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Abstract - A Network-based Truth Maintenance System 
(NTMS) is presented that leverages Bayesian Belief 
Network (BN) technology for its truth maintenance 
mechanism. NTMS applies probabilistic versions of 
integrity constraints in the form of small BNs to the 
knowledge base, providing an efficient and intuitive 
mechanism for detecting inconsistencies. The approach is 
applicable to any relational database by converting 
database entries into evidence for the probabilistic 
constraints. NTMS can optionally integrate BNs for Level 
Two fusion (Situation Assessment, or SA) with the 
probabilistic constraints; the instantiation for a 
particular problem consists of a SA BN that models the 
world state and facilitates SA on the knowledge base. The 
SA BN is augmented with the probabilistic constraint 
BNs, which provide metrics on the consistency of the SA 
BN.  Inconsistencies in the SA BN are resolved by a 
combination of techniques including sensitivity analysis, 
default reasoning, consistency ‘forcing’, or seeking new 
evidence. 

Keywords: Truth Maintenance System, Bayesian Belief 
Networks, probabilistic constraints, default reasoning 

1 Introduction 
Contemporary digital information systems aggregate 
enormous amounts of data for use in critical situation 
analysis and decision making tasks; however, the overall 
accuracy and consistency of the databases can be very 
difficult to verify and maintain. For example, military 
information systems may concentrate millions of reports 
from vast and disparate sensor arrays (including, to name 
just a few, unattended ground vibration sensors, thermal 
sensors, radar, UAV video feeds, satellite data, human 
intelligence reports, etc.) for situation analysis purposes, 
such as determining enemy actions or intent; but due to 
the context sensitive, inexact, and uncertain nature of the 
incoming raw information, ensuring consistency of such a 
military intelligence database is especially difficult. The 
traditional AI solution to this problem is to employ a 
Truth Maintenance System (TMS) [5][7][15][16]; such 
systems are expressly designed to help maintain 
consistency in the knowledge base used by a problem 

solver. However, the overhead of TMS usage is usually 
prohibitive for large problems, and their truth 
maintenance is intractable in the general case. 
 This paper presents a Network-based Truth 
Maintenance System, or NTMS [3], a TMS variant that 
incorporates a purely probabilistic approach to database 
consistency, rather than a logic based approach. NTMS 
uses Bayesian Belief Networks (BNs) [20] as its 
fundamental enabling technology. NTMS introduces the 
use of probabilistic integrity constraints (or more simply, 
probabilistic constraints) with BNs for detecting 
inconsistencies; these can be combined with more 
standard mechanisms such as sensitivity analysis [12] and 
default reasoning [23] for consistency recovery purposes. 
The NTMS variant provides a practical methodology that 
facilitates a natural approach to maintaining database 
consistency, and avoids some of the overhead associated 
with other TMS systems [4]. 

1.1 Motivating Example 
A simple example will illustrate the basic ideas behind the 
NTMS system.  A knowledge elicitation (KE) session 
with a military subject matter expert (SME) regarding the 
analysis of reconnaissance reports produced the rule of 
thumb that “Enemy tanks are rarely found in the woods” 
(the rationale being that enemy tanks generally operate in 
open areas for better mobility, and usually only move into 
a wooded area for camouflage). The SME was further 
able to partially quantify his rule of thumb, providing 
estimates (see Table 1) of the probabilities of finding 
enemy equipment in a wooded area or on a road. 

Table 1: Tank/Woods Consistency  
Equipment Terrain p(Consistent) p(Inconsistent)

Tank Non-Woods 0.8 0.2
Tank Woods 0.1 0.9
Non-tank Non-Woods 0.5 0.5
Non-tank Woods 0.4 0.6  

Although SMEs often have little if any background in 
probability theory (let alone Bayesian Networks), we have 
found that they can usually provide general rules about 
the likelihood of world state combinations, which 
translate fairly easily into rough probability estimates, 
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which in turn are the basis of the probabilistic constraints 
used by NTMS. The above rule yields a probabilistic 
constraint assigning a probability of p(Inconsistent)=0.9 
to any incoming reconnaissance report (or combination of 
such reports) indicating a sighting of an enemy tank in a 
wooded area. Depending on the system parameters in 
effect, such a metric of inconsistency would trigger 
recovery action by the NTMS system; recovery might 
then lead to rejection of the report or a prior report, to the 
revision of default assumptions about the terrain or 
equipment involved, or to a request for additional 
resolving information. 

