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The property which distinguishes semiconductors from other materials con-
cerns the behavior of their electrons, in particular the existence of gaps in
their electronic excitation spectra. The microscopic behavior of electrons in a
solid is most conveniently specified in terms of the electronic band structure.
The purpose of this chapter is to study the band structure of the most com-
mon semiconductors, namely, Si, Ge, and related III–V compounds. We will
begin with a quick introduction to the quantum mechanics of electrons in a
crystalline solid.

The properties of electrons in a solid containing 1023 atoms/cm3 are very
complicated. To simplify the formidable task of solving the wave equations for
the electrons, it is necessary to utilize the translational and rotational symme-
tries of the solid. Group theory is the tool that facilitates this task. However,
not everyone working with semiconductors has a training in group theory, so
in this chapter we will discuss some basic concepts and notations of group the-
ory. Our approach is to introduce the ideas and results of group theory when
applied to semiconductors without presenting the rigorous proofs. We will put
particular emphasis on notations that are often found in books and research
articles on semiconductors. In a sense, band structure diagrams are like maps
and the group theory notations are like symbols on the map. Once the mean-
ing of these symbols is understood, the band structure diagrams can be used
to find the way in exploring the electronic properties of semiconductors.

We will also examine several popular methods of band structure compu-
tation for semiconductors. All band structure computation techniques involve
approximations which tend to emphasize some aspects of the electronic prop-
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18 2. Electronic Band Structures

erties in semiconductors while, at the same time, de-emphasizing other aspects.
Therefore, our purpose in studying the different computational methods is to
understand their advantages and limitations. In so doing we will gain insight
into the many different facets of electronic properties in semiconductors.

We note also that within the past two decades, highly sophisticated tech-
niques labeled “ab initio” have been developed successfully to calculate many
properties of solids, including semiconductors. These techniques involve very
few assumptions and often no adjustable parameters. They have been applied
to calculate the total energy of crystals including all the interactions between
the electrons and with the nuclei. By minimization of this energy as a function
of atomic spacing, equilibrium lattice constants have been predicted. Other
properties such as the elastic constants and vibrational frequencies can also
be calculated. Extensions of these techniques to calculate excited-state prop-
erties have led to predictions of optical and photoemission spectra in good
agreement with experimental results. It is beyond the scope of the present
book to go into these powerful techniques. Interested readers can consult ar-
ticles in [2.1].

2.1 Quantum Mechanics

The Hamiltonian describing a perfect crystal can be written as
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in the cgs system of units. (As mentioned in the preface to this edition, we
have printed in red symbols which must be added to the cgs expression to
convert them into Si units. Â0 represents the permittivity of vacuum). In this
expression ri denotes the position of the ith electron, Rj is the position of
the jth nucleus, Zj is the atomic number of the nucleus, pi and Pj are the
momentum operators of the electrons and nuclei, respectively, and �e is the
electronic charge.

∑′ means that the summation is only over pairs of indices
which are not identical.

Obviously, the many-particle Hamiltonian in (2.1) cannot be solved with-
out a large number of simplifications. The first approximation is to separate
electrons into two groups: valence electrons and core electrons. The core elec-
trons are those in the filled orbitals, e. g. the 1s2, 2s2, and 2p6 electrons in the
case of Si. These core electrons are mostly localized around the nuclei, so they
can be “lumped” together with the nuclei to form the so-called ion cores. As a
result of this approximation the indices j and j′ in (2.1) will, from now on, de-
note the ion cores while the electron indices i and i′ will label only the valence
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electrons. These are electrons in incompletely filled shells and in the case of Si
include the 3s and 3p electrons.

The next approximation invoked is the Born–Oppenheimer or adiabatic
approximation. The ions are much heavier than the electrons, so they move
much more slowly. The frequencies of ionic vibrations in solids are typically
less than 1013 s�1. To estimate the electron response time, we note that the
energy required to excite electrons in a semiconductor is given by its funda-
mental bandgap, which, in most semiconductors, is of the order of 1 eV. There-
fore, the frequencies of electronic motion in semiconductors are of the order
of 1015 s�1 (a table containing the conversion factor from eV to various other
units can be found in the inside cover of this book). As a result, electrons can
respond to ionic motion almost instantaneously or, in other words, to the elec-
trons the ions are essentially stationary. On the other hand, ions cannot follow
the motion of the electrons and they see only a time-averaged adiabatic elec-
tronic potential. With the Born-Oppenheimer approximation the Hamiltonian
in (2.1) can be expressed as the sum of three terms:

� � �ions(Rj) � �e(ri, Rj0) � �e�ion(ri, ‰Rj), (2.2)

where �ion(Rj) is the Hamiltonian describing the ionic motion under the in-
fluence of the ionic potentials plus the time-averaged adiabatic electronic po-
tentials. �e(ri, Rj0) is the Hamiltonian for the electrons with the ions frozen in
their equilibrium positions Rj0, and �e�ion(ri, ‰Rj) describes the change in the
electronic energy as a result of the displacements ‰Rj of the ions from their
equilibrium positions. �e�ion is known as the electron–phonon interaction and
is responsible for electrical resistance in reasonably pure semiconductors at
room temperature. The vibrational properties of the ion cores and electron-
phonon interactions will be discussed in the next chapter. In this chapter we
will be mainly interested in the electronic Hamiltonian �e.

The electronic Hamiltonian �e is given by
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Diagonalizing this Hamiltonian when there are �1023 electrons/cm3 in a semi-
conductor is a formidable job. We will make a very drastic approximation
known as the mean-field approximation. Without going into the justifications,
which are discussed in many standard textbooks on solid-state physics, we will
assume that every electron experiences the same average potential V(r). Thus
the Schrödinger equations describing the motion of each electron will be iden-
tical and given by

�1eºn(r) �

(
p2

2m
� V(r)

)
ºn(r) � Enºn(r), (2.4)

where �1e, ºn(r) and En denote, respectively, the one-electron Hamiltonian,
and the wavefunction and energy of an electron in an eigenstate labeled by n.
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We should remember that each eigenstate can only accommodate up to two
electrons of opposite spin (Pauli’s exclusion principle).

The calculation of the electronic energies En involves two steps. The first
step is the determination of the one-electron potential V(r). Later in this chap-
ter we will discuss the various ways to calculate or determine V(r). In one
method V(r) can be calculated from first principles with the atomic numbers
and positions as the only input parameters. In simpler, so-called semi-empirical
approaches, the potential is expressed in terms of parameters which are de-
termined by fitting experimental results. After the potential is known, it takes
still a complicated calculation to solve (2.4). It is often convenient to utilize
the symmetry of the crystal to simplify this calculation. Here by “symmetry”
we mean geometrical transformations which leave the crystal unchanged.

2.2 Translational Symmetry and Brillouin Zones

The most important symmetry of a crystal is its invariance under specific trans-
lations. In addition to such translational symmetry most crystals possess some
rotational and reflection symmetries. It turns out that most semiconductors
have high degrees of rotational symmetry which are very useful in reducing
the complexity of calculating their energy band structures. In this and the next
sections we will study the use of symmetry to simplify the classification of elec-
tronic states. Readers familiar with the application of group theory to solids
can omit these two sections.

When a particle moves in a periodic potential its wavefunctions can be ex-
pressed in a form known as Bloch functions. To understand what Bloch func-
tions are, we will assume that (2.4) is one-dimensional and V(x) is a periodic
function with the translational period equal to R. We will define a translation
operator TR as an operator whose effect on any function f (x) is given by

TRf (x) � f (x � R). (2.5)

Next we introduce a function ºk(x) defined by

ºk(x) � exp (ikx)uk(x), (2.6)

where uk(x) is a periodic function with the same periodicity as V, that is,
uk(x � nR) � uk(x) for all integers n. When ºk(x) so defined is multiplied
by exp [�iˆt], it represents a plane wave whose amplitude is modulated by
the periodic function uk(x). ºk(x) is known as a Bloch function. By definition,
when x changes to x � R, ºk(x) must change in the following way

TRºk(x) � ºk(x � R) � exp (ikR)ºk(x). (2.7)

It follows from (2.7) that ºk(x) is an eigenfunction of TR with the eigen-
value exp (ikR). Since the Hamiltonian �1e is invariant under translation by
R, �1e commutes with TR. Thus it follows from quantum mechanics that the
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eigenfunctions of �1e can be expressed also as eigenfunctions of TR. We there-
fore conclude that an eigenfunction º(x) of �1e can be expressed as a sum of
Bloch functions:

º(x) �
∑

k

Akºk(x) �
∑

k

Akexp (ikx)uk(x), (2.8)

where the Ak are constants. Thus the one-electron wavefunctions can be in-
dexed by constants k, which are the wave vectors of the plane waves forming
the “backbone” of the Bloch function. A plot of the electron energies in (2.4)
versus k is known as the electronic band structure of the crystal.

