
Truth Maintenance System with Probabilistic Constraints
for Enhanced Level Two Fusion

Subrata Das and David Lawless
Charles River Analytics, Inc.

625 Mt. Auburn St.
Cambridge, MA 02138, USA

+1 617 491 3474
{sdas,dlawless}@cra.com

Abstract - A Network-based Truth Maintenance System
(NTMS) is presented that leverages Bayesian Belief
Network (BN) technology for its truth maintenance
mechanism. NTMS applies probabilistic versions of
integrity constraints in the form of small BNs to the
knowledge base, providing an efficient and intuitive
mechanism for detecting inconsistencies. The approach is
applicable to any relational database by converting
database entries into evidence for the probabilistic
constraints. NTMS can optionally integrate BNs for Level
Two fusion (Situation Assessment, or SA) with the
probabilistic constraints; the instantiation for a
particular problem consists of a SA BN that models the
world state and facilitates SA on the knowledge base. The
SA BN is augmented with the probabilistic constraint
BNs, which provide metrics on the consistency of the SA
BN. Inconsistencies in the SA BN are resolved by a
combination of techniques including sensitivity analysis,
default reasoning, consistency ‘forcing’, or seeking new
evidence.

Keywords: Truth Maintenance System, Bayesian Belief
Networks, probabilistic constraints, default reasoning

1 Introduction
Contemporary digital information systems aggregate
enormous amounts of data for use in critical situation
analysis and decision making tasks; however, the overall
accuracy and consistency of the databases can be very
difficult to verify and maintain. For example, military
information systems may concentrate millions of reports
from vast and disparate sensor arrays (including, to name
just a few, unattended ground vibration sensors, thermal
sensors, radar, UAV video feeds, satellite data, human
intelligence reports, etc.) for situation analysis purposes,
such as determining enemy actions or intent; but due to
the context sensitive, inexact, and uncertain nature of the
incoming raw information, ensuring consistency of such a
military intelligence database is especially difficult. The
traditional AI solution to this problem is to employ a
Truth Maintenance System (TMS) [5][7][15][16]; such
systems are expressly designed to help maintain
consistency in the knowledge base used by a problem

solver. However, the overhead of TMS usage is usually
prohibitive for large problems, and their truth
maintenance is intractable in the general case.
 This paper presents a Network-based Truth
Maintenance System, or NTMS [3], a TMS variant that
incorporates a purely probabilistic approach to database
consistency, rather than a logic based approach. NTMS
uses Bayesian Belief Networks (BNs) [20] as its
fundamental enabling technology. NTMS introduces the
use of probabilistic integrity constraints (or more simply,
probabilistic constraints) with BNs for detecting
inconsistencies; these can be combined with more
standard mechanisms such as sensitivity analysis [12] and
default reasoning [23] for consistency recovery purposes.
The NTMS variant provides a practical methodology that
facilitates a natural approach to maintaining database
consistency, and avoids some of the overhead associated
with other TMS systems [4].

1.1 Motivating Example
A simple example will illustrate the basic ideas behind the
NTMS system. A knowledge elicitation (KE) session
with a military subject matter expert (SME) regarding the
analysis of reconnaissance reports produced the rule of
thumb that “Enemy tanks are rarely found in the woods”
(the rationale being that enemy tanks generally operate in
open areas for better mobility, and usually only move into
a wooded area for camouflage). The SME was further
able to partially quantify his rule of thumb, providing
estimates (see Table 1) of the probabilities of finding
enemy equipment in a wooded area or on a road.

Table 1: Tank/Woods Consistency
Equipment Terrain p(Consistent) p(Inconsistent)

Tank Non-Woods 0.8 0.2
Tank Woods 0.1 0.9
Non-tank Non-Woods 0.5 0.5
Non-tank Woods 0.4 0.6

Although SMEs often have little if any background in
probability theory (let alone Bayesian Networks), we have
found that they can usually provide general rules about
the likelihood of world state combinations, which
translate fairly easily into rough probability estimates,

0-7803-9286-8/05/$20.00 © 2005 IEEE

mailto:sdas@cra.com

which in turn are the basis of the probabilistic constraints
used by NTMS. The above rule yields a probabilistic
constraint assigning a probability of p(Inconsistent)=0.9
to any incoming reconnaissance report (or combination of
such reports) indicating a sighting of an enemy tank in a
wooded area. Depending on the system parameters in
effect, such a metric of inconsistency would trigger
recovery action by the NTMS system; recovery might
then lead to rejection of the report or a prior report, to the
revision of default assumptions about the terrain or
equipment involved, or to a request for additional
resolving information.

1.2 NTMS Overview
The block diagram in Figure 1 shows how the NTMS
approach has been implemented in a prototype.

Knowledge Base
- Belief Networks & Data

BN Engine
- Computes w/BNs & Data

TM Algorithms
- Consistency Checking
- Situation Assesment

Expert Knowledge as Belief Networks

SIGINT COMINT

SIG_REP COM_REP

Consistent?