1.2 NTMS Overview 
The block diagram in Figure 1 shows how the NTMS 
approach has been implemented in a prototype. 
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Figure 1: NTMS Block Diagram 

As shown in the diagram, NTMS operates on a conceptual 
knowledge base of belief networks (BNs) and data. The 
BNs consist of Situation Assessment (SA) networks and 
probabilistic constraint networks; the SA networks are 
augmented (before run time) with small networks 
representing probabilistic constraints for consistency 
checking. The data consists of relational database entries 
which are translated (at run time, with assistance from 
additional small BNs for low-level, i.e. Level 1, data 
fusion1) into BN evidence; the evidence is then posted to 
the augmented SA networks to update the internal world 
state model. The BN engine is a software component that 
handles BN inferencing and probability calculations for 
the augmented SA networks. The truth maintenance 
algorithms use the BN engine to aggregate evidence, and 
perform situation assessment, consistency checking, and 
recovery (when inconsistency exceeds some specified 
threshold). 

1.3 Related Work 
In logic or deductive databases without probability, 
missing values are represented by Skolem constants; more 
generally, in logic programming missing values, or 
existentially-quantified variables, are represented by terms 
                                                 
1 The terms data fusion, situation assessment, and the 
various fusion levels follow the JDL definitions [11]. 

built from Skolem functors. There has been similar 
research in embedding probabilities into both 
conventional relational databases [8][10] and deductive 
databases [18]. In addition, embedding probabilities into 
logic programming [14][19][21] is also relevant to our 
research, but not the more general approach of embedding 
probabilities into logic [6]. Each of these systems has 
query processing capabilities, and thus integrity 
constraints can be defined and verified upon update via 
transaction. 
 For example, Fuhr and Rolleke [8] propose a 
probabilistic relational algebra (PRA) which is a 
generalization of standard relational algebra. In PRA, 
tuples are assigned probabilistic weights giving the 
probability that a tuple belongs to a relation. A 
probabilistic relational model [10] uses a Bayesian 
network to represent the joint probability distribution over 
fields in a relational database. Like our approach, the 
network can be used to make inferences about missing 
values in the database. Ng [18] proposes a deductive 
database framework which is expressive enough to 
represent such probabilistic relationships as conditional 
probabilities, Bayesian updates, and probability 
propagation. Probabilities in probabilistic logic 
programming by Lukasiewicz [14] are defined over a set 
of possible worlds and linear optimization techniques are 
employed for deciding satisfiability.  Finally, Bokor and 
Ferguson [1] use an approach similar to ours to reason 
about diagrams. 
 Our approach differs from each of the above in 
terms of practicality and efficiency. Moreover, unlike 
conventional relational databases and most of the other 
approaches, we do not throw away a transaction due to the 
violation of an integrity constraint. We have also 
developed various ways of recovering from constraint 
violations. 
 Various types of truth maintenance systems (TMS) 
have been devised in the past, with different features 
according to their research aims [7]: 

• A Justification-Based Truth Maintenance System 
(JTMS) enables one to examine the consequences of 
the current set of assumptions. 

• An Assumption-Based Truth Maintenance System 
(ATMS) [13] allows one to maintain and reason with 
a number of simultaneous, possibly incompatible, 
current sets of assumptions. 

• A Logic-Based Truth Maintenance System (LTMS), 
like a JTMS, reasons with only one set of current 
assumptions at a time, but recognizes the 
propositional semantics of sentences, that is, 
understands the relations between p and not p, p and 
q and p or q, and modal operators for knowledge and 
belief [9]. 

The NTMS variant is similar to a JTMS because we 
examine the consequences of one piece of evidence at a 
time. It can be easily extended to an ATMS by replicating 



the SA network to simultaneously handle a set of 
incompatible assumptions. However, we have avoided the 
LTMS approach, as any constraint satisfaction procedure 
required to implement such a system is NP hard and 
therefore unsuitable for handling the large information 
sources we are targeting (i.e. military intelligence 
databases). Table 2 compares the NTMS approach with 
that of the logic-based Expert Systems mentioned above, 
and also with a traditional Database Management System 
(DBMS), considered as a TMS with its deterministic 
integrity constraints. 