The band structure plot in which k is allowed to vary over all possible
values is known as the extended zone scheme. From (2.6) we see that the
choice of k in indexing a wave function is not unique. Both k and k � (2n/R),
where n is any integer, will satisfy (2.6). This is a consequence of the trans-
lation symmetry of the crystal. Thus another way of choosing k is to replace
k by k′ � k � (2n/R), where n is an integer chosen to limit k′ to the inter-
val [�/R, /R]. The region of k-space defined by [�/R, /R] is known as the
first Brillouin zone. A more general definition of Brillouin zones in three di-
mensions will be given later and can also be found in standard textbooks [2.2].
The band structure plot resulting from restricting the wave vector k to the first
Brillouin zone is known as the reduced zone scheme. In this scheme the wave
functions are indexed by an integer n (known as the band index) and a wave
vector k restricted to the first Brillouin zone.

In Fig. 2.1 the band structure of a “nearly free” electron (i. e., V → 0)
moving in a one-dimensional lattice with lattice constant a is shown in both
schemes for comparison. Band structures are plotted more compactly in the
reduced zone scheme. In addition, when electrons make a transition from one
state to another under the influence of a translationally invariant operator, k
is conserved in the process within the reduced zone scheme (the proof of this
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Fig. 2.1. The band structure of a free particle shown in (a) the extended zone scheme and
(b) the reduced zone scheme
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statement will be presented when matrix elements of operators in crystals are
discussed, Sect. 2.3), whereas in the extended zone scheme k is conserved only
to a multiple of (i. e. modulo) 2/R. Hence, the reduced zone scheme is almost
invariably used in the literature.

The above results, obtained in one dimension, can be easily generalized
to three dimensions. The translational symmetries of the crystal are now ex-
pressed in terms of a set of primitive lattice vectors: a1, a2, and a3. We can
imagine that a crystal is formed by taking a minimal set of atoms (known as a
basis set) and then translating this set by multiples of the primitive lattice vec-
tors and their linear combinations. In this book we will be mostly concerned
with the diamond and zinc-blende crystal structures, which are shown in Fig.
2.2a. In both crystal structures the basis set consists of two atoms. The ba-
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Fig. 2.2. (a) The crystal structure of diamond and zinc-blende (ZnS). (b) the fcc lattice
showing a set of primitive lattice vectors. (c) The reciprocal lattice of the fcc lattice shown
with the first Brillouin zone. Special high-symmetry points are denoted by °, X, and L,
while high-symmetry lines joining some of these points are labeled as § and ¢
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sis set in diamond consists of two carbon atoms while in zinc-blende the two
atoms are zinc and sulfur. The lattice of points formed by translating a point
by multiples of the primitive lattice vectors and their linear combinations is
known as the direct lattice. Such lattices for the diamond and zinc-blende
structures, which are basically the same, are said to be face-centered cubic
(fcc) see Fig. 2.2b with a set of primitive lattice vectors. In general, the choice
of primitive lattice vectors for a given direct lattice is not unique. The primi-
tive lattice vectors shown in Fig. 2.2b are

a1 � (0, a/2, a/2),

a2 � (a/2, 0, a/2),

and

a3 � (a/2, a/2, 0),

where a is the length of the side of the smallest cube in the fcc lattice. This
smallest cube in the direct lattice is also known as the unit cube or the crys-
tallographic unit cell.

For a given direct lattice we can define a reciprocal lattice in terms of
three primitive reciprocal lattice vectors: b1, b2, and b3, which are related to
the direct lattice vectors a1, a2, and a3 by

bi � 2
(aj × ak)

(a1 × a2) · a3
, (2.9)

where i, j, and k represent a cyclic permutation of the three indices 1, 2, and 3
and (a1×a2)·a3 is the volume of the primitive cell. The set of points generated
by translating a point by multiples of the reciprocal lattice vectors is known as
the reciprocal lattice. The reason for defining a reciprocal lattice in this way is
to represent the wave vector k as a point in reciprocal lattice space. The first
Brillouin zone in three dimensions can be defined as the smallest polyhedron
confined by planes perpendicularly bisecting the reciprocal lattice vectors. It is
easy to see that the region [�/R, /R] fits the definition of the first Brillouin
zone in one dimension.

