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ABSTRACT

One of the important assumptions used in deriving the statistical theory of
rubber elasticity is free energy additivity. This assumption permits one to write
the partition function for the polymer network as a product of the molecular
partition functions of individual network chains. The consequence of this
assumption is that the interchain interactions in the network must be invariant
with deformation. Experimentally it has been noted in the literature that the
energy contributions to rubber elasticity (f,/f) determined by thermoelastic
measurements are often not invariant, but may either increase or decrease with
increasing deformation. It will be shown that if these data are analysed on the
basis of temperature coefficients of shear moduli rather than elastic force, this
apparent contradiction with the basic tenet of statistical theory is removed.
Thus the theory is self-consistent. Consideration of the thermoelastic behaviour
from a continuum mechanical point of view, however, shows that f,/f is in-
variant only in the special case where the strain energy function (the equivalent
of free energy function in statistical theory) is neo-Hookean (Gaussian). If
other forms of strain energy functions are used, such as Mooney-Rivlin or
Valanis-Landel functions, f,/f must change as a function of strain. The implica-
tion here is that a more complete molecular theory must take into account the
fact that interchain forces, in general, do contribute to the elasticity of cross-
linked polymer networks.

INTRODUCTION

Perhaps no substances other than rubber-like materials can lay claim to
the fact that they at once partake of the characteristics of solids, liquids and
gases. They are solid-like in that the crosslinked rubbers have dimensional
stability, and that their elastic response at infinitesimal strains is Hookean.
They behave like liquids because their coefficients of thermal expansion and
their bulk moduli are of the same order of magnitude as those of liquids,
indicating that the intermolecular forces in rubbers are similar to those in
liquids. They resemble gases in ‘the sense that stresses in deformed rubbers
increase with increasing temperature, much as the pressures in compressed
gases do. In fact, this gas-like behaviour provided the first hint that rubbery
stresses are dominated by entropy rather than energy effects?.

The thermodynamic equation of state for gases is

— P = QE/OV), — T@S/0V), M
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where E is internal energy, S is entropy, and P, V and T are pressure, volume
and absolute temperature, respectively. The kinetic theory of ideal gases
assumes that the internal energy of the system is invariant with volume change,
and the first term on the right-hand side of equation (1) can be neglected.
The molecular model of the ideal gas is a collection of point masses in
ceaseless random motion. Pressure can thus be calculated by considering the
configurational entropy change of these point masses alone.

The recognition of such analogous behaviour in crosslinked rubbers
must be considered a milestone in polymer science’=3. The elastic force
was computed by neglecting the first term of the following equation:

f = (©E/ L) , — T(@S/OL) , 2

where L is the sample length. The molecular model for an ideal rubber is
that of a collection of random chains. Configuration entropy of the cross-
linked network was then computed by adding the configurational entropies
of the individual chains. Because of its similarity to the kinetic theory of
gases, the molecular theory of rubber elasticity has often been referred to as
the kinetic theory of rubber elasticity.

Despite the apparent oversimplification of this model, however, the theory
is an outstanding success in providing a foundation for understanding the
physical behaviour of macromolecules. Numerous refinements have been
provided by later workers. One of the refinements is based on the realiza-
tion that the energy effects may not be entirely negligible, so that the (OE/
OL) ,, term in equation (2) must be retained, and

f=@©A4/L) , (©)]
where 4 is the Helmholtz free energy.
In the derivation of the statistical theory of rubber elasticity, the partition
function for the crosslinked network is written as

0 =Zn!l:[q:.”/ni! @

where n = ), n, and n, is the number of chains with end-to-end distance r,.
g;s are the molecular partition functions of the network chains. The use of
equation (4) in obtaining the free energy expression is tantamount to the
assumption of free energy additivity, i.e. the free energy of the crosslinked
network is the sum of those of individual chains in the network. In order for
this basic tenet to be valid, it is necessary that intermolecular interactions
between neighbouring chains be unchanged upon deformation, and the
energy effects in rubber elasticity must be attributable to intramolecular
interactions within the chain. Experimentally, however, there is some evi-
dence in the literature that the energy effects seem to vary with the degree
of deformation. This paper proposes to review this apparent contradiction,
and to point out how this contradiction can be resolved.