Table 2: TMS Feature Comparison 
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2 Probabilistic Constraints 
2.1 Definition 
Integrity constraints are a standard mechanism for 
ensuring the integrity of databases. A discussion on 
various types of constraints and verification methods for 
relational and deductive databases can be found in 
[2][17]. Such a database must ‘satisfy’ its integrity 
constraints. In the theoremhood view of satisfaction, a 
database is considered as a logical theory, and each 
constraint must be a theorem of the theory. In the 
consistency view, the constraints along with the theory 
must be logically consistent. We extend this notion of 
integrity constraints to probabilistic integrity constraints 
(just probabilistic constraints or even constraints when the 
context is clear). However, there are important differences 
between the deterministic and probabilistic varieties. 
 A standard deterministic integrity constraint is 
boolean, in the sense that it assigns a world state to a 
range of just two values, i.e. it is either completely 
consistent (true) or completely inconsistent (false). 
Probabilistic constraints assign a world state to the unit 

interval, so that a world state may be completely 
consistent (1.0), completely inconsistent (0.0), or 
anywhere in between these extremes.  
 The unit interval value assigned to a world state is 
expected to estimate the actual probability of occurrence 
of the world state, as a metric of ‘consistency’, e.g. p=0 
would represent an impossible world state (a contradiction 
or complete inconsistency), and p=1 would represent a 
certain world state (a tautology, completely consistent). 
 Deterministic constraints on world states are 
satisfied when they evaluate to true. Probabilistic 
constraints are satisfied whenever their computed value 
exceeds the SME-specified threshold; they are therefore 
highly subjective. 
 Finally, probabilistic constraints use Bayesian Belief 
Networks (BNs) [20] as their specific form of knowledge 
representation. (This is essentially an implementation 
dependent choice; equivalent representations may serve 
better in other implementations, e.g. a set of rules might 
be preferable for an expert system.) 

2.2 Ontology  
A prerequisite task in formulating constraints for a 
particular problem (or scenario) is listing the entities (and 
their properties or attributes) that are to be constrained, 
that is, one needs to specify the ontology of the scenario, 
so that a fixed and well-defined set of discussion terms, 
and hence scenario world state variables, exists.  
 Although not especially difficult, the task of 
specifying an ontology for a scenario can be laborious and 
time-consuming. Moreover, the ontology needs to be 
specified in a way that makes it available to all the 
software components of the NTMS system. For the 
prototype implementation, we used the freely available 
Protégé ontology editor [22] for this purpose. 

2.3 Representation 
 The formation of probabilistic constraints basically 
consists of knowledge elicitation (KE) with subject matter 
experts (SMEs) to obtain probability estimates for world 
state combinations, followed by translation to a BN 
knowledge representation (KR). So continuing our 
example from above, Table 1 specified the requisite 
probabilities for a probabilistic constraint on enemy tanks 
in the woods; we can readily translate the information to a 
BN, forming the Tank/Woods probabilistic constraint of 
Figure 2. Note that the table translates directly into the 
Conditional Probability Table (CPT) of the Consistent 
node of the BN representation. 
 Probabilistic constraints may involve any number of 
variables; Figure 3 shows an example constraint on three 
variables, which simply checks that a military unit (e.g. a 
squad or platoon) comprised of a certain equipment type 
(e.g. tanks or artillery) has a size that is consistent with its 
unit designation. In general, probabilistic constraints on 
large numbers of variables should be avoided because a) 
the KE process becomes much more difficult for such 
cases, and b) the CPT size is exponential in terms of the 



number of variables involved. Fortunately, in practice 
only two- or three-variable constraints usually arise; 
probabilistic constraints on more variables are rare, and 
moreover can often be effectively reduced to a collection 
of constraints on fewer variables via ad hoc techniques.  
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Figure 2: Tank/Woods Probability Constraint 
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Figure 3: Probabilistic Constraint on Three Variables 

2.4 Hierarchy  
The various probabilistic constraints that arise will often 
be minor variations from one another; this similarity can 
be leveraged in the KR format by applying standard 
object-oriented programming techniques.  We treat each 
constraint as an object or class, and organize a class 
hierarchy of constraints. The higher level constraint 
objects will represent more abstract constraints; with more 
specific constraints represented in subclasses.  
 For example, a military SME may wish to represent 
the simple, well-known constraint that barbed wire and 
minefields are usually collocated in older, “conventional” 
battlefield situations. Figure 4 shows how this constraint 
might fit into a constraint class hierarchy. 
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Figure 4: Class Hierarchy of Probabilistic Constraints 