Comm

Sample
Belief Net for
Consistency
Checking

Relational
Database

Data translated to evidence for BNs

Knowledge Base
- Belief Networks & Data

BN Engine
- Computes w/BNs & Data

TM Algorithms
- Consistency Checking
- Situation Assesment

Expert Knowledge as Belief Networks

SIGINT COMINT

SIG_REP COM_REP

Consistent?

Comm

Sample
Belief Net for
Consistency
Checking

Relational
Database

Data translated to evidence for BNs
Figure 1: NTMS Block Diagram

As shown in the diagram, NTMS operates on a conceptual
knowledge base of belief networks (BNs) and data. The
BNs consist of Situation Assessment (SA) networks and
probabilistic constraint networks; the SA networks are
augmented (before run time) with small networks
representing probabilistic constraints for consistency
checking. The data consists of relational database entries
which are translated (at run time, with assistance from
additional small BNs for low-level, i.e. Level 1, data
fusion1) into BN evidence; the evidence is then posted to
the augmented SA networks to update the internal world
state model. The BN engine is a software component that
handles BN inferencing and probability calculations for
the augmented SA networks. The truth maintenance
algorithms use the BN engine to aggregate evidence, and
perform situation assessment, consistency checking, and
recovery (when inconsistency exceeds some specified
threshold).

1.3 Related Work
In logic or deductive databases without probability,
missing values are represented by Skolem constants; more
generally, in logic programming missing values, or
existentially-quantified variables, are represented by terms

1 The terms data fusion, situation assessment, and the
various fusion levels follow the JDL definitions [11].

built from Skolem functors. There has been similar
research in embedding probabilities into both
conventional relational databases [8][10] and deductive
databases [18]. In addition, embedding probabilities into
logic programming [14][19][21] is also relevant to our
research, but not the more general approach of embedding
probabilities into logic [6]. Each of these systems has
query processing capabilities, and thus integrity
constraints can be defined and verified upon update via
transaction.
 For example, Fuhr and Rolleke [8] propose a
probabilistic relational algebra (PRA) which is a
generalization of standard relational algebra. In PRA,
tuples are assigned probabilistic weights giving the
probability that a tuple belongs to a relation. A
probabilistic relational model [10] uses a Bayesian
network to represent the joint probability distribution over
fields in a relational database. Like our approach, the
network can be used to make inferences about missing
values in the database. Ng [18] proposes a deductive
database framework which is expressive enough to
represent such probabilistic relationships as conditional
probabilities, Bayesian updates, and probability
propagation. Probabilities in probabilistic logic
programming by Lukasiewicz [14] are defined over a set
of possible worlds and linear optimization techniques are
employed for deciding satisfiability. Finally, Bokor and
Ferguson [1] use an approach similar to ours to reason
about diagrams.
 Our approach differs from each of the above in
terms of practicality and efficiency. Moreover, unlike
conventional relational databases and most of the other
approaches, we do not throw away a transaction due to the
violation of an integrity constraint. We have also
developed various ways of recovering from constraint
violations.
 Various types of truth maintenance systems (TMS)
have been devised in the past, with different features
according to their research aims [7]:

• A Justification-Based Truth Maintenance System
(JTMS) enables one to examine the consequences of
the current set of assumptions.

• An Assumption-Based Truth Maintenance System
(ATMS) [13] allows one to maintain and reason with
a number of simultaneous, possibly incompatible,
current sets of assumptions.

• A Logic-Based Truth Maintenance System (LTMS),
like a JTMS, reasons with only one set of current
assumptions at a time, but recognizes the
propositional semantics of sentences, that is,
understands the relations between p and not p, p and
q and p or q, and modal operators for knowledge and
belief [9].

The NTMS variant is similar to a JTMS because we
examine the consequences of one piece of evidence at a
time. It can be easily extended to an ATMS by replicating

the SA network to simultaneously handle a set of
incompatible assumptions. However, we have avoided the
LTMS approach, as any constraint satisfaction procedure
required to implement such a system is NP hard and
therefore unsuitable for handling the large information
sources we are targeting (i.e. military intelligence
databases). Table 2 compares the NTMS approach with
that of the logic-based Expert Systems mentioned above,
and also with a traditional Database Management System
(DBMS), considered as a TMS with its deterministic
integrity constraints.