THERMOELASTIC EQUATIONS
From equation (2) the energy component of the elastic force is defined as

f. = @E@L),, = f + T@S/OL),., )
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Since from the thermodynamic identity it can be shown that

(OS/OL)T, v = _(af/aT)V,L (6)
one can readily find the relative energy contribution to rubber elasticity:
fJf=1-@WnfolnT), (7

In order to determine f,/f from equation (7), not only the sample length
but also the sample volume must be maintained constant. Thus hydrostatic
pressure must be applied during the thermoelastic measurement in order to
nullify the volume change due to thermal expansion. The experiment is a
difficult one, but has been accomplished by the excellent work of Allen,
Price and co-workers*~5,

Because of the difficulty encountered in constant volume experiments,
most thermoelastic data were obtained under constant pressure. For these
experiments, equation (7) must be transformed to account for the new con-
straint of constant pressure. We shall now provide a unified derivation for
several of these equations’. First we note that

©f/0T)y,, , = ©f/0T)p , + (@P/3T), ,(@f/OP); , ®

Inserting it into equation (7), the energy contribution is now
f/f=1-@WnfRInT),, - (6P/0T), (Bf/0P); . ]

This equation is exact. Again the thermal pressure coefficient (0P/0T),, , and
the force—pressure coefficient (0f/0P),. , are not easy to measure. Attempts
in this regard have nevertheless been made*S.

To simplify the experimental difficulties, one can further develop equation
(9) by using the following relation:

(©f/oP); , = @V/OL),

= (uLB)@f/OL);, p (10)
where
p'=—@InL/OP), , (11)
and
p=30mILOIYV), , (12)

u is the Elliott-Lippmann anisotropy factor®, which is a measure of linear
compressibility anisotropy of deformed solids. At small deformations,
however, the material can be considered approximately isotropic®® and
p = 1. Assuming that (0P/3T), , = o/B ~ a/3f’, where a is the thermal
expansion coefficient and f is the isothermal compressibility, one obtains

fJf=1-@WfRAIT),, — @T/3@lnfRInL),, (13)

which is for infinitesimal strains and was first derived by Gee!°.
Since rubbers are highly extensible, the Elliott- Lippmann anisotropy
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factor is, in general, not unity. One can express u in terms of the equation of

state for rubber elasticity obtained by the statistical theory!!~*3:
f=GA A — VIV 22) (14)
where
G = (NKT/V)ray/<re> (15

In equations (14) and (15), 4 is L/L; L, A, and V, are the length, cross-
sectional area and volume of the rubber at zero force, zero pressure and
temperature T; L and V are the length and volume at force f, pressure P
and temperature T'; N is the number of network chains in the sample; k is the
Boltzmann constant; {(r2) is the mean square end-to-end distance of the
network chain in volume V,; and (r2) is that of the corresponding free
chain. From equation (14) it can be readily shown® !* % that, by setting
ViV, =1,

©ff0L); p = (f/L)A* + 2)/(A* = 1) (16)
and b= +2) a7
Combining equations (9), (10), (16) and (17), one obtains

fJf=1—-@WnfRAInT),, —aT/2*—1) (18)

Equation (18) was first derived by Flory, Hoeve and Ciferri', and has been
used by most workers in obtaining values of f,/f.

Figure 1 shows the thermoelastic data carried out under constant pressure
for a crosslinked natural rubber!”. Equations (9) and (18) were used in
computing values of f_/f for elongation ratios up to 4 = 2. These computed
values’ are shown in Figure 2. In using equation (9), the thermal pressure
coefficient and the force—pressure coefficient were taken from the data of
Allen, Bianchi and Price*. Also shown in Figure 2 are the constant volume
thermoelastic data by Allen et al.*, which were used in calculating f./f by
equation (7). It is apparent from these data that f,/f appears to be a function
of strain in the region of low strains, but becomes approximately constant
at higher strains.

In applying equation (13), low strain data (A < 1.1) were used. Figure 3
again shows the strain-dependence of f,/f in the region of low strains’.
However, it is clear that the level of strain above which f,./f becomes inde-
pendent of A is not the same as that indicated in Figure 2. This discrepancy
provides a strong hint that the observed strain-dependence, which is con-
trary to the basic assumption of the statistical theory, may be an experimental
artifact rather than an inherent character of rubbers in general.