 The highest level constraint, on the left, is simply an 
abstract representation of two entities X and Y, with an 
unspecified consistency relationship between them.  The 
next level, in the middle, refines the abstract constraint 
somewhat to a probabilistic if-and-only-if (IFF) constraint 

on two variables, indicating that X and Y should usually 
occur together. Its CPT will indicate a high degree of 
consistency if X and Y both occur together or are both 
absent, and a low degree of consistency if exactly one of 
X and Y are present. Finally, the right-most constraint is 
specifically tailored for the case of barbed wire and mines 
being collocated, created by setting X=Barbwire and 
Y=Mines; the SME may also make adjustments to the 
inherited Conditional Probability Table (CPT). 

3 NTMS Prototype 
3.1 Algorithmics 
The most salient features of the NTMS prototype 
algorithms include: 

• SME-guided configuration and application of 
probabilistic constraints to a Situation Assessment 
Belief Network (SA BN) for truth maintenance (TM). 

• Integration into a single BN of Level 1 fusion (state 
estimation) BNs, Level 2 fusion BNs (SA BN), and 
probabilistic constraint BNs. 

• Application of the augmented SA BN to incoming 
sensor data for consistency checking and error 
detection. 

• Techniques for recovery from constraint violations. 

 The configuration of probabilistic constraints is an 
important KE task (discussed at length in Section 3.2); 
their application to the SA BN is accomplished by a 
straightforward selection of applicable constraints for a 
given SA BN from a library, guided by a program menu. 
 The integration of Level 1 BNs, the SA BNs, and the 
constraint BNs is illustrated in Figure 5. In this example, 
the SME manually adds eight nodes: four for the SA task 
he wishes to perform, and another four for Level 1 fusion 
input that he requires for the SA task. At run time, fifteen 
additional nodes are added to the network to perform 
Level 1 fusion; in this case the nodes are for discretization 
of input from the auxiliary GIS subsystem. (Nodes 
handling Level 1 fusion have special logic associated with 
them for this task.) Additionally, three probabilistic 
constraints selected by the SME are appended to the 
initial SA BN. 
 The augmented SA BN is then applied to incoming 
sensor reports by using the Level 1 fusion nodes to 
discretize the information required from the sensor 
reports, which is effectively posted as evidence to the 
nodes. (Similarly, for the GIS-related nodes, location 
information is extracted from the sensor reports, and the 
GIS subsystem is consulted for information that is 
discretized by the nodes and posted as evidence.) 
 The posting of evidence to the augmented SA BN 
propagates through all nodes, and so affects the belief 
states of the constraint nodes. If some constraint falls 
below its threshold consistency, an alarm condition is 
signaled, and recovery techniques are invoked; these 



techniques are important algorithms that are discussed at 
length in Section 4. 
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Figure 5: Fully Augmented SA BN in NTMS 

3.2 KE for Constraints 
One goal of the NTMS research was to provide easy 
knowledge elicitation (KE) of probabilistic constraints; 
we hoped to make the KE process accessible to the 
subject matter experts (SMEs) we consulted, so that they 
could personally review and revise the captured 
constraint. To illustrate the KE process devised, we will 
again use our more-or-less standard constraint example 
that tanks are generally only found in certain terrains: they 
are usually found on plains or other flat wide spaces, only 
occasionally found in wooded areas due to the difficulty 
of maneuvering there, and almost never found in the 
water (for a functional tank this may possibly occur if 
marine transport is in use). 
 To formalize the constraint, i.e. prepare it for use 
with the computer, the SME decides what discrete 
variables to use, and what states they should have. That is, 
the SME first determines the ontology terms that will be 
used. For this constraint, we use the variable Terrain with 
states water, plains, woods, and the variable Tanks with 
states few and many. To capture the SME’s knowledge, 
we need to have him specify the degree of consistency of 
all possible combinations of the two variable’s states.  
Terrain has 3 states, and Tanks has 2 states, so there are 6 
possible combinations to be quantified; these 6 state 
combinations are shown in the 2 leftmost columns of the 
constraint configuration interface in Figure 6. 
 The next step in capturing the constraint is to have 
the SME decide how consistent or inconsistent each state 
combination is. With the interface we provided, the SME 
can adjust the consistency for each combination by simply 
moving the slider for that combination to the desired level 