Since the reciprocal lattice vectors are obtained from the direct lattice vec-
tors via (2.9), the symmetry of the Brillouin zone is determined by the sym-
metry of the crystal lattice. The reciprocal lattice corresponding to a fcc lattice
is shown in Fig. 2.2c. These reciprocal lattice points are said to form a body-
centered cubic (bcc) lattice. The primitive reciprocal lattice vectors b1, b2, and
b3 as calculated from (2.9) are

b1 � (2/a) (�1, 1, 1),

b2 � (2/a) (1, �1, 1),

and

b3 � (2/a) (1, 1, �1).
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[Incidentally, note that all the reciprocal lattice vectors of the fcc lattice have
the form (2/a)(i, j, k), where i, j, and k have to be either all odd or all even].
The first Brillouin zone of the fcc structure is also indicated in Fig. 2.2c. The
symmetry of this Brillouin zone can be best visualized by constructing a model
out of cardboard. A template for this purpose can be found in Fig. 2.27.

In Fig. 2.2c we have labeled some of the high-symmetry points of this Bril-
louin zone using letters such as X and °. We will conform to the convention
of denoting high symmetry points and lines inside the Brillouin zone by Greek
letters and points on the surfaces of the Brillouin zone by Roman letters. The
center of the Brillouin zone is always denoted by °. The three high-symmetry
directions [100], [110], and [111] in the Brillouin zone of the fcc lattice are
denoted by:

[100] direction : °̇ ¢ Ẋ

[111] direction : °̇ § L̇

[110] direction : °̇ ™ K̇

The Brillouin zone of the fcc lattice is highly symmetrical. A careful examina-
tion of this Brillouin zone shows that it is unchanged by various rotations, such
as a 90˚ rotation about axes parallel to the edges of the body-centered cube
in Fig. 2.2c. In addition it is invariant under reflection through certain planes
containing the center of the cube. These operations are known as symmetry
operations of the Brillouin zone. The symmetry of the Brillouin zone results
from the symmetry of the direct lattice and hence it is related to the symme-
try of the crystal. This symmetry has at least two important consequences for
the electron band structure. First, if two wave vectors k and k′ in the Bril-
louin zone can be transformed into each other under a symmetry operation of
the Brillouin zone, then the electronic energies at these wave vectors must be
identical. Points and axes in reciprocal lattice space which transform into each
other under symmetry operations are said to be equivalent. For example, in
the Brillouin zone shown in Fig. 2.2c there are eight hexagonal faces contain-
ing the point labeled L in the center. These eight faces including the L points
are equivalent and can be transformed into one another through rotations by
90˚. Therefore it is necessary to calculate the energies of the electron at only
one of the eight equivalent hexagonal faces containing the L point. The second
and perhaps more important consequence of the crystal symmetry is that wave
functions can be expressed in a form such that they have definite transforma-
tion properties under symmetry operations of the crystal. Such wave functions
are said to be symmetrized. A well-known example of symmetrized wave func-
tions is provided by the standard wave functions of electrons in atoms, which
are usually symmetrized according to their transformation properties under
rotations and are classified as s, p, d, f , etc. For example, an s wave func-
tion is unchanged by any rotation. The p wave functions are triply degenerate
and transform under rotation like the three components of a vector. The d
wave functions transform like the five components of a symmetric and trace-
less second-rank tensor. By classifying the wave functions in this way, some
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matrix elements of operators can be shown to vanish, i. e., selection rules can
be deduced. Similarly, wave functions in crystals can be classified according
to their transformation properties under symmetry operations of the crystal
and selection rules can be deduced for operators acting on these wave func-
tions. The mathematical tool for doing this is group theory. Many excellent
textbooks have been written on group theory (see the reference list). It is de-
sirable, but not necessary, to have a good knowledge of group theory in order
to study semiconductor physics. Some elementary notions of group theory are
sufficient to understand the material covered in this book. The next section
contains an introduction to group theoretical concepts and notations. Students
familiar with group theory can omit this section.

2.3 A Pedestrian’s Guide to Group Theory

Since the purpose of this section is to introduce group theory terminology and
notations, no effort will be made to prove many of the statements and theo-
rems mentioned in it. At most we shall illustrate our statements with examples
and refer the reader to books on group theory for rigorous proofs.

2.3.1 Definitions and Notations

The first step in studying the symmetry properties of any crystal is to deter-
mine its symmetry operations. For example: a square is unchanged under re-
flection about its two diagonals, or under rotation by 90˚ about an axis perpen-
dicular to the square and passing through its center. One can generate other
symmetry operations for a square which are combinations of these operations.
One may say that it is possible to find an infinite number of symmetry oper-
ations for this square. However, many of these symmetry operations can be
shown to consist of sequences of a few basic symmetry operations. The math-
ematical tool for systematically analyzing the symmetry operations of any ob-
ject is group theory.