Equation (18) is most suitable for a more detailed examination of the
observed strain-dependence of f/f. In Figure 3 the same infinitesimal
thermoeleastic data’ were calculated by equation (18). The computed values
appear to decrease with decreasing strain; in contrast, those computed by
equation (13) increase with decreasing strain. Apparently, in the low-strain
regions, the data are highly sensitive to experimental errors. Because of the
(A* — 1)7! term in equation (18), a small error in the determination of
elongation ratio can be greatly amplified. In Figure 3 we show the two dotted

46



THERMOELASTICITY OF CROSSLINKED POLYMERS

35F o Cooling o

@ Heating 3 /Cﬁﬁ

‘)/Q":

3.0ko—"°
«©o— 1762

[ ____—.Cf
25 __oce—%517 ]

dyn/cm2
N
o
T
1

6

fx10

>

-
ol

— o9
| o o—o—— 27363

— o ——— 00—
L o0—oce——0e— 1269

0F i
L 0—O0——O——O—— 00— 0
© *T 70
o5k °—_°_‘°_1092’°“
\101. 1.063
| L
0 020 30 40 50 60
7°C

Figure 1. Force-temperature data of natural rubber crosslinked with dicumyl peroxide. Nume-
rals indicate the elongation ratios (After Shen, McQuarrie and Jackson!?).
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Figure 2. Energy contribution to rubber elasticity for natural rubber computed from the data
in Figure I with equation (9) (solid line) and equation (18) (broken line)’. Solid circles are the
constant volume data of Allen, Bianchi and Price*.
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Figure 3. Energy contribution to rubber elasticity for natural rubber computed from the infi-
nitesimal data’ with equation (13) (solid line) and equation (18) (chain-dotted line). Dashed and
dotted lines were computed by assuming 0.9994 and 1.0014, respectively (After Shen and Blatz”)

curves which were calculated by using s that are factors of 1.001 and 0.999,
respectively, of the measured quantities’. It can be seen that a change of
0.1 per cent in As produces dramatic deviations from the original data.

One can appreciate the magnifying effect of the inverse third-power term
in equation (18) by examining its differential'®:

d(f,/f) = —d@Inf/d In T)p, + 3A2aTdA/(A3 — 1)? (19)
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Figure 4. Plot of the second term on the right-hand side of equation (19) (After Shen'®).
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The second term in equation (19) is plotted in Figure 4. It can be seen here
that, in the region of low strains, a small error (dA = 0.01) can easily distort
the calculated values. Of course, if dA = —0.01 were used, a mirror image
of the curve in Figure 4 would have been obtained which would have pro-
duced negative deviations as noted in Figure 3.

Thus all of the thermoelastic equations shown here are in fact sound on a
theoretical basis. However, because of the experimental difficulties encoun-
tered in the strain measurements, apparently contradictory data were
obtained. The observed f,/f dependence on strain is not limited to natural
rubber. Figure 5 shows literature data on a number of other elastomers!®-23,
These values were all calculated by equation (18). These observed trends
in the strain dependence of the energy contribution to rubber elasticity
became a source of concern in that they cast doubt on the validity of the
free energy additivity principle used in statistical theory.
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Figure 5. Energy contributions to rubber elasticity for styrene-butadiene rubber!®, Viton?°,
ethylene—propylene rubber?!, elastomeric wool fibre?? and polybutadiene?* computed with
equation (18).

VERIFICATION OF THE FREE ENERGY ADDITIVITY PRINCIPLE

It has been demonstrated in the preceding section that experimental un-
certainties in the low-strain region tend to produce the observed strain-
dependence of the energy contribution. Equation (18) was particularly
amenable for quantitatively displaying this difficulty. However, this difficulty
is not limited to equation (18), but is shared with the other constant pressure
thermoelastic equations (equations 9 and 13). Essentially in all three equa-
tions one is required to determine a small number from the difference of
three larger numbers, one of which is particularly sensitive to the strain.

The resolution of this difficulty turns out to be quite simple. We note that
the equation of state for rubber elasticity (equation 14) at small strains is

3G = (f/A)e (20)

Equation (20) is obtained by setting A = 1 + ¢ and V/V,, = 1 and expanding
to first order. The right-hand side of equation (20) is the definition for the
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tensile modulus. It is well known that for rubbers the tensile modulus is
three times the shear modulus. Therefore G is the shear modulus of the rubber.
In the context of statistical theory, G is given by equation (15). It is seen to be
proportional to V%, since {rZ) is proportional to V'} and all other quantities
are independent of volume. But V} is the initial volume of the sample at
zero force and zero pressure. Thus the shear modulus is independent of the
current volume V, and consequently also independent of any applied
hydrostatic pressure. Experimentally, it has been found that the modulus of
natural rubber increased by 0.0075 per bar (10° dyn/cm?) of pressure in-
crease?*. It was found in the work of Allen et al.'* that a maximum of 150
bar is applied in carrying out thermoelastic measurements under constant
volume. Thus, even if the modulus of the real rubber is not constant as
required by the statistical theory, the error introduced by accepting the
independence of modulus of pressure is only about 1 per cent.