of consistency, which can be anything from absolutely 
consistent to absolutely inconsistent, as shown in Figure 
6. We feel this is an easy and intuitive way of specifying 
probabilistic constraints (although the work can become 
tedious when there are many states to quantify). In the 
figure it can easily be seen by checking the slider bars that 
the SME has specified that whenever tanks are found in 
the water it is essentially inconsistent, when tanks are 
found on the plains this is essentially a consistent 
situation, and when tanks are found in the woods the 
consistency level is something in between absolutely 
consistent and absolutely inconsistent, although sighting 
many tanks in the woods is less likely to be consistent 
than sighting just a few. 

 
Figure 6: Constraint Configuration Interface 

 After the consistency levels have been specified for 
each state combination, the constraint is complete, and 
can be saved for future use in any number of scenarios or 
assessment situations. For application in a particular 
scenario, one final step is needed, which is to specify just 
how stringently the constraint should be applied to the 
scenario. This parameter is needed because, in practice, 
minor inconsistencies will very often occur in incoming 
field reports, and it is generally more useful to simply 
permit such inconsistencies rather than signal a serious 
problem. For our sample constraint, a report of a few 
tanks in the woods may arrive, which per the SME is not 
especially consistent (and hence may warrant further 
investigation), but this issue likely has lower priority than 
the overall situation assessment task under way, such as 
where the enemy force is headed, and so some allowance 
for this must be provided. This is done by providing a 
specific threshold for the required degree of consistency 
of a constraint: if the consistency level as determined by 
the constraint is above the threshold the truth level is 
acceptable so nothing is done, but if it falls below the 
threshold due to incoming evidence (field reports), a 
warning is signaled.  In Figure 6 the large yellow oval 
shows that a medium level threshold has been specified, 
which means that as long as the calculated consistency is 



above this level, no warning will be raised. An intuitive 
feature of the interface is that it shows at a glance which 
state combinations will cause the consistency warning to 
occur: those to the left of the vertical red line (inside the 
large yellow oval) marking the threshold level will result 
in a warning, while those to the right of the line will not. 
Hence a few tanks sighted in the woods would not cause a 
warning, however many tanks sighted in the woods would 
result in such a warning indication. Also, any report of 
tanks in the water would also raise a warning indication. 
 The constraint threshold should be selected carefully 
for a given scenario; the threshold level specified would 
depend on how important it is for the constraint to be 
satisfied. If the threshold level is set too high (near 
‘Absolute’), then the inconsistency warning signal would 
nearly always be given, since no matter what state 
combination is effective, the resulting consistency will 
nearly always be below the specified threshold. It is also 
possible to apply a constraint too liberally: if the threshold 
is set too low (near ‘Ignore’), the constraint would nearly 
always be satisfied, and so would serve little or no useful 
purpose in truth maintenance. 

3.3 Context Resolution 
An important issue in applying probabilistic constraints 
with the NTMS approach is that of ensuring proper 
context for the constraints.  When constraining the 
combinations of two or more variables, the variable data 
must occur in the same context.  For example, using our 
earlier Tank/Woods constraint, one incoming record 
(from the military database or other source) may indicate 
a tank sighting, and another may indicate a wooded area.  
Application of the Tank/Woods constraint to the 
combined evidence from these two records would only be 
valid if the records referred to the same event, i.e. the 
records must have compatible context. 
 Out-of-context records will often occur due to 
temporal differences, where different records occur in the 
context of different times.  Similarly, records referring to 
different geographical areas often cause a context 
mismatch. Generally speaking, a context mismatch may 
occur any time two records have an implicit (rather than 
explicit) attribute whose values differ. 
 The NTMS research effort did not attempt to solve 
the problem of context resolution, which is an open area 
of research. A circumvention employed in the prototype 
was to restrict constraints to evaluating consistency on a 
per-record basis, which virtually guarantees proper 
context for evaluation. 
3.4 Current Implementation, Future Work 
The block diagram of Figure 7 illustrates the software 
architecture of the NTMS prototype. Incoming sensor 
messages (which are replayed from log files in the case of 
simulations) are concentrated in a military data hub 
known as the Sensor Exploitation And Management 
System (SEAMS). The SEAMS hub uses an SQL 
database for backing storage, and communicates with 

subscribing client applications such as NTMS via a 
CORBA server. The Java-based NTMS application adds 
location-dependent information via a custom GIS 
subsystem, and performs situation assessment and truth 
maintenance (including constraint checking) with the 
assistance of a tightly coupled belief network engine. 
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Figure 7: NTMS Software Architecture 

