)), (27)

or equivalently that U;(V) = f(V) + g(i)h(V).

For an ideal gas, elementary quantum mechanics tells us that the energy of
a given mode is inversely proportional to the volume of the box in which the
gas is confined:*

Ui(V) = 57 (28)

So an ideal gas is a canonical Carnot system. This result is independent of the
number of particles in the gas and independent of any assumption that the gas
spontaneously equilibrates. So in principle, even a gas with a single particle
— the famous one-molecule gas introduced by Sizilard (1929) — is sufficient
to function as a Carnot system. Any repeatable transfer of heat between heat
baths via arbitrary entropy-non-decreasing operations on auxiliary systems can
in principle be duplicated using only quasi-static operations on a one-molecule
gas.?

For the rest of the paper, I will consider how the account developed is mod-
ified when feedback is introduced. The one-molecule gas was introduced into
thermodynamics for just this purpose, and will function as a useful illustration.

4Quick proof sketch: increasing the size of the box by a factor K decreases the gradient by
. . . 2 .
that factor, and hence decreases the kinetic energy density by a factor K<. Energy is energy
density x volume.
5The name “one-molecule” is a little unfortunate: the “molecule” here is monatomic and
lacks internal degrees of freedom.
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9 Feedback

What happens to the Gibbs entropy when a system with state p is measured?
The classical case is easiest to analyse: suppose phase space is decomposed into
disjoint regions I'; and that
P = Pi- (29)
r;
Then p; is the probability that a measurement of which phase-space region the
system lies in will give result i. The state can be rewritten in the form

pP= Zpipia (30)

where
1

pi(z) = —p(z) (31)
pi
if z € T'; and is zero otherwise. and by probabilistic conditionalisation, p; is the
state of the system after the measurement if result ¢ is obtained.

The expected value of the Gibbs entropy after the measurement (‘p-m’) is

then
(Sa)p—m = Z Sc(pi)- (32)

Sa(p) = —/ (ZP:‘M) In (me) (33)

which, since the p; are mutually disjoint, reduces to
Sa(p) = —Zpi//)z‘ In(pips) = =D _pi lnpi/m - Zm/m Inp;.  (34)

But the integral in the first term is just 1 (since the p; are normalised) and the
integral in the second term is —Sg(p;). So we have

But we have

(Sc)p—m = Sa(p) — <— sz‘ 111}%‘) . (35)

That is, measurement may decrease entropy for two reasons. Firstly, pure chance
may mean that the measurement happens to yield a post-measurement state
with low Gibbs entropy. But even the average value of the post-measurement
entropy decreases, and the level of the decrease is equal to the Shannon entropy
of the probability distribution of measurement outcomes. A measurement pro-
cess which has a sufficiently dramatic level of randomness could, in principle,
lead to a very sharp decrease in average Gibbs entropy.

In the quantum case, the situation is slightly more complicated. We can
represent the measurement by a collection of mutually orthogonal projectors II;
summing to unity, and define measurement probabilities

pi = Tr(Iip) (36)
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and post-measurement states

1~ ~
pi = —1;pll;, (37)

K3

but p is not necessarily equal to a weighted some of these states. We can think
of the measurement process, however, as consisting of two steps: a diagonalisa-
tion of p so that it does have this form (a non-selective measurement, or Luders
projection, in foundations-of-QM jargon) followed by a random selection of the
state. Mathematically the first process increases Gibbs (i.e., von Neumann)
entropy, and the second mathematically has the same form as the classical anal-
ysis, so that in the quantum case (35) holds as an inequality rather than as
a strict equality. (Of course, how this process of measurement is to be inter-
preted — and even if it can really be thought of as measuring anything — is a
controversial question and depends on one’s preferred solution to the quantum
measurement problem.)

Insofar as ‘the Second Law of Thermodynamics’ is taken just to mean ‘en-
tropy never decreases’, then, measurement is a straightforward counter-example,
as has been widely recognised (see, for instance, Sizilard (1929), Zurek (1989),
Albert (2000, ch.5),or Hemmo and Shenker (2012).). From the control-theory
perspective, though, the interesting content of thermodynamics is which transi-
tions it allows and which it forbids, and the interesting question about feedback
measurements is whether they permit transitions which feedback-free thermo-
dynamics does not. Here the answer is again unambiguous: it does.