A group G is defined as a set of elements {a, b, c, . . .} for which an oper-
ation ab (which we will refer to as multiplication) between any two elements
a and b of the group is defined. This operation must have these four proper-
ties:

• Closure: The result of the operation ab on any two elements a and b in G
must also belong to G.

• Associativity: for all elements a, b, and c in G (ab)c � a(bc).
• Identity: G must contain an element e known as the identity or unit ele-

ment such that ae � a for all elements a in G.
• Inverse element: for every element a in G there exists a corresponding

element a�1 such that a�1a � e. Element a�1 is known as the inverse of a.
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Notice that the order in which one multiplies two elements a and b is im-
portant since ab is not necessarily equal to ba in general. If ab � ba for all
elements in G, multiplication is commutative and G is said to be Abelian.

One can easily find many examples of groups. In particular, the set of sym-
metry operations of a crystal or a molecule can be shown to form a group. As
an illustration, we will consider the molecule methane: CH4. The structure of
this molecule is shown in Fig. 2.3. It consists of a carbon atom surrounded by
four hydrogen atoms forming the four corners of a regular tetrahedron.

To simplify the description of the symmetry operations of the methane
molecule, we will introduce the Schönflies notation:

C2: rotation by 180˚ (called a two-fold rotation);
C3: rotation by 120˚ (called a three-fold rotation);
C4: rotation by 90˚ (called a four-fold rotation);
C6: rotation by 60˚ (called a six-fold rotation);
Û: reflection about a plane;
i: inversion;
Sn: rotation Cn followed by a reflection through a plane perpendicular to the

rotation axis;
E: the identity operation.

For brevity, all the above operations are often denoted as rotations. To distin-
guish between a conventional rotation (such as C3) from reflections (such as
Û) or rotations followed by reflections (such as S4) the latter two are referred
to as improper rotations. Notice that the inversion is equal to S2. This is not
the only way to represent symmetry operations. An equally popular system is
the international notation. The conversion between these two systems can be
found in books on group theory [Ref. 2.3, p. 85].

H

H

H H

C

Methane molecule

[100] [111] [010]

[001]

[111]
- -

-
[111]

-

-[111]-

Fig. 2.3. A methane
molecule (CH4) displaying
the bonds (red lines) and
the coordinate axes (black
arrows). The [001] axis is
perpendicular to the
paper
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To specify a symmetry operation completely, it is also necessary to define
the axis of rotation or the plane of reflection. In specifying planes of reflection
we will use the notation (kln) to represent a plane that contains the origin and
is perpendicular to the vector (k, l, n). (Readers familiar with crystallography
will recognize that this notation is an “imitation” of the Miller indices for de-
noting lattice planes in cubic crystals). The corresponding simplified notation
for the axis containing this vector is [kln]. In Fig. 2.3 we have first chosen
the origin at the carbon atom for convenience. Using the coordinate system
shown in Fig. 2.3, the four carbon–hydrogen bonds are oriented along the
[111], [111], [111], and [111] directions. We will now state without proof (the
reader can check these results easily by constructing a balls-and-sticks model
of the methane molecule) that the following operations are symmetry opera-
tions of the methane molecule:

E: the identity;
C2: two-fold rotation about one of the three mutually perpendicular [100],

[010] and [001] axes (three C2 operations in total);
C3: rotation by 120˚ in clockwise direction about one of the four C–H bonds

(four operations in total);
C�1

3 : rotation by 120˚, counterclockwise, about one of the four C–H bonds
(four operations in total);

Û: reflection with respect to one of these six planes: (110), (110), (101),
(101), (011), (011);

S4: a four-fold clockwise rotation about one of the [100], [010], and [001]
axes followed by a reflection on the plane perpendicular to the rotation
axis (three operations in total);

S�1
4 : a four-fold counterclockwise rotation about one of the [100], [010], and

[001] axes followed by a reflection on a plane perpendicular to the rota-
tion axis (three operations in total).