The insensitivity of shear modulus to pressure allows us to directly use
equation (7). At constant volume and length, the use of equation (14) gives

@nfPInT), , = (dInG/dnT)+ aT/3 (21)

Combining equations (7) and (21), one immediately gets”'®

fJf=1-(dIGHdInT) - oT/3 22)

In equation (22) total differentials are used for the temperature coefficient of
shear modulus because G is not subject to the constraints of constant ¥ and
L. Since Gs at different temperatures are the initial slopes of stress—strain
plots at respective temperatures, all quantities on the right-hand side of
equation (22) are independent of strain. Thus equation (22) automatically
satisfies the free energy additivity principle so essential to the foundations of
the statistical theory of rubber elasticity.

It is of interest to note that in his recent modulus—temperature study of
natural rubber cured by varying amounts of dicumyl peroxide, Wood?*
found an empirical relationship for his data that is identical with equation (22)
except for the lack of the —aT/3 term. Treloar®® investigated stress—
temperature relations for rubbers in torsion, and was able to derive the follow-
ing relationship:

fJf=1-@WMPIT),, ,+aoT (23)

where M is the torsional couple and y is the angular displacement.
The temperature coefficient of elastic force at constant pressure and con-
stant length can be shown from equation (14) to be'®

@InfRInT), , =dnGdInT + LaT{A> — /(4> - 1} (24

Inserting equation (24) into equation (22), we recover equation (18). Thus
equation (22) is in fact consistent with equation (18). The transformation
to temperature coefficient of shear modulus from that of the elastic force
allows averaging out of the experimental uncertainties over the whole
region of strain before calculating the value of f /f. Both equation (18) and
equation (22) are based on the statistical theory, and are thus subject to the
same constraints required by the theory. The form of equation (22) is such,
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however, that it emphasizes the insensitivity of f,/f to strain and thus satisfies
the free energy additivity principle.

Experimentally equation (22) has been applied to data obtained from
thermoelastic measurements carried out in tension under the conditions of
constant pressure and length’; in compression under the conditions of

Table 1. Energy contribution to rubber elasticity

Polymer fIf Experimental method Ref.
Natural rubber 0.14 Constant P, L
Tension 7
0.11 Constant P, L
Compression 27
0.15 Constant P, f
Tension 18
0.13 Constant P, L, Y
Torsion 30
0.12 Constant V, L
Tension 6
Poly(n-butyl acrylate) —-035 Constant P, f
Tension 28
-0.36 Constant P, L
Shear 29

constant pressure and length?’; in tension under the conditions of constant
pressure and load!® ?%; and in simple shear under the conditions of constant
pressure®®. These are to be compared with data obtained at constant volume
in tension,® and at constant pressure in torsion°. A summary of these
results is given in Table 1.

In thermoelastic measurements under the conditions of constant pressure
and length, shear modulus is determined from the slope of a plot of f/A,
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Figure 6. Shear modulus—temperature data of natural rubber crosslinked with dicumyl peroxide

carried out under the conditions of constant pressure and length. Open circles: tension’; closed
circles: compression®”.
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against (A — 1/4%)~*. This has been done for crosslinked natural rubber both
in tension” and in compression?’, the data of which are illustrated in Figure 6.

The alternative condition of keeping the tension constant and determining
the variations of the sample lengths as a function of temperature at constant

4 T T T T

a (104 K
1
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T
1

-16 1 1 1 1
0 01 02 03 0.4 0.5

(A3-1/(2%+2)

Figure 7. Plot of the linear thermal expansion coefficients'® of strained natural rubber as a
function of (> — 1)/(23 + 2) according to equation (25)

pressure is even simpler. An explicit expression for this process can be ob-
tained by setting the stress—temperature coefficient at constant pressure (but
not constant length) to zero. The result of this calculation is'®

A2 —1\/dInG 2«
VR AT | b W 4 2
e </13+2>< dT+3) @3)
where «; and o] are the linear thermal expansion coefficients of the sample
in the strained and unstrained states. By plotting «, against (1> — 1)/
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Figure 8. Shear modulus—temperature data® of poly(n-butyl acrylate) determined by simple
shear at various shear stresses (10° dyne/cm?): ©0.23;]0.42; A 0.62; @ 0.80.
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(A% + 2) as shown in Figure 7, the slope is then d In G/dT and the intercept
is o,

TLhe direct measurement of shear moduli as a function of temperature
has been carried out in simple shear?® for poly(butyl acrylate). As shown in
Figure 8, the data are independent of load (and thus length) over the range
of applied constant stresses.