To be precise: define heat bath thermodynamics with feedback as follows:

e The controlled object consists of (a) a collection of heat baths at various
initial temperatures; (b) another finite collection of statistical-mechanical
systems, the auxiliary object, containing at least one Carnot system, and
whose initial states are unconstrained.

e The control operations are (a) moving one or more systems in the auxiliary
object into or out of thermal contact with other auxiliary-object systems
and/or with one or more heat baths; (b) applying any desired smooth
change to the parameters of the systems in the auxiliary object over some
finite period of time; (c¢) inducing one or more systems in the auxiliary
object to evolve in an arbitrary entropy-nondecreasing way.

e Arbitrary feedback measurements may be made.
e A control process is an arbitrary sequence of control operations.

In this framework, the auxiliary object can straightforwardly be induced (with
high probability) to transition from equilibrium state z to equilibrium state
y with Sg(y) < Sa(z). Firstly, pick a measurement such that performing it
transitions z to x; with probability p;, such that

- Zpi Inp; > Sq(z) — Sa(y). (38)

K2
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The expected value of the entropy of the post-measurement state will be much
less than that of y; for an appropriate choice of measurement, with high probabil-
ity the actually-obtained post-measurement state x; will satisty Sg(z;) < Sa(y).
Now perform an entropy-increasing transformation from z; to y. (For instance,
perform a Hamiltonian transformation of x; to some equilibrium state, then use
standard methods of equilibrium thermodynamics to change that state to y).

As such, the scope of controlled transitions of the auxiliary object is total:
it can be transitioned between any two states. As a corollary, the Clausius and
Carnot versions of the Second Law do not apply to this control theory: energy
can be arbitrarily transferred from one heat bath to another, or converted from
a heat bath into work.

In fact, the full power of the arbitrary transformations available on the aux-
iliary system is not needed to produce these radical results. Following Szilard’s
classic method, let us assume that the auxiliary system is a one-molecule gas
confined to a cylindrical container by a movable piston at each end, so that
the Hamiltonian of the gas is parametrised by the position of the pistons. Now
suppose that the position of the gas atom can be measured. If it is found to be
closer to one piston than the other, the second piston can rapidly be moved at
zero energy cost to the mid-point between the two. As a result, the volume of
the gas has been halved without any change in its internal energy (and so its
entropy has been decreased by In2; cf equation (8).) If we now quasi-statically
and adiabatically expand the gas to its original volume, its energy will decrease
and so work will have been extracted from it.

Now suppose we take a heat bath at temperature T' and a one-atom gas at
equilibrium also at temperature T. The above process allows us to reduce the
energy of the box and extract some amount of work éW from it. Placing it
back in thermal contact with the heat bath will return it to its initial state and
so, by conservation of energy, extracts heat 6QQ = W from the bath. This is
a straightforward violation of the Kelvin version of the Second Law. If we use
the extracted work to heat a heat bath which is hotter than the original bath,
we generate a violation of the Clausius version also.

To make this explicit, let’s define Szilard theory as follows:

e The controlled object consists of (a) a collection of heat baths at various
initial temperatures; (b) a one-atom gas as defined above.

e The control operations are (a) moving the one-atom gas into or out of
thermal contact with one or more heat baths; (b) applying any desired
smooth change in the positions of the pistons confining the one-atom gas.

e The only possible feeback measurement is a measurement of the position
of the atom in the one-atom gas.

e A control process is an arbitrary sequence of control operations.

Then the control operations available in Szilard theory include arbitrary cyclic
transfers of heat between heat baths and conversion of heat into work.
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The use of a one-atom gas in this algorithm is not essential. Suppose that
we measure instead the particle density in each half of a many-atom gas at
equilibrium Random fluctuations ensure that one side of the gas is at a slightly
higher density than the other; compressing the gas slightly using the piston
on the low-density side will reduce its volume at a slightly lower cost in work
than would be possible on average without feedback; iterating such processes
will again allow heat to be converted into work. (The actual numbers in play
here are utterly negligible, of course — as for the one-atom gas — but we are
interested here in in-principle possibility, not practicality.5)

The most famous example of measurement-based entropy decrease, of course,
is Mazwell’s demon: a partition is placed between two boxes of gas initially at
equilibrium at the same temperature. A flap, which can be opened or closed, is
placed in the partition, and at short time intervals 6t the boxes are measured to
ascertain if, in the next period of time Jt any particles will collide with the flap
from (a) the left or (b) the right. If (a) holds but (b) does not, the flap is opened
for the next &t seconds. Applying this alternation of feedback measurement and
control operation for a sufficiently long time will reliably cause the density of
the gas on the left to be much lower than on the right. Quasi-statically moving
the partition to the left will then allow work to be extracted. The partition
can then be removed, and reinserted in the middle; the temperature of the box
will have been reduced. Placing the box in thermal contact with a heat bath
will then extract heat from the bath equal to the work done; the Kelvin version
of the Second Law is again violated. I will refrain from formally stating the
“demonic control theory” into which these results could be embedded, but it is
fairly clear that such a theory could be formulated