Table 2: TMS Feature Comparison

Node links and
strength

Dependency
drivenNoneBacktracking

A priori beliefsDefault
assumption

Closed World
Assumption

Default
Assumptions

Network
sensitivity
analysis

Derivation of
‘nogood’ and
revised earlier
assumption

Violation of
constraints and
discard update

Inconsistency
Detection &
Recovery

Probabilistic
Constraints

JTMS, ATMS,
LTMS

Integrity
Constraint
verification

Truth
Maintenance
Algorithm

Probabilistic
Reasoning via
Evidence
propagation

Theorem
proverQuery answeringInference

Engine

Belief networks
and evidence

Horn/general
clauses

Relational facts
and views

Knowledge
Base

Belief
Network
Engine

Systems
(NTMS)

Logic-
based
Expert

Systems
(ES)

Database
Management

Systems
(DBMS)

TMS
Type

TMS
Feature

Node links and
strength

Dependency
drivenNoneBacktracking

A priori beliefsDefault
assumption

Closed World
Assumption

Default
Assumptions

Network
sensitivity
analysis

Derivation of
‘nogood’ and
revised earlier
assumption

Violation of
constraints and
discard update

Inconsistency
Detection &
Recovery

Probabilistic
Constraints

JTMS, ATMS,
LTMS

Integrity
Constraint
verification

Truth
Maintenance
Algorithm

Probabilistic
Reasoning via
Evidence
propagation

Theorem
proverQuery answeringInference

Engine

Belief networks
and evidence

Horn/general
clauses

Relational facts
and views

Knowledge
Base

Belief
Network
Engine

Systems
(NTMS)

Logic-
based
Expert

Systems
(ES)

Database
Management

Systems
(DBMS)

TMS
Type

TMS
Feature

2 Probabilistic Constraints
2.1 Definition
Integrity constraints are a standard mechanism for
ensuring the integrity of databases. A discussion on
various types of constraints and verification methods for
relational and deductive databases can be found in
[2][17]. Such a database must ‘satisfy’ its integrity
constraints. In the theoremhood view of satisfaction, a
database is considered as a logical theory, and each
constraint must be a theorem of the theory. In the
consistency view, the constraints along with the theory
must be logically consistent. We extend this notion of
integrity constraints to probabilistic integrity constraints
(just probabilistic constraints or even constraints when the
context is clear). However, there are important differences
between the deterministic and probabilistic varieties.
 A standard deterministic integrity constraint is
boolean, in the sense that it assigns a world state to a
range of just two values, i.e. it is either completely
consistent (true) or completely inconsistent (false).
Probabilistic constraints assign a world state to the unit

interval, so that a world state may be completely
consistent (1.0), completely inconsistent (0.0), or
anywhere in between these extremes.
 The unit interval value assigned to a world state is
expected to estimate the actual probability of occurrence
of the world state, as a metric of ‘consistency’, e.g. p=0
would represent an impossible world state (a contradiction
or complete inconsistency), and p=1 would represent a
certain world state (a tautology, completely consistent).
 Deterministic constraints on world states are
satisfied when they evaluate to true. Probabilistic
constraints are satisfied whenever their computed value
exceeds the SME-specified threshold; they are therefore
highly subjective.
 Finally, probabilistic constraints use Bayesian Belief
Networks (BNs) [20] as their specific form of knowledge
representation. (This is essentially an implementation
dependent choice; equivalent representations may serve
better in other implementations, e.g. a set of rules might
be preferable for an expert system.)

2.2 Ontology
A prerequisite task in formulating constraints for a
particular problem (or scenario) is listing the entities (and
their properties or attributes) that are to be constrained,
that is, one needs to specify the ontology of the scenario,
so that a fixed and well-defined set of discussion terms,
and hence scenario world state variables, exists.
 Although not especially difficult, the task of
specifying an ontology for a scenario can be laborious and
time-consuming. Moreover, the ontology needs to be
specified in a way that makes it available to all the
software components of the NTMS system. For the
prototype implementation, we used the freely available
Protégé ontology editor [22] for this purpose.

2.3 Representation
 The formation of probabilistic constraints basically
consists of knowledge elicitation (KE) with subject matter
experts (SMEs) to obtain probability estimates for world
state combinations, followed by translation to a BN
knowledge representation (KR). So continuing our
example from above, Table 1 specified the requisite
probabilities for a probabilistic constraint on enemy tanks
in the woods; we can readily translate the information to a
BN, forming the Tank/Woods probabilistic constraint of
Figure 2. Note that the table translates directly into the
Conditional Probability Table (CPT) of the Consistent
node of the BN representation.
 Probabilistic constraints may involve any number of
variables; Figure 3 shows an example constraint on three
variables, which simply checks that a military unit (e.g. a
squad or platoon) comprised of a certain equipment type
(e.g. tanks or artillery) has a size that is consistent with its
unit designation. In general, probabilistic constraints on
large numbers of variables should be avoided because a)
the KE process becomes much more difficult for such
cases, and b) the CPT size is exponential in terms of the

number of variables involved. Fortunately, in practice
only two- or three-variable constraints usually arise;
probabilistic constraints on more variables are rare, and
moreover can often be effectively reduced to a collection
of constraints on fewer variables via ad hoc techniques.