It can be shown easily that the operations C2 and Û are both the inverse
of themselves. The inverse element of C3 is C�1

3 , provided the axis of rotation
is the same in the two operations. Similarly, the inverse element of S4 is S�1

4 ,
provided the rotation axes remain the same. If we now define the multiplica-
tion of two symmetry elements a and b as a symmetry operation c � ab con-
sisting of first applying the operation b to the CH4 molecule followed by the
operation a, it can be shown easily that the 24 symmetry operations of CH4
defined above form a group known as Td. Such groups of symmetry operations
of a molecule are known as point groups. As the name implies, point groups
consist of symmetry operations in which at least one point remains fixed and
unchanged in space. Point groups contain two kinds of symmetry operations:
proper and improper rotations.

An infinite crystal is different from a molecule in that it has translational
symmetry. Although in real life crystals never extend to infinity, the problems
associated with the finite nature of a crystal can be circumvented by apply-
ing the so-called periodic (or Born–von Kármán) boundary conditions to the
crystal. Equivalently, one can imagine that the entire space is filled with repli-
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cas of the finite crystal. It should be no surprise that the set of all symmetry
operations of such an infinite crystal also forms a group. Such groups, which
contain both translational and rotational symmetry operations, are known as
space groups. There are 230 non-equivalent space groups in three dimensions.

Besides their translational invariance, crystals also possess rotational sym-
metries. Space groups can be divided into two types, depending on whether
or not the rotational parts of their symmetry operations are also symmetry
operations. Let us first consider the purely translational operations of an in-
finite crystal. It can be shown that these translational symmetry operations
form a group (to be denoted by T). T is known as subgroup of the space
group G of the crystal. Let us now denote by R the set of all symmetry op-
erations of G which involve either pure rotations (both proper and improper)
only or rotations accompanied by a translation not belonging to T. We will
denote the elements of R as ·, ‚, Ù, etc. Such a subset of G is known as a
complex. In general R is not a group. For example, if G contains a screw axis
or glide plane (these will be defined later, see Fig. 2.4) then R will not form
a group and the space group G is said to be nonsymmorphic. If no screw axis
or glide planes are present, R is a group (and therefore a subgroup of G):
the space group G is then said to be symmorphic. The symmetry properties of
symmorphic groups are simpler to analyze since both translational and rota-
tional operations in such space groups form subgroups. In particular, it can be
shown that the rotational symmetry operations of a symmorphic space group
form point groups similar to those for molecules. However, there are restric-
tions on the rotational symmetry of a crystal as a result of its translational
symmetry. For example, a crystal cannot be invariant under rotation by 72˚
(known as a five-fold rotation). However, a molecule can have this rotational
symmetry. Point groups which are compatible with a lattice with translational
symmetry are called crystallographic point groups. It can be shown that there
are 32 distinct crystallographic point groups in three-dimensional space (see,
e. g. [2.4]).

Of a total of 230 space groups there are only 73 symmorphic space groups.
Thus the simpler, symmorphic space groups are more often the exception
rather than the norm. We will now consider how to analyze the rotational
symmetries of nonsymmorphic space groups. By definition, a nonsymmorphic
space group must contain at least one symmetry operation that involves both
translation and rotation such that the rotational operation is not a symmetry
operation of G by itself. There are two possibilities for such an operation: the
rotation can be either proper or improper. The axis for a proper rotation is
called a screw axis while the plane that corresponds to a twofold improper
rotation is known as a glide plane. In the case of a screw axis, the crystal is
invariant under a rotation about this axis plus a translation along the axis. The
crystal is invariant under reflection in a glide plane followed by a translation
parallel to the glide plane.

Two simple examples of screw axes for a one-dimensional crystal are
shown in Figs. 2.4a and b. From Fig. 2.4b it is clear that a simple three-fold
rotation about the vertical axis is not a symmetry operation of this hypothet-
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(c) Glide reflection(b) Triad screw axis(a) Diad screw axis

~
c
3
c
3
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Fig. 2.4. Examples of (a) a diad screw axis, (b) a triad screw axis and (c) a glide plane.
The crystals in (a) and (c) are assumed to be three dimensional, although only one layer
of atoms is shown for the purpose of illustration. If they are two dimensional, the glide
operation in (c) becomes equivalent to that of the diad screw in (a). � and ⊗ represent
arrow pointing towards and away from the reader, respectively. Screw axis such as in (b)
are found in the crystal structure of semiconductors like Se and Te [2.5]

ical crystal. However, if the crystal is translated by an amount (c/3) along the
vertical axis after the three-fold rotation then the crystal is unchanged. the
vertical axis is known in this case as a triad screw axis. An example of a diad
screw axis is shown in Fig. 2.4a. A glide plane is shown in Fig. 2.4c. The plane
labeled A–B in the figure is not a reflection plane. But if after a reflection in
the A–B plane we translate the crystal by the amount (a/2) parallel to the A–
B plane, the crystal will remain unchanged. This symmetry operation is known
as a glide and the A–B plane is a glide plane. Now suppose R is the set of
all pure rotational operations of G plus the glide reflection shown in Fig. 2.4c
(which we will denote as m). R defined in this way is not a group since mm is
a pure translation and therefore not an element of R.