 The prototype throughput was approximately 10 
sensor records per second.  This included notifying the 
SEAMS server about occasional inconsistent reports. For 
operational use, it is estimated that a throughput of about 
100 records/second would be needed. We project that the 
gap between the prototype and operational performance 
can be closed by reducing network delays, using faster 
computers, re-implementing in C++ (instead of Java), and 
general re-factoring of the code base. 
 Aside from improving performance, future plans 
include addressing the context resolution issue discussed 
above (although this is more of a research issue than a 
development issue). Additionally, we feel that 
probabilistic reasoning by itself is clearly not sufficient to 
solve all the problems of TM, hence we plan to 
investigate some practical form of integration between 
probabilistic and logic-based systems. Finally, we plan to 
move towards an operational system, by conducting KE to 
assemble a complete and easily accessible library of 
probabilistic constraints and situation assessment 
networks. 

4 Recovery from Inconsistency 
4.1 BN Sensitivity Analysis 
Sensitivity analysis [12] (also referred to as mutual 
information in some texts) is a computational procedure 
on BNs that is leveraged as a fundamental tool by NTMS. 
NTMS uses sensitivity analysis as a search aid, to help 
isolate groups of nodes that may be causing inconsistency 
in the SA BN due to errors in their posted evidence. 
Given a particular node X in the fully augmented BN, 
sensitivity analysis determines which nodes Yi in the BN 
most affect X; i.e. it finds and ranks the Yi which cause 
the greatest change in X’s belief values as evidence is 
changed in a particular Y. In a large, fully augmented SA 
BN, the Yi may be far (in terms of links) from X; 
moreover, the procedure is highly dependent on the 



current BN state, in that different posted evidence leads to 
different nodes (and rankings) Yi. 
 Given a node X whose belief state is suspect - 
usually an NTMS probabilistic constraint node - and the 
node Y found by sensitivity analysis that most affects X; 
we use a simple heuristic approach that Y is therefore the 
most likely cause of the error at X. This approach can be 
extended to isolate entire groups of nodes which may be 
causing inconsistency or error, e.g. by selecting the top N 
ranked nodes Yi to which X is sensitive. 

4.2 Default Reasoning 
Default reasoning [23] is a truth maintenance technique 
from formal logic, adapted for use with BNs and 
probabilistic reasoning. It involves considering and 
revising the space of all possible default settings to 
achieve a particular desired result involving the network’s 
belief values. For BNs the default settings are the a priori 
probabilities set in the root nodes of the networks; these 
settings represent reasonable assumptions for the current 
scenario, made by the SME. There may be many such 
nodes in a large, fully augmented SA BN used by NTMS; 
sensitivity analysis can be used to narrow the choices to a 
workable set. 
 NTMS use of default reasoning yields a general TM 
algorithm for restoring consistency, which we sketch 
here: 

1. When a constraint node X falls below its specified 
threshold, run sensitivity analysis on X to identify 
and rank those BN nodes Yi which most affect X. 

2. From the list of nodes Yi select those nodes Zi which 
are root nodes, as these have the default assumptions, 
encoded as a priori probabilities. 

3. Form the state space S consisting of all possible 
likelihood (evidence) settings for the Zi. 

4. Search S for a combination of likelihoods on the Zi 
that will raise the consistency of X back above its 
specified threshold. (We may wish to find a minimal 
subset of the Zi to alter to restore consistency.) 

5. Post the restorative likelihoods and continue. 

Note this algorithm is not guaranteed to succeed: we may 
fail to find any root nodes on our list of nodes affecting 
the violated constraint, or it may be that no combination 
of likelihoods from the state space S will restore 
consistency. 
 Figure 8 illustrates default reasoning. 
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Figure 8: Default Reasoning Example 

Given a constraint violation at X=’Consistent’, we 
perform sensitivity analysis to find the list Yi of nodes 
affecting X, then select from the Yi the root nodes 
Z1=’SIGINT’ and Z2=’COMINT’. We then try to restore 
consistency in the BN by adjusting the defaults (via 
posting evidence/likelihoods) to ‘SIGINT’ and 
‘COMINT’. 