EQUIPMENT = Tank
Yes | No

LOCATION = Woods
Yes | No

Consistent
Yes | No

0.50.5
NoYes
0.50.5
NoYes

0.50.5NoNo
0.60.4YesNo
0.20.8NoYes
0.90.1YesYes

p(No)p(Yes)WoodsTank

0.50.5NoNo
0.60.4YesNo
0.20.8NoYes
0.90.1YesYes

p(No)p(Yes)WoodsTank
CPT for Consistent

CPT for Tank

0.50.5
NoYes
0.50.5
NoYes

CPT for Woods

Figure 2: Tank/Woods Probability Constraint

EQUIPMENT
Tank | Artillery | Infantry

| Other

Consistent
Yes | No

SIZE
1-5 | 6-10 | 11-15

| 16-20 | 21+

0.90.1Squad6-10TANK
0.80.2Battery1-5TANK
0.50.5Company1-5TANK
0.30.7Platoon1-5TANK
0.90.1Squad1-5TANK

p(No)p(Yes)UNITSIZEEQUIPMENT

0.90.1Squad6-10TANK
0.80.2Battery1-5TANK
0.50.5Company1-5TANK
0.30.7Platoon1-5TANK
0.90.1Squad1-5TANK

p(No)p(Yes)UNITSIZEEQUIPMENT
CPT for Consistent

(Total of 4 * 5 * 5 = 100 rows of CPT entries)

UNIT
Squad | Platoon| Company

| Battery | Other

Figure 3: Probabilistic Constraint on Three Variables

2.4 Hierarchy
The various probabilistic constraints that arise will often
be minor variations from one another; this similarity can
be leveraged in the KR format by applying standard
object-oriented programming techniques. We treat each
constraint as an object or class, and organize a class
hierarchy of constraints. The higher level constraint
objects will represent more abstract constraints; with more
specific constraints represented in subclasses.
 For example, a military SME may wish to represent
the simple, well-known constraint that barbed wire and
minefields are usually collocated in older, “conventional”
battlefield situations. Figure 4 shows how this constraint
might fit into a constraint class hierarchy.

Prob. IFF

Barbwire Mines

Prob. IFF

X Y

Consistent ?

X Y

Inherit & customize ... Inherit & customize ...

Prob. IFF

Barbwire Mines

Prob. IFF

Barbwire Mines

Prob. IFF

X Y

Prob. IFF

X Y

Consistent ?

X Y

Consistent ?

X Y

Inherit & customize ...Inherit & customize ... Inherit & customize ...Inherit & customize ...

Figure 4: Class Hierarchy of Probabilistic Constraints

 The highest level constraint, on the left, is simply an
abstract representation of two entities X and Y, with an
unspecified consistency relationship between them. The
next level, in the middle, refines the abstract constraint
somewhat to a probabilistic if-and-only-if (IFF) constraint

on two variables, indicating that X and Y should usually
occur together. Its CPT will indicate a high degree of
consistency if X and Y both occur together or are both
absent, and a low degree of consistency if exactly one of
X and Y are present. Finally, the right-most constraint is
specifically tailored for the case of barbed wire and mines
being collocated, created by setting X=Barbwire and
Y=Mines; the SME may also make adjustments to the
inherited Conditional Probability Table (CPT).

3 NTMS Prototype
3.1 Algorithmics
The most salient features of the NTMS prototype
algorithms include:

• SME-guided configuration and application of
probabilistic constraints to a Situation Assessment
Belief Network (SA BN) for truth maintenance (TM).

• Integration into a single BN of Level 1 fusion (state
estimation) BNs, Level 2 fusion BNs (SA BN), and
probabilistic constraint BNs.

• Application of the augmented SA BN to incoming
sensor data for consistency checking and error
detection.

• Techniques for recovery from constraint violations.

 The configuration of probabilistic constraints is an
important KE task (discussed at length in Section 3.2);
their application to the SA BN is accomplished by a
straightforward selection of applicable constraints for a
given SA BN from a library, guided by a program menu.
 The integration of Level 1 BNs, the SA BNs, and the
constraint BNs is illustrated in Figure 5. In this example,
the SME manually adds eight nodes: four for the SA task
he wishes to perform, and another four for Level 1 fusion
input that he requires for the SA task. At run time, fifteen
additional nodes are added to the network to perform
Level 1 fusion; in this case the nodes are for discretization
of input from the auxiliary GIS subsystem. (Nodes
handling Level 1 fusion have special logic associated with
them for this task.) Additionally, three probabilistic
constraints selected by the SME are appended to the
initial SA BN.
 The augmented SA BN is then applied to incoming
sensor reports by using the Level 1 fusion nodes to
discretize the information required from the sensor
reports, which is effectively posted as evidence to the
nodes. (Similarly, for the GIS-related nodes, location
information is extracted from the sensor reports, and the
GIS subsystem is consulted for information that is
discretized by the nodes and posted as evidence.)
 The posting of evidence to the augmented SA BN
propagates through all nodes, and so affects the belief
states of the constraint nodes. If some constraint falls
below its threshold consistency, an alarm condition is
signaled, and recovery techniques are invoked; these

techniques are important algorithms that are discussed at
length in Section 4.