10 Landauer’s Principle and the physical imple-
mentation of control processes

Szilard control theory, and demonic control theory, allow thermodynamically
forbidden transitions. Big deal, one might reasonably think: so does abra-
cadabra control theory, where the allowed control operations include completely
arbitrary shifts in a system’s state. We don’t care about abracadabra control
theory because we have no reason to think that it is physically possible; we
only have reason to care about entropy-decreasing control theories based on
measurement if we have reason to think that they are physically possible.

Of course, answering the general question of what is physically possible isn’t
easy. Is it physically possible to build mile-long relativistic starships? The an-
swer turns on rather detailed questions of material science and the like. But no
general physical principle forbids it. Similarly, detailed problems of implemen-
tation might make it impossible to build a scalable quantum computer, but the
theory of fault-tolerant quantum computation (Shor 1996; Preskill 1998) gives

SFor forceful defence of the idea that the practicalities are what prevents Second Law
violation in these cases, see Norton (2012).
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us strong reasons to think that such computers are not ruled out in principle.
On the other hand, we do have reason to think that faster-than-light starships,
or computers that can compute Turing-non-computable functions are in prin-
ciple ruled out. It is this ‘in-principle’ question of implementability that is of
interest here.

To answer that question, consider again heat-bath control theory. The action
takes place mostly with respect to the auxiliary object: the heat baths are not
manipulated in any way beyond moving into or out of contact with that object.
We can then imagine treating the auxiliary object, and the control machinery, as
a single larger system: we set the system going, and then simply allow it to run.
It churns away, from time to time establishing or breaking physical contact with
a heat bath or perhaps drawing on or topping up an external energy reservoir,
and in due course completes the control process it was required to implement.

This imagined treatment of the system can be readily incorporated into our
system: we can take the auxiliary object of heat-bath theory with feedback
together with its controlling mechanisms, draw a box around both together,
and treat the result as a single auxiliary object for a heat-bath theory with-
out feedback. Put anoher way, if the feedback-based control processes we are
considering are physically possible, we ought to be able to treat the machinery
that makes the measurement as physical, and the machinery that decides what
operation to perform based on a given feedback result as likewise physical, and
treat all that physical apparatus as part of the larger auxiliary object. Let’s
call the assumption that this is possible the automation constraint; to violate
it is to assume that some aspects of computation or of measurement cannot be
analysed as physical processes, an assumption I will reject here without further
discussion.

But we already know that heat bath theory without feedback does not permit
any repeatable transfer of heat into work, or of a given quantity of heat from a
cold body to a hotter body. Such transfers are possible, but only if the auxiliary
object increases in Gibbs entropy. And gven that the auxiliary object breaks
into controlling sub-object and controlled sub-object and that ex hypothesi the
control processes we are considering leave the controlled sub-object’s state un-
changed, we can conclude that the Gibbs entropy of the controlling sub-object
must have increased.

This raises an interesting question. From the perspective of the controlling
system, control theory with feedback looks like a reasonable idealisation, but
from the external perspective, we know that something must go wrong with that
idealisation. The resolution of this problem lies in the effects of the measurement
process on the controlling system itself: the process of iterated measurement is
radically indeterministic from the perspective of the controlling object, and it
can have only a finite number of relevantly distinct states, so eventually it runs
out of states to use.

This point (though controversial; cf Earman and Norton (1999), Maroney
(2009), and references therein) has been widely appreciated in the physics lit-
erature and can be studied from a variety of perspectives; in this rest of this
section, I briefly describe the most commonly discussed one. Keep in mind in
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the sequel that we already know that somehow the controlling system’s strategy
must fail (at least given the automation constraint): the task is not to show that
it does but to understand how it does.