4.3 Consistency Forcing 
If default reasoning fails to restore consistency, we may 
try an approach we call consistency forcing; this works as 
follows (as above, this is just a sketch of the algorithm): 

1. When a constraint node X falls below its specified 
threshold, simply post evidence to X sufficient to 
‘force’ its consistency above the threshold. 

2. Examine all other non-constraint nodes in the 
network: compute the Euclidean distance between 
their belief state vectors before and after forcing 
consistency on X, and rank them in descending order, 
in a list Yi of such nodes. (In many cases, we will 
want to examine only those nodes with evidence 
posted.) 

3. Retract the evidence previously posted to X. 
4. In order (i=1,…,n), post evidence to the Yi to bring 

their belief state vectors ‘close’ to what they were 
with evidence posted to the constraint node X. 
Continue until the consistency of X is back above 
threshold, or until we exhaust the Yi. 

Unfortunately, this algorithm is also not guaranteed to 
succeed: in some unusual limiting circumstances, certain 
combinations of evidence are fundamentally 
incompatible, so that the BN engine will reject their 
application. 
 Consistency forcing can be very effective as a TM 
algorithm, as it effectively widens the field of nodes 
whose beliefs we can manipulate to essentially the entire 
BN, save for the constraint nodes. On the other hand, 
there may in many cases be no acceptable semantic 
interpretation of modifying the belief states of the non-
default (i.e. non-root) or non-evidentiary (those with no 
evidence posted) nodes; whereas with default reasoning it 
is nearly always acceptable to interpret the changes as 
simply ‘correcting bad assumptions.’ For this reason it is 
usually better to try default reasoning first. 

4.4 Last Resorts 
If neither default reasoning nor consistency forcing (or 
any variation thereof) restore consistency to the SA BN, 
then there are two remaining possibilities: 

1. The incoming evidence is fundamentally inconsistent. 
2. The SA BN model is inaccurate. 

Distinguishing between these two cases in the field can be 
difficult; we recommend avoiding the latter by carefully 
modeling, and then carefully verifying the BN model 
before fielding it. 



 Given the former case, i.e. we have been provided 
with inconsistent evidence, some coping tactics include: 

1. Simply reject the inconsistent record outright. The 
NTMS prototype will raise an error dialog to warn of 
(rather than reject) incompatible evidence records. 

2. Revise the probabilistic constraint threshold levels. In 
some cases it may be preferable to simply tolerate 
some inconsistency.  

3. If multiple input records have been posted to the SA 
BN, it may be possible to identify a single record (not 
necessarily the most recent) that is incompatible with 
the rest, and whose veracity is suspect: this record 
can be rejected and the others retained.  

4. Wait for more evidence. In many applications 
incomplete sets of information will seem inconsistent; 
all records must be received to restore consistency. 

5. Ask for assistance. A human-in-the-loop hybrid TM 
approach could be devised which asks the SME to 
assist in restoring consistency by choosing which 
subsets of consistent evidence are more likely correct. 

5 Conclusion 
The NTMS system attempts to incorporate simple, 
human-like probabilistic reasoning into a TMS in an 
efficient, practical, and accessible way. NTMS relies 
entirely on probabilistic reasoning for its truth 
maintenance, which breaks with the traditional coarse 
grained handling of consistency enforcement via logical 
formulae.   
 NTMS uses BN models, performing probabilistic 
situation analysis (SA) as specified by the SME who 
creates the BN. It extends the probabilistic reasoning 
paradigm by using probabilistic constraints to check the 
consistency of incoming evidence, and a probabilistic 
variant of default reasoning and other techniques to 
restore consistency in the event of constraint violations.  
 NTMS does not address issues of context resolution; 
proper context must be provided by the system user to 
ensure proper results.  The NTMS prototype restricts its 
reasoning to the verification of individual records to 
ensure proper context of the data elements. 
 NTMS has been implemented on a military 
command and control (C2) platform, and tested with 
computer simulations. Future work includes addressing 
performance issues, the context resolution problem, some 
integration with logic-based systems, and expanding the 
knowledge base of constraints and assessment networks. 
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