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ABSTRACT:

The Deepwater Horizon oil spill occurred in the Gulf of Mexim April 2010 and became the largest accidental marinepill is
history. Oil leaked continuously between April 20th andyJith of 2010, releasing abo@80, 000m? of crude oil into the Gulf of
Mexico. The oil spill caused extensive economical and egiold damage to the areas it reached, affecting the maridenédlife
habitats along with fishing and tourism industries.

For oil spill mitigation efforts, it is important to deterne the areal extent, and most recent position of the contaadrarea. Satellite-
based oil pollution monitoring systems are being used fanitodng and in hazard response efforts. Due to their higlueacy, frequent
acquisitions, large area coverage and day-and-night tiper8ynthetic Aperture Radar (SAR) satellites are a magottributer of
monitoring marine environments for oil spill detection.

We developed a new algorithm for determining the extent efdh spill from multiple SAR images, that are acquired witios
temporal intervals using different sensors. Combiningrthati-polarization data from Radarsat-2 (C-band), EnviS8AR (C-band)
and Alos-PALSAR (L-band) sensors, we calculate the extétiteoil spill with higher accuracy than what is possiblenfronly one
image. Short temporal interval between acquisitions (fowdays) allow us to eliminate artifacts and increase aogur

Our algorithm works automatically without any human ingamtion to deliver products in a timely manner in time critioperations.
Acquisitions using different SAR sensors are radiomeltsicealibrated and processed individually to obtain oillkprea extent.
Furthermore the algorithm provides probability maps ofdheas that are classified as oil slick. This probability infation is then
combined with other acquisitions to estimate the combinetaility map for the spill.

1 INTRODUCTION remote sensing sensors, as well as field observations cambe c
bined, and statistically provide an outcome better thaniadiy

Marine oil spills are a common threat to all sea borderingneou Vidual resource.

tries. The environmental and related economical lossesadae . o -
In this paper we develop a fully automatic oil spill monitayi

oil spill can be large, and many methods have been developed - S .
to monitor oceans in operational conditions. In most cases i systems that is capable of combining data from multiple SAR

critical to respond to spills in a timely manner, and therefibis tsr?;g:lef).rit-r:rr;e (fgﬁut?eorhtehrl]S b%azir :ngg dr?g‘zr It?gzg?r:wyé heciwif(;
important for such operational systems to provide resultseiar 9 P P gery

real time. Once a spill is detected, its behavior can be ol ground measurements as discussed later. A brief backgmund
based on’ physical models ' the technical aspects is provided in Section 2. Resultsraita

from SAR data over the Deepwater Horizon oil spill are diseas

Synthetic Aperture Radar (SAR) systems provide a viabl®opt in Section 3.

of oil slick monitoring. SAR intensity images are sensitize
surface roughness which is altered in the case of an oil gpit 2 BACKGROUND
scattering of oil-free ocean surface is dominated by Bragd-s

tering (Bragg, 1913). A thin oil sheen covering the ocean wil synthetic Aperture Radar imagery is sensitive to surfacghe
reduce the ocean-atmosphere interaction, and alter thetsmo nesswhich is altered in case of an oil spill (Alpers and Hiifuss,
ness of the surface. Therefore, oil slicks appear sligratker in  1988). Oil slicks change the smoothness of ocean surface and
moderate wind conditions in SAR imagery. SAR systems haveyppear darker compared to surrounding oil free ocean, fawev
an ideal range of wind speed and direction where they are moghe amount of damping is affected with wind and wave condi-
sensitive, and do not perform well for oil spill detectionden  tions. Furthermore the speckle effect in SAR imagery lirthies
very windy or very calm conditions. reliability of point measurements in the image, causingisps
results (Brekke and Solberg, 2005). In our approach we apply
There are of course other methods to monitor oceans anctdetegultiple step processing to limit the adverse effects otklse
oil spills, such as optical and infra-red remote sensing, lay+  instead of filtering the data with a speckle filter.
perspectral imaging (Brekke and Solberg, 2005). No matter h
complex or advanced a method is single-handedly all have difThere are many methods developed to detect oil spills frolR SA
ferent levels of uncertainties. Therefore it is importamtbm-  intensity images: (1) machine learning and neural-netweckg-
bine many observations complementing each other’s weakres nition (Kubat et al., 1998, Ozkan and Sunar, 2007), (2) feaqy
providing the best possible information. Results frometi#nt  spectrum attenuation (Lombardini et al., 1989, Gade 1888,
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Kim et al., 2010), (3) segmentation techniques (Barni e85,
Solberg et al., 2007), (4) slick feature extraction (Fikcet al.,

ber, andg is the incidence angle. Figure 1 shows the maximum
expected damping amount which would be observed when the an-

2000, Del Frate et al., 2000). Some algorithms also combingle between the wind, and radar wave is zero. ALOS-PALSAR is

ocean drift models to assist data analysis (Espedal, 1998nd¢
et al., 2011). In addition to SAR intensity, co-polarizatidiffer-
ences of multiple polarization SAR data is also suggestedifo
spill detection (Migliaccio et al., 2009).

not expected to be effective in mild wind conditions, as smow
in the figure. The SAR sensors on-board Radarsat-2 and En-
visat are both C-Band, and therefore cover similar regiortbeé
wavenumber domain. The slightly larger coverage of Rati&sa

is due to it's larger range of incidence angles.