Probabilistic
Constraints:
selected by SME

Discretization nodes for
Level 0 GIS input data

Discretization nodes for Level 0
sensor input data (also fusion
nodes for Level 1 input data)

Fusion nodes
for Level 1 GIS
input data

Situation
Assessment
nodes

Constraint
nodes

Level 2 Fusion:

Situation
Assessment
Belief
Network
(SA BN)
nodes added
by SME for
current scenario

Level 1 Fusion:

Nodes added
by NTMS from
library

Probabilistic
Constraints:
selected by SME

Discretization nodes for
Level 0 GIS input data

Discretization nodes for Level 0
sensor input data (also fusion
nodes for Level 1 input data)

Fusion nodes
for Level 1 GIS
input data

Situation
Assessment
nodes

Constraint
nodes

Level 2 Fusion:

Situation
Assessment
Belief
Network
(SA BN)
nodes added
by SME for
current scenario

Level 1 Fusion:

Nodes added
by NTMS from
library

Figure 5: Fully Augmented SA BN in NTMS

3.2 KE for Constraints
One goal of the NTMS research was to provide easy
knowledge elicitation (KE) of probabilistic constraints;
we hoped to make the KE process accessible to the
subject matter experts (SMEs) we consulted, so that they
could personally review and revise the captured
constraint. To illustrate the KE process devised, we will
again use our more-or-less standard constraint example
that tanks are generally only found in certain terrains: they
are usually found on plains or other flat wide spaces, only
occasionally found in wooded areas due to the difficulty
of maneuvering there, and almost never found in the
water (for a functional tank this may possibly occur if
marine transport is in use).
 To formalize the constraint, i.e. prepare it for use
with the computer, the SME decides what discrete
variables to use, and what states they should have. That is,
the SME first determines the ontology terms that will be
used. For this constraint, we use the variable Terrain with
states water, plains, woods, and the variable Tanks with
states few and many. To capture the SME’s knowledge,
we need to have him specify the degree of consistency of
all possible combinations of the two variable’s states.
Terrain has 3 states, and Tanks has 2 states, so there are 6
possible combinations to be quantified; these 6 state
combinations are shown in the 2 leftmost columns of the
constraint configuration interface in Figure 6.
 The next step in capturing the constraint is to have
the SME decide how consistent or inconsistent each state
combination is. With the interface we provided, the SME
can adjust the consistency for each combination by simply
moving the slider for that combination to the desired level

of consistency, which can be anything from absolutely
consistent to absolutely inconsistent, as shown in Figure
6. We feel this is an easy and intuitive way of specifying
probabilistic constraints (although the work can become
tedious when there are many states to quantify). In the
figure it can easily be seen by checking the slider bars that
the SME has specified that whenever tanks are found in
the water it is essentially inconsistent, when tanks are
found on the plains this is essentially a consistent
situation, and when tanks are found in the woods the
consistency level is something in between absolutely
consistent and absolutely inconsistent, although sighting
many tanks in the woods is less likely to be consistent
than sighting just a few.

Figure 6: Constraint Configuration Interface

 After the consistency levels have been specified for
each state combination, the constraint is complete, and
can be saved for future use in any number of scenarios or
assessment situations. For application in a particular
scenario, one final step is needed, which is to specify just
how stringently the constraint should be applied to the
scenario. This parameter is needed because, in practice,
minor inconsistencies will very often occur in incoming
field reports, and it is generally more useful to simply
permit such inconsistencies rather than signal a serious
problem. For our sample constraint, a report of a few
tanks in the woods may arrive, which per the SME is not
especially consistent (and hence may warrant further
investigation), but this issue likely has lower priority than
the overall situation assessment task under way, such as
where the enemy force is headed, and so some allowance
for this must be provided. This is done by providing a
specific threshold for the required degree of consistency
of a constraint: if the consistency level as determined by
the constraint is above the threshold the truth level is
acceptable so nothing is done, but if it falls below the
threshold due to incoming evidence (field reports), a
warning is signaled. In Figure 6 the large yellow oval
shows that a medium level threshold has been specified,
which means that as long as the calculated consistency is

above this level, no warning will be raised. An intuitive
feature of the interface is that it shows at a glance which
state combinations will cause the consistency warning to
occur: those to the left of the vertical red line (inside the
large yellow oval) marking the threshold level will result
in a warning, while those to the right of the line will not.
Hence a few tanks sighted in the woods would not cause a
warning, however many tanks sighted in the woods would
result in such a warning indication. Also, any report of
tanks in the water would also raise a warning indication.
 The constraint threshold should be selected carefully
for a given scenario; the threshold level specified would
depend on how important it is for the constraint to be
satisfied. If the threshold level is set too high (near
‘Absolute’), then the inconsistency warning signal would
nearly always be given, since no matter what state
combination is effective, the resulting consistency will
nearly always be below the specified threshold. It is also
possible to apply a constraint too liberally: if the threshold
is set too low (near ‘Ignore’), the constraint would nearly
always be satisfied, and so would serve little or no useful
purpose in truth maintenance.