It can be seen in Table 1 that the energy contributions to rubber elasticity
for natural rubber and for poly(butyl acrylate) determined by the above-
described techniques and calculated by equation (22) are in good agreement
with each other. For natural rubber, the agreement is also good with the
values of f /f determined in tension at constant volume® (equation 7) and
in torsion at constant pressure3® (equation 23). Thus these data provide an
experimental indication of the free energy additivity principle for the statis-
tical theory of rubber elasticity.

THERMOELASTICITY OF RUBBERS AT LARGE DEFORMATIONS

The vindication of the free energy additivity principle proves the self-
consistency of the statistical theory of rubber elasticity. However, it is well
known that the theory is only valid up to about A ~ 1.3. At large deformations
equation (14) cannot be used to describe the stress—strain behaviour of real
crosslinked rubbers. Thus it would be instructive to examine the thermo-
elastic behaviour in the light of the phenomenological theories of finite elastic
deformations.

The most often used phenomenological equation of state for rubber elas-
ticity is the Mooney-Rivlin equation3®32:

flAy = QC, + 2C,V,/VA) (i — VIV,A?) (26)

where 2C, and 2C, are constants. At small strains, it can be easily shown
that equation (26) reduces to equation (20), and

G=2C +2C, (27
We can rewrite these constants as
2C, = ¢G
2C, =(1 — ¢)G (28)

where ¢ can be taken as that fraction of the shear modulus atfributable to
2C,. Equation (26) can now be rewritten as?

[ =GA[d + (1 = PV /VA](R — V/V,A?) (29)

By differentiating equation (29) with respect to temperature and under the
conditions of constant volume and length, and inserting the resulting ex-
pression into equation (7), the following equation is obtained34:

(fJfY™=1—=(dInG/dInT) — «T/3

T d¢ 4a
T M[u — - ¢)] (30)
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The superscript mr refers to the Mooney-Rivlin equation that was used in
arriving at equation (30). Note that the first three terms on the right-hand
side of this equation are identical with those of equation (22). The difference
between the Mooney-Rivlin expression for energy contribution and the
statistical theory expression is the last term in equation (30), which will be

designated as A(f,/f)™:
m_ T _ _¢ 4o(1 — ¢)
AL =T = M[a D3 . ] (1)

Equation (31) indicates that f,/f is not constant with 4 for a rubber obeying
the Mooney—Rivlin equation at large deformations.

Another useful phenomenological equation of state for natural rubber was
proposed by Valanis and Landel®*:

f=GA[2Ind + (V/V A3} In(V/V,A)] (32)

Now by using the same technique as in obtaining equations (22) and (30), it
can be shown that, for a rubber obeying the Valanis—Landel equation,

w 2% +2
ASJI = —(aT/s)[l - GF DI 1]

Again the energy contribution is expected to depend on strain.

The A-dependent portions of f/f for natural rubber calculated for both
Mooney-Rivlin and Valanis-Landel equations are plotted as a function of
the elongation ratio in Figure 9. It is apparent that when an equation of state
other than that derived from statistical theory is used, f,/f will be found to
vary as a function of strain. Since the intramolecular interactions in rubber
elasticity are presumably due to the rotational energy barriers along the
chain backbone3®, they should be independent of the applied strain. Thus

(33)
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Figure 9. The A-dependent terms of energy contributions to rubber elasticity at large deformations
(After Shen*)
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it follows that the A-dependent portion of the relative energy contribution
should be attributable to the intermolecular interactions. It should be
emphasized that neither the Mooney—Rivlin nor the Valanis—Landel equa-
tion was derived on the basis of any molecular model. However, they do
conform to the stress—strain behaviour of real rubbers up to very large
deformations. The implication is that if a more complete molecular theory
is to be found that will more closely describe the elasticity of crosslinked
rubbers over a wider range of strains, intermolecular interactions should
probably be not neglected in constructing the molecular model and the
validity of assuming free energy additivity must be re-evaluated.
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