In this paper, our focus is not on developing a method that per

forms better than any one of the methods mentioned earliér, b

instead to develop a practical framework where results fidm

ferent methods and sources can be combined to provide a joint

solution, which is likely to have less uncertainty. The noeth
can be easily extended to include any geospatial obsenv@ig.
optical remote sensing, ground measurements), howevéiisn t

paper our focus is on SAR imagery. The algorithm is composed

of three calculation steps: (1) Pixel (point) probabil{®) spatial
probability, and (3) spatio-temporal probability. Poimbpabil-
ity is calculated based on normalized radar cross sectiberav
darker pixels get higher probabilities for oil contamioat{Barni
et al., 1995). Spatial probability is based on the dampirip ra
given the current wind conditions and imaging parameteesiés
et al., 1998, Kim et al., 2010). Point and spatial analysssiite
are then combined to provide a joint probability for oil &liat
each acquisition. The spatio-temporal probability isreated
from multiple SAR acquisitions separated shortly in timesuit-
ing in a time varying probability of oil slick over target areAll
analysis in this paper is done over intensity calibratedcgded

—_
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Figure 1: Estimated damping factor as a function of Bragg
wavenumber. The theoretical range of SAR systems used in the
system are marked with horizontal lines. Each curve reptese
different wind velocity.

SAR imagery. Images are calibrated to normalized radarscros
section (NRCS). The imagery is resampled to a common geomea/ind is an important factor to estimate the damping facttigciv

try using a sinc interpolator, and land-masked using G|dbelff-
consistent, Hierarchical, High-Resolution Shorelinad@&SHHS)
(Wessel and Smith, 1996).

First and second steps of the algorithm are iterative, anghar

is also dependent on the relative angle between radar wale an
wind direction. Figure 2 shows a plot of expected damping fac
tors at speeds between5 m/s and12.5 m/s. The relative
wind direction is plotted at counter-clockwise increasamgles,
starting from zero at the horizontal axis. In this study we us

formed at the same time. The first step of the algorithm is & simyying speed, direction and ocean wave group velocity data fro

ple dark-object selection routine based on intensity tioketing.
At this step, dark areas of the image are assigned a highbapro
bility for an oil spill. The initial threshold for the first ep is the
noise equivalent sigma zero (NESZ), which is the sensorsenoi
floor. A probability value for each pixel is assigned basedt’sn
intensity such that:

P(Wlao)
P(O|oo)

(o0 — min(o0))/(T — min(oo))
1— P(Wloo)

@)
@)

whereP (W |oo) is probability of oil-free water given the NRCS,
T is the threshold, ané’(O|oy) is the probability of oil given the
NRCS is the complement d?(W o). The P(W |oo) is modi-
fied by bringing all larger values ty constraining the probability
values betweef and1. Furthermore, iterations start using a mul-
tilooked imagery, to reduce the effect of speckle noises Warth
noting that the multilooking operation changes the dynamange

of the radar imagery. In order to keep the thresholds ecgrivait
each iteration, multilooked images are further calibratedave
the same dynamic range as the full resolution image.

The second step of the algorithm starts with calculationawfp-
ing factor after Gade et al. (Gade et al., 1998, Kim et al., 0201
The estimated damping factors at different wind speedsasa f

National Data Buoy Center station 42040, located at 29.122N
88.207W, about 40km NNW of the Deepwater Horizon oil rig.

180

[ —
-15 0 15

tion of Bragg wavenumbers are shown in Figure 1. Figure 1 alséi9ure 2: Estimated damping factor plotted against thetivela

shows the maximum theoretical observation range for Ratlars

angle between radar and wind direction. Radial distanca fre

2, Envisat-ASAR, and Alos-PALSAR SAR systems. The Braggcenter indicates the wind speed.

wavenumber is defined as (Gade et al., 1998):
k‘B = Qko sin(d)) (3)

wherekp is the Bragg wavenumbek; is the radar wavenum-
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The first and second steps of the algorithm are run iteratizel
five different spatial resolutions. The analysis is perfednin a
pyramid structure with five different stages. At each sthgdm-
age is multilooked to the power of two, such that at the fisgst
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the image is multilooked t@°, and to2* at the second stage. which is about—29dB for the fine beam single (FBS) imaging
Both the intensity thresholding and damping factor metlppds ~ mode.
vide results at each stage which are combined using:

Date Sensor Wind Speed Wind Angle D.F.
P(Oln) * P(O|d)
JP(O) = PO+ P(O[d) = P(Wn) = POV]d) 4) [m/s] [degrees] [dB]
04-27 Radarsat-2 7.3 173.6 6.6
whereJ P(O) is the joint probability for oil,P(O|n), is the prob- 05-01 Radarsat-2 9.8 228.4 7.6
ability of oil given the NRCS,P(O|d) is the probability of oil 05-01 Alos-Palsar 7.8 77.0 -16.5
given the damping factor analysi&(1¥|n) is the probability of 05-04 Alos-Palsar 3.2 50.3 85

clear water given the NRCS, arfd(1V|d) is the probability of
clear water given the damping factor analysis. The mainoreas
for combining the two probability functions is that the damp
factor analysis will return low probabilities for the centé large  The results of oil spill detection algorithm is shown in Figd.
slicks. This is due to the fact that the damping factor iswated  The probability maps calculated for the five iterative steps
against a moving window average. For oil slicks larger ten t ing two different methods and their combination are presgnt
size of the moving window, the average and pixel values véll b The results are shown in ascending order of resolution, evitner
very close, returning no dampening. Of course a larger windo 25 multilooked image is located at the left hand side. The final
size can be used to eliminate this problem, however, singe th solution for the processed imagery is shown in the bottortrig
would require human intervention. Contrary to the dampag f  corner. The joint probability {P(O)) is calculated using the
tor analysis, the NRCS based thresholding algorithm willme ~ NRCS based oil probability®(O|n)) and damping factor based
high probabilities for the center of the slick. oil probability (P(O|d)) as shown in (4).

o

0 Qil Slick Ig_rgbabilitx )
Figure 4: Results for the first (point probability) and set¢spa-

tial probability) processing steps, for the Radarsat-2 datjuired
on April 27th, 2010.

Table 1: Data Table

The study area is shown in Figure 3, and is al3&0tm x 350km,
centered around the Deepwater Horizon oil spill. The |oreti

of the ALOS-PALSAR and Radarsat-2 imagery are shown in the
figure. It should be noted that even though the SAR imagery is
calibrated to NRCS, there is still a gradual change in iritgns
along the range direction (Figure 3). The Gulf of Mexico qills
provides a great test case for the new algorithm, becausdoit i
calized and continuous over time. Furthermore there areyman
published research and ground observations availablefioiag-

ing the method.

Multilook 5

JP(O)

The complementing behavior of the two methods can be seen in
Figure 4. While theP(O|n) has very little noise at high multi-
looking, the opposite is true fdP(O|d), which becomes less and
less noisy with decreasing multilooking. Furthermore, ¥bhéd
in the center of the oil spill is visible i#(O|d) results for level
Figure 3: The black-box shows our designated study aredive.
GSHHS shoreline is shown in light green. The SAR intensity
images are from Radarsat-2, and the one on top is acquired on
April 24th 2010. Light green boxes show the footprints foe th Final results of all the images processed in this study arerslin
ALOS PALSAR imagery. The legend shows distance in degreestigure 5. The analysis using Radarsat-2 imagery obtaingdrbe
results compared to the Alos imagery. This is very likely tlue
the small damping factors that are obtained at L-band, asrsho
in Figure 1. The current algorithm does not employ any weéight
3 RESULTS AND DISCUSSION to the data, therefore the combined probability of all obagons
are inconclusive. This can be improved however, by implamen
SAR images acquired from Radarsat-2 and Alos were processadg a more complex filter to the final stage, such as a Kalman
using the proposed method. Some of the imaging parametefiter, or by simply adding more C-band data to dominate the re
and environmental conditions are summarized in Table 1leTab sults. We recently acquired additional imagery from Erviesa
shows the observed wind-speed, relative angle betweenittte w test our hypothesis. Utilizing a Kalman filter at the finalpsté
and radar wave, and the calculated damping factor (D.F.g Ththe algorithm will allow for utilizing a larger spectrum ofathods
damping factor calculation also takes into account the yavep  and data sets, which may only be useful under certain conditi
velocity, and radar incidence angle which are not listedhéntb- It is also worth noting that the Alos-PALSAR imagery, aceair
ble. The damping factors listed for ALOS-PALSAR are ratheron May 1st, 2010 at 04:10 UTC shows almost no brightness vari-
low, however they are still above the NESZ of the instrument,ation.
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Figure 5: Joint probabilities for the imagery processedhiis t
study. a)Radarsat-2 27-Apr, b)Radarsat-2 01-May, c)Albs 0
May, d)Alos 04-May. Alos results are enlarged for clarity.

4 CONCLUSIONS AND FUTURE WORK
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