3.3 Context Resolution
An important issue in applying probabilistic constraints
with the NTMS approach is that of ensuring proper
context for the constraints. When constraining the
combinations of two or more variables, the variable data
must occur in the same context. For example, using our
earlier Tank/Woods constraint, one incoming record
(from the military database or other source) may indicate
a tank sighting, and another may indicate a wooded area.
Application of the Tank/Woods constraint to the
combined evidence from these two records would only be
valid if the records referred to the same event, i.e. the
records must have compatible context.
 Out-of-context records will often occur due to
temporal differences, where different records occur in the
context of different times. Similarly, records referring to
different geographical areas often cause a context
mismatch. Generally speaking, a context mismatch may
occur any time two records have an implicit (rather than
explicit) attribute whose values differ.
 The NTMS research effort did not attempt to solve
the problem of context resolution, which is an open area
of research. A circumvention employed in the prototype
was to restrict constraints to evaluating consistency on a
per-record basis, which virtually guarantees proper
context for evaluation.
3.4 Current Implementation, Future Work
The block diagram of Figure 7 illustrates the software
architecture of the NTMS prototype. Incoming sensor
messages (which are replayed from log files in the case of
simulations) are concentrated in a military data hub
known as the Sensor Exploitation And Management
System (SEAMS). The SEAMS hub uses an SQL
database for backing storage, and communicates with

subscribing client applications such as NTMS via a
CORBA server. The Java-based NTMS application adds
location-dependent information via a custom GIS
subsystem, and performs situation assessment and truth
maintenance (including constraint checking) with the
assistance of a tightly coupled belief network engine.

Custom GIS

SQL
Database

Sensor
Data

Storage

NTMS BNET 2000
Constraint
generation &
selection

Truth Maintenance

Situation
Assessment

Sensor Exploitation And Management System
(SEAMS)

DB
Queries

Scenario
Replayer

Scenario
Log
Files

SOAP Msgs

File I/O

Java Calls

CORBA
Server

CORBA Msgs

Java Calls

Custom GIS

SQL
Database

Sensor
Data

Storage

NTMS BNET 2000
Constraint
generation &
selection

Truth Maintenance

Situation
Assessment

Sensor Exploitation And Management System
(SEAMS)

DB
Queries

Scenario
Replayer

Scenario
Log
Files

SOAP Msgs

File I/O

Java Calls

CORBA
Server

CORBA Msgs

Java Calls
Figure 7: NTMS Software Architecture

 The prototype throughput was approximately 10
sensor records per second. This included notifying the
SEAMS server about occasional inconsistent reports. For
operational use, it is estimated that a throughput of about
100 records/second would be needed. We project that the
gap between the prototype and operational performance
can be closed by reducing network delays, using faster
computers, re-implementing in C++ (instead of Java), and
general re-factoring of the code base.
 Aside from improving performance, future plans
include addressing the context resolution issue discussed
above (although this is more of a research issue than a
development issue). Additionally, we feel that
probabilistic reasoning by itself is clearly not sufficient to
solve all the problems of TM, hence we plan to
investigate some practical form of integration between
probabilistic and logic-based systems. Finally, we plan to
move towards an operational system, by conducting KE to
assemble a complete and easily accessible library of
probabilistic constraints and situation assessment
networks.

4 Recovery from Inconsistency
4.1 BN Sensitivity Analysis
Sensitivity analysis [12] (also referred to as mutual
information in some texts) is a computational procedure
on BNs that is leveraged as a fundamental tool by NTMS.
NTMS uses sensitivity analysis as a search aid, to help
isolate groups of nodes that may be causing inconsistency
in the SA BN due to errors in their posted evidence.
Given a particular node X in the fully augmented BN,
sensitivity analysis determines which nodes Yi in the BN
most affect X; i.e. it finds and ranks the Yi which cause
the greatest change in X’s belief values as evidence is
changed in a particular Y. In a large, fully augmented SA
BN, the Yi may be far (in terms of links) from X;
moreover, the procedure is highly dependent on the

current BN state, in that different posted evidence leads to
different nodes (and rankings) Yi.
 Given a node X whose belief state is suspect -
usually an NTMS probabilistic constraint node - and the
node Y found by sensitivity analysis that most affects X;
we use a simple heuristic approach that Y is therefore the
most likely cause of the error at X. This approach can be
extended to isolate entire groups of nodes which may be
causing inconsistency or error, e.g. by selecting the top N
ranked nodes Yi to which X is sensitive.

4.2 Default Reasoning
Default reasoning [23] is a truth maintenance technique
from formal logic, adapted for use with BNs and
probabilistic reasoning. It involves considering and
revising the space of all possible default settings to
achieve a particular desired result involving the network’s
belief values. For BNs the default settings are the a priori
probabilities set in the root nodes of the networks; these
settings represent reasonable assumptions for the current
scenario, made by the SME. There may be many such
nodes in a large, fully augmented SA BN used by NTMS;
sensitivity analysis can be used to narrow the choices to a
workable set.
 NTMS use of default reasoning yields a general TM
algorithm for restoring consistency, which we sketch
here:

1. When a constraint node X falls below its specified
threshold, run sensitivity analysis on X to identify
and rank those BN nodes Yi which most affect X.