The perspective we will discuss uses what might be called a computational
model of feedback: it is most conveniently described within quantum mechanics.
We assume that the controlling object consists, at least in part, of some collec-
tion of N systems - bits — each of whose Hilbert space is the direct sum of two
memory subspaces 0 and 1 and each of which begins with its state somewhere in
the 0 subspace. A measurement with two outcomes is then a dynamical transi-
tion which leaves the measured system alone and causes some so-far-unused bit
to transition into the 1 subspace if one outcome is obtained and to remain in the
0 subspace if the other is obtained. That is, if T is some unitary transformation
of the bit’s Hilbert space that maps the 0 subspace into the 1 subspace, the
measurement is represented by some unitary transformation

V=PeT+(1-P)e1 (39)

on the joint system of controlled object and bit (with (13, 1- IAD) being the pro-
jectors defining the measurement. A feedback-based control processes based on
the result of this measurement is then represented by a unitary transformation
of the form L R R R

U=Uy®Py+U1® P, (40)

where 130, 131 project onto the 0 and 1 subspaces and U 0 andA(A] 1 are unitar
operations on the controlled system. The combined process of V followed by U
represents the process of measuring the controlled object and then performing
Uy on it if one result is obtained and U; if the other is. Measurements with 2%
outcomes, and control operations based on the results of such measurements, can
likewise be represented through the use of N bits. The classical case is essentially
identical (but the formalism of quantum theory makes the description simpler
in the quantum case).

The problem with this process is that eventually, the system runs out of
unused bits. (Note that the procedure described above only works if the bit
is guaranteed to be in the 0 subspace initially. To operate repeatably, the
system will then have to reset some bits to the initial state. But Landauer’s
Principle states that such resetting carries an entropy cost. Since the principle
is controversial (at least in the philosophy literature!) I will work through the
details here from a control-theory perspective.

Specifically, let’s define a computational process as follows: it consists of IV
bits (the memory) together with a finite system (the computer) and another
system (the environment). A computation is a transition which is deterministic
at the level of bits: that is, if the N bits begin, collectively, in subspaces that
encode the binary form of some natural number n, after the transition they are
found, collectively, in subspaces encoding f(n) for some fixed function f.” The

"Maroney (2005) is a highly insightful discussion which inter alia considers the case of
indeterministic computation.
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control processes are arbitrary unitary (quantum) or Hamiltonian (classical)
evolutions on the combined system of memory, computer, and environment; the
question of interest is what constraints on the transitions of computer and en-
vironment are required for given computational transitions to be implemented.
For the sake of continuity with the literature I work in the classical framework
(the quantum generalisation is straightforward); for simplicity I assume that the
bits have equal phase space V assigned to 0 and 1.

If the function f is one-to-one, the solution to the problem is straightforward.
The combined phase space of the memory can be partitioned into 2V subspaces
each of equal volume and each labelled with the natural number they represent.
There is then a phase-space-preserving map from n to f(n) for each n, and these
maps can be combined into a single map from the memory to itself. One-to-one
(‘reversible’) computations can then be carried out without any implications for
the states of computer or environment.

But now suppose that the function f takes values only between 1 and 2™
(M < N), so that any map implementing f must map the bits M +1,... N
into their zero subspaces independent of input. Any such map would map the
uniform distribution over the memory (which has entropy N In2V') to one with
support in a region of volume (2V)M x VN=M (and so with maximum entropy
MIn2V + (N — M)InV). Since the map as a whole is by assumption entropy-
preserving, it must increase the joint entropy of system plus environment by
(N — M)In2. In the limiting case of reset, M = 0 (f(n) = 0 for all n) and
so the computer and environment must jointly increase in entropy by at least
N 1n2. This is Landauer’s principle: each bit that is reset generates at least In 2
entropy.

If the computer is to carry out the reset operation repeatably, its own en-
tropy cannot increase without limit. So a repeatable reset process dumps at
least entropy In2 per bit into the environment. In the special case where the
environment is a heat bath at temperature T, Landauer’s principle becomes the
requirement that reset generates T In 2 heat per bit.

A more realistic feedback-based control theory, then, might incorporate Lan-
dauer’s Principle explicitly, as in the following (call it computation heat-bath
thermodynamics:

e The controlled object consists of (a) a collection of heat baths at various
initial temperatures; (b) another finite collection of statistical-mechanical
systems, the auzxiliary object, containing at least one Carnot system, and
whose initial states are unconstrained; (c) a finite number N of 2-state
systems (‘bits’), the computational memory, each of which begins in some
fixed (‘zero’) initial state with probability 1.

e The control operations are (a) moving one or more systems in the auxiliary
object into or out of thermal contact with other auxiliary-object systems
and/or with one or more heat baths ; (b) applying any desired smooth
change to the parameters of the systems in the auxiliary object over some
finite period of time; (c) inducing one or more systems in the auxiliary
object to evolve in an arbitrary entropy-nondecreasing way; (d) erasing
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M bits of the memory — that is, restoring them to their zero states —
and at the same time transferring heat M In2/T to some heat bath at
temperature T'; (e) applying any 1 — 1 map to the computational memory.

e Arbitrary feedback measurements may be made (including of the memory
bits) provided that (a) they have finitely many results; (b) the result of
the measurement is faithfully recorded in the state of some collection of
bits which initially each have probability 1 of being in the 0 state.

e A control process is an arbitrary sequence of control operations.