To study the rotational symmetries of a space group independent of
whether it is symmorphic or nonsymmorphic, we will introduce the concept
of a factor group. Let G be the space group and T its subgroup consisting of
all purely translational symmetry operations. Let C � {·, ‚, . . .} be the com-
plex of all the elements of G not in T. Unlike the elements of the set R de-
fined earlier, the translation operations in the elements of C can belong to T.
Next we form the sets T·, T‚, etc. The set T· consisting of operations formed
by the product of a translation in T and an operation · not in T is known as
a right coset of T. As may be expected, the set ·T is called a left coset of T.

Let us first consider the case when G is a symmorphic group. For a sym-
morphic group we can decompose any symmetry operation · in C into the
product of a translation ·t and a rotation ·r : · � ·t·r. Since multiplication is
not necessarily commutative, we may worry about the order in which the two
operations ·t and ·r occur. It can be shown that T has the property that the
right coset Tx is equal to the left coset xT for every element x in G. A sub-
group with this property is known as an invariant subgroup. When we multi-
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ply · by another translation operation to form an element of the coset T· the
resultant operation consists of a new translation but multiplied by the same
rotation ·r. This suggests that we can establish a correspondence between the
set of cosets {T·, T‚, . . .} and the set of rotational operations R � {·r, ‚r, . . .}.
When G is symmorphic the set R is a subgroup of G so the set {T·, T‚, . . .}
also forms a group. [In order that this set of cosets form a group, we have to
define the product of two cosets (T·)(T‚) as T·‚]. This group is known as the
factor group of G with respect to T and is usually denoted by G/T. In estab-
lishing the factor group G/T we have mapped all the elements of a coset T·
into a single rotational operation ·r. Such a mapping of many elements in one
set into a single element in another set is known as homomorphism. On the
other hand, the mapping between the factor group G/T and the subgroup R
of G is one-to-one, and this kind of correspondence is known as isomorphism.

This isomorphism between the factor group G/T and the point group R of
a symmorphic space group can be extended to a nonsymmorphic space group.
The main difference between the two cases is that while the rotational oper-
ations ·r, ‚r, etc. are also elements in a symmorphic space group, this is not
necessarily true for all rotations in a nonsymmorphic group. If · is a glide or
screw then ·r is not an element in G. We will still refer to the group R as
the point group of a nonsymmorphic space group because R contains all the
information about the rotational symmetries of the space group G. However,
special care must be exercised in studying the point groups of nonsymmorphic
space groups since they contain elements which are not in the space group.

We will next study the symmetry operations of the zinc-blende and dia-
mond crystal structures as examples of a symmorphic and a nonsymmorphic
space group, respectively.

2.3.2 Symmetry Operations of the Diamond and Zinc-Blende Structures

Figure 2.2a shows the structures of the diamond and zinc-blende crystals. As
pointed out in the previous section, both crystal structures consist of a fcc lat-
tice. Associated with every lattice site there are two atoms which are displaced
relative to each other by one quarter of the body diagonal along the [111] di-
rection. The volume defined by the primitive lattice vectors and containing
these two atoms forms a unit, known as the primitive cell, which is repeated
at each lattice site. One simple way to construct these crystal structures is to
start with two fcc sublattices, each containing only one atom located on every
lattice site. Then one sublattice is displaced by one quarter of the body di-
agonal along the [111] direction with respect to the remaining sublattice. In
the resulting crystal structure each atom is surrounded by four nearest neigh-
bors forming a tetrahedron. The space group of the zinc-blende structure is
symmorphic and is denoted by T2

d (or F43m in international notation). Its
translational symmetry operations are defined in terms of the three primitive
lattice vectors shown in Fig. 2.2b. Its point group has 24 elements. These 24
elements are identical to the elements of the point group of a tetrahedron
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(or the methane molecule discussed in the last section and shown in Fig. 2.3)
which is denoted by Td.