2. From the list of nodes Yi select those nodes Zi which
are root nodes, as these have the default assumptions,
encoded as a priori probabilities.

3. Form the state space S consisting of all possible
likelihood (evidence) settings for the Zi.

4. Search S for a combination of likelihoods on the Zi
that will raise the consistency of X back above its
specified threshold. (We may wish to find a minimal
subset of the Zi to alter to restore consistency.)

5. Post the restorative likelihoods and continue.

Note this algorithm is not guaranteed to succeed: we may
fail to find any root nodes on our list of nodes affecting
the violated constraint, or it may be that no combination
of likelihoods from the state space S will restore
consistency.
 Figure 8 illustrates default reasoning.

Comm SIGINT COMINT

SIG_REP COM_REP

Consistent

Constraint node is
below consistency
threshold

Nodes with defaults
are adjusted to raise
consistency back
above the threshold

Comm SIGINT COMINT

SIG_REP COM_REP

Consistent

Constraint node is
below consistency
threshold

Nodes with defaults
are adjusted to raise
consistency back
above the threshold

Figure 8: Default Reasoning Example

Given a constraint violation at X=’Consistent’, we
perform sensitivity analysis to find the list Yi of nodes
affecting X, then select from the Yi the root nodes
Z1=’SIGINT’ and Z2=’COMINT’. We then try to restore
consistency in the BN by adjusting the defaults (via
posting evidence/likelihoods) to ‘SIGINT’ and
‘COMINT’.

4.3 Consistency Forcing
If default reasoning fails to restore consistency, we may
try an approach we call consistency forcing; this works as
follows (as above, this is just a sketch of the algorithm):

1. When a constraint node X falls below its specified
threshold, simply post evidence to X sufficient to
‘force’ its consistency above the threshold.

2. Examine all other non-constraint nodes in the
network: compute the Euclidean distance between
their belief state vectors before and after forcing
consistency on X, and rank them in descending order,
in a list Yi of such nodes. (In many cases, we will
want to examine only those nodes with evidence
posted.)

3. Retract the evidence previously posted to X.
4. In order (i=1,…,n), post evidence to the Yi to bring

their belief state vectors ‘close’ to what they were
with evidence posted to the constraint node X.
Continue until the consistency of X is back above
threshold, or until we exhaust the Yi.

Unfortunately, this algorithm is also not guaranteed to
succeed: in some unusual limiting circumstances, certain
combinations of evidence are fundamentally
incompatible, so that the BN engine will reject their
application.
 Consistency forcing can be very effective as a TM
algorithm, as it effectively widens the field of nodes
whose beliefs we can manipulate to essentially the entire
BN, save for the constraint nodes. On the other hand,
there may in many cases be no acceptable semantic
interpretation of modifying the belief states of the non-
default (i.e. non-root) or non-evidentiary (those with no
evidence posted) nodes; whereas with default reasoning it
is nearly always acceptable to interpret the changes as
simply ‘correcting bad assumptions.’ For this reason it is
usually better to try default reasoning first.

4.4 Last Resorts
If neither default reasoning nor consistency forcing (or
any variation thereof) restore consistency to the SA BN,
then there are two remaining possibilities:

1. The incoming evidence is fundamentally inconsistent.
2. The SA BN model is inaccurate.

Distinguishing between these two cases in the field can be
difficult; we recommend avoiding the latter by carefully
modeling, and then carefully verifying the BN model
before fielding it.

 Given the former case, i.e. we have been provided
with inconsistent evidence, some coping tactics include:

1. Simply reject the inconsistent record outright. The
NTMS prototype will raise an error dialog to warn of
(rather than reject) incompatible evidence records.

2. Revise the probabilistic constraint threshold levels. In
some cases it may be preferable to simply tolerate
some inconsistency.

3. If multiple input records have been posted to the SA
BN, it may be possible to identify a single record (not
necessarily the most recent) that is incompatible with
the rest, and whose veracity is suspect: this record
can be rejected and the others retained.

4. Wait for more evidence. In many applications
incomplete sets of information will seem inconsistent;
all records must be received to restore consistency.

5. Ask for assistance. A human-in-the-loop hybrid TM
approach could be devised which asks the SME to
assist in restoring consistency by choosing which
subsets of consistent evidence are more likely correct.