At first sight, measurement in this framework is in the long run entropy-increasing:
a measurement with 2™ outcomes having probabilities py,...pon will reduce
the entropy by AS = —3".p;Inp;, but the maximum value of this is M In2,
which is the entropy increase required to erase the M bits required to record
the result. But as Zurek (1989) has pointed out, Shannon’s noiseless coding
theorem allows us to compress those M bits to, on average, — > . p; Inp; bits,
so that the overall process can be made entropy-neutral.

This strategy of using Landauer’s principle to explain why Maxwell demons
cannot repeatably violate the Second Law has a long history (see Leff and Rex
(2002) and references therein). It has recently come under sharp criticism by
John Earman and John Norton (Earman and Norton 1999; Norton 2005) as ei-
ther trivial or question-begging: they argue that any such defences (‘exorcisms’)
rely on arguments for Landauer’s Principle that are either Sound (that is, start
off by assuming the Second Law), or Profound (that is, do not so start off).
Exorcisms relying on Sound arguments are question-begging; those relying on
Profound exorcisms leave us no good reason to accept Landauer’s principle in
the first place.

Responses to Earman and Norton (see, e.g., Bennett (2003), Ladyman,
Presnell, and Short (2008)) have generally embraced the first horn of the dilemma,
accepting that Landauer’s Principle does assume the Second Law but arguing
that use of it can still be pedagogically illuminating. (See Norton (2005, 2011)
for responses to this move.) But I believe the dialectic here fails to distin-
guish between statistical mechanics and thermodynamics. The argument here
for Landauer’s Principle does indeed assume that the underlying dynamics are
entropy-non-decreasing, and from that perspective appeal to Landauer’s prin-
ciple is merely of pedagogical value: it helps us to make sense of how feedback
processes can be entropy-decreasing despite the fact that any black-box process,
even if it involves internal measurement of subsystems, cannot repeatedly turn
heat into work. But (this is one central message of this paper) that dynamical
assumption within statistical mechanics should not simply be identified with the
phenomenological Second Law. In Earman and Norton’s terminology, the ar-
gument for Landauer’s Principle is Sound with respect to statistical mechanics,
but Profound with respect to phenomenological thermodynamics.
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11 Conclusion

The results of my exploration of control theory can be summarised as follows:

1. In the absence of feedback, physically possible control process are limited
to inducing transitions that do not lower Gibbs entropy.

2. That limit can be reached with access to very minimal control resources:
specifically, a single Carnot system and the ability to adiabatically control
it and to put it in thermal contact with other systems.

3. Introducing feedback allows arbitrary transitions.

4. If we try to model the feedback process as an internal dynamical process
in a larger system we find that feedback does not increase the power of
the control process.

5. (3) and (4) can be reconciled by considering the physical changes to the
controlling system during feedback processes. In particular, on a compu-
tation model of control and feedback, the entropy cost of resetting the
memory used to record the result of measurement at least cancels out the
entropy reduction induced by the measurement.

I will end with a more general moral. As a rule, and partly for pedagogical
reasons, foundational discussions of thermal physics tend to begin with thermo-
dynamics and continue to statistical mechanics. The task of recovering ther-
modynamics from a successfully grounded statistical mechanics is generally not
cleanly separated from the task of understanding statistical mechanics itself, and
the distinctive requirements of thermodynamics blur into the general problem
of understanding statistical-mechanical irreversibility. Conversely, foundational
work on thermodynamics proper is often focussed on thermodynamics under-
stood phenomenologically: a well-motivated and worthwhile pursuit, but not
one that obviates the need to understand thermodynamics from a statistical-
mechanical perspective.

The advantage of the control-theory way of seeing thermodynamics is that
it permits a clean separation between the foundational problems of statistical
mechanics itself and the reduction problem of grounding thermodynamics in
statistical mechanics. T hope to have demonstrated that (a) these really are dis-
tinct problems, so that an understanding of (e.g.) why systems spontaneously
aproach equilibrium does not in itself suffice to give an understanding of ther-
modynamics, but also (b) that such an understanding, via the interpretation of
thermodynamics as the control theory of statistical mechanics, can indeed be
obtained, and can shed light on a number of extant problems at the statistical-
mechanics/thermodynamics boundary.
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