5 Conclusion
The NTMS system attempts to incorporate simple,
human-like probabilistic reasoning into a TMS in an
efficient, practical, and accessible way. NTMS relies
entirely on probabilistic reasoning for its truth
maintenance, which breaks with the traditional coarse
grained handling of consistency enforcement via logical
formulae.
 NTMS uses BN models, performing probabilistic
situation analysis (SA) as specified by the SME who
creates the BN. It extends the probabilistic reasoning
paradigm by using probabilistic constraints to check the
consistency of incoming evidence, and a probabilistic
variant of default reasoning and other techniques to
restore consistency in the event of constraint violations.
 NTMS does not address issues of context resolution;
proper context must be provided by the system user to
ensure proper results. The NTMS prototype restricts its
reasoning to the verification of individual records to
ensure proper context of the data elements.
 NTMS has been implemented on a military
command and control (C2) platform, and tested with
computer simulations. Future work includes addressing
performance issues, the context resolution problem, some
integration with logic-based systems, and expanding the
knowledge base of constraints and assessment networks.

Acknowledgment: The authors wish to thank Mr. Joseph
A. Karakowski, of the US Army CECOM, at Fort
Monmouth, NJ, for his support on this project.

References
[1] Bokor, J., and Ferguson, R., Integrating
Probabilistic Networks into a Symbolic Diagrammatic
Reasoner, 18th International Workshop on Qualitative
Reasoning, Northwestern University, August 2004.

[2] S. K. Das, Deductive Databases and Logic
Programming, Addison-Wesley, 1992.
[3] S. K. Das, and Lawless, D. Network-based Truth
Maintenance System, Proceedings of the 15th European
Conference on Artificial Intelligence, pp. 551-555, 2002.
[4] Dechter, R., and Dechter, A., Structure-Driven
Algorithms for Truth Maintenance, Artificial Intelligence,
Vol. 82, No. 1-2, pp. 1-20, 1996.
[5] J. Doyle, Truth Maintenance Systems, Artificial
Intelligence, Vol. 12, No. 3, pp. 231-272, 1979.
[6] R. Fagin, J. Y. Halpern, and N. Megiddo, A Logic
for Reasoning about Probabilities, Information and
Computation, Vol. 87, No. 1&2, pp. 78-128, 1990.
[7] K. D. Forbus, and J. de Kleer, Building Problem
Solvers, MIT Press, 1993.
[8] N. Fuhr, and T. Rolleke, A Probabilistic Relational
Algebra for the Integration of Information Retrieval and
Database Systems, ACM Transactions on Information
Systems, Vol. 15, No. 1, pp. 32–66, 1997.
[9] P. Gardenfors, Knowledge in Flux: Modeling the
Dynamics and Epistemic States, MIT Press, 1988.
[10] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer,
Learning Probabilistic Relational Models, in Relational
Data Mining, Springer-Verlag, 2001.
[11] D. L. Hall, and J. Llinas, Handbook of Multisensor
Data Fusion, CRC Press, 2001.
[12] F. V. Jensen, An Introduction to Bayesian Networks,
Springer-Verlag, 1998.
[13] J. de Kleer, An Assumption-based TMS, Artificial
Intelligence, Vol. 28, No. 2, pp. 127-162, 1986.
[14] T. Lukasiewicz, Probabilistic Logic Programming
with Conditional Constraints, ACM Transactions on
Computational Logic, Vol. 2, No. 3, pp. 289-339, 2001.
[15] D. McAllester, Truth Maintenance, Proceedings of
the Eighth National Conference on Artificial Intelligence,
Vol. 2, pp. 1109-1116, 1990.
[16] D. McDermott, A General Framework for Reason
Maintenance, Artificial Intelligence, Vol. 50, No. 3, pp.
289-329, 1991.
[17] J. Minker, Logic and Databases: Past, Present, and
Future, AI Magazine, Fall 1997.
[18] R. Ng, Reasoning with Uncertainty in Deductive
Databases and Logic Programs, International Journal of
Uncertainty, Fuzziness and Knowledge-based Systems,
Vol. 2&3, pp. 261-316, 1997.
[19] R. Ng, and V. S. Subrahmanian, Probabilistic Logic
Programming, Information and Computation, Vol. 101,
No. 2, pp. 150-201, 1992.
[20] J. Pearl, Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, Morgan
Kaufmann, San Mateo, CA, 1988.
[21] D. Poole, Probabilistic Horn Abduction and
Bayesian Networks, Artificial Intelligence, Vol. 64, No. 1,
pp. 81-129, 1993.
[22] Protégé Ontology Editor, http://protege.stanford.edu/
[23] R. Reiter, A Logic for Default Reasoning, Artificial
Intelligence, Vol. 13, pp. 81-132, 1980.

http://protege.stanford.edu/

	Introduction
	Motivating Example
	NTMS Overview
	Related Work

	Probabilistic Constraints
	Definition
	Ontology
	Representation
	Hierarchy

	NTMS Prototype
	Algorithmics
	KE for Constraints
	Context Resolution
	Current Implementation, Future Work

	Recovery from Inconsistency
	BN Sensitivity Analysis
	Default Reasoning
	Consistency Forcing
	Last Resorts

	Conclusion
	References