The point group symmetry operations of the zinc-blende crystal are de-
fined with respect to the three mutually perpendicular crystallographic axes
with the origin placed at one of the two atoms in the primitive unit cell. With
this choice of coordinates, the 24 operations are enumerated below (they are
essentially identical to those of the methane molecule):

E: identity
eight C3 operations: clockwise and counterclockwise rotations of 120˚ about

the [111], [111], [111], and [111] axes, respectively;
three C2 operations: rotations of 180˚ about the [100], [010], and [001] axes,

respectively;
six S4 operations: clockwise and counterclockwise improper rotations of

90˚ about the [100], [010], and [001] axes, respectively;
six Û operations: reflections with respect to the (110), (110), (101), (101),

(011), and (011) planes, respectively.

The diamond structure is the same as the zinc-blende structure except that
the two atoms in the primitive unit cell are identical. If we choose the origin
at the midpoint of these two identical atoms, we find that the crystal structure
is invariant under inversion with respect to this origin. However, for the pur-
pose of studying the point group operations, it is more convenient to choose
the origin at an atom, as in the case of the zinc-blende structure. The crystal is
no longer invariant under inversion with respect to this new choice of origin,
but is unchanged under inversion plus a translation by the vector (a/4)[1, 1, 1],
where a is the length of the unit cube. This can be visualized by drawing the
carbon atoms in the diamond structure along the [111] direction as shown in
Fig. 2.5. The space group of the diamond structure is nonsymmorphic: it con-
tains three glide planes. For example, the plane defined by x � (a/8) is a glide
plane since diamond is invariant under a translation by (a/4)[0, 1, 1] followed
by a reflection on this plane. In place of the three glide planes defined by x �
(a/8), y � (a/8), and z � (a/8), it is possible to use the “glide-like” operations:

T(1/4, 1/4, 1/4)Ûx: reflection on the x � 0 plane followed by a translation
of the crystal by the vector a(1/4, 1/4, 1/4);

T(1/4, 1/4, 1/4)Ûy: reflection on the y � 0 plane followed by a translation
of the crystal by the vector a(1/4, 1/4, 1/4); and

a

[111]

a
4 3

3

Fig. 2.5. Arrangement of atoms along the [111] direction of the diamond crystal. Notice
that the crystal is invariant under inversion either with respect to the midpoint between
the atoms or with respect to one of the atoms followed by an appropriate translation
along the [111] axis
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F

Ca

Fig. 2.6. Schematic crystal structure of CaF2

(fluorite)

T(1/4, 1/4, 1/4)Ûz: reflection on the z � 0 plane followed by a translation
of the crystal by the vector a(1/4, 1/4, 1/4).

The factor group of the diamond lattice is isomorphic to the point group gen-
erated from the group Td by adding the inversion operation. This point group
has 48 elements and is denoted as Oh. While Td is the point group of a tetra-
hedron, Oh is the point group of a cube. The space group of the diamond
crystal is denoted by O7

h (or Fd3m in international notation).
The CaF2 (fluorite) structure shown in Fig. 2.6 is related to the diamond

structure. This is the crystal structure of a family of semiconductors with the
formula Mg2X, where X � Ge, Si, and Sn. The lattice of CaF2 is fcc as in dia-
mond, but CaF2 has three sublattices. The two fluorine sublattices are symmet-
rically displaced by one quarter of the body diagonal from the Ca sublattices,
so there is inversion symmetry about each Ca atom. The space group of CaF2
is symmorphic and its point group is also Oh, like diamond. This space group
is denoted by O5

h (or Fm3m). It is clear that there is a one-to-one correspon-
dence between the elements of the point group of CaF2 and those of the fac-
tor group of diamond.

2.3.3 Representations and Character Tables

The effect of a symmetry operation, such as a rotation, on a coordinate system
(x, y, z) can be represented by a transformation matrix. For example, under a
four-fold rotation about the x axis the axes x, y, and z are transformed into
x′, y′, and z′ with x′ � x, y′ � z and z′ � �y. This transformation can be
represented by the matrix M:

M �

⎛⎝ 1 0 0
0 0 1
0 �1 0

⎞⎠ .

Similarly a three-fold rotation about the [111] axis will transform the axes x,
y, and z into x′ � z, y′ � x, and z′ � y. This transformation can be represented
by ⎛⎝ 0 0 1

1 0 0
0 1 0

⎞⎠ .
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In the rest of this chapter we will use the abbreviated notation (xyz) → (xzy)
to denote the transformation matrix for the four-fold rotation and (xyz) →
(zxy) for the three-fold rotation. All the symmetry operations in a point group
can be represented by transformation matrices similar to M. It is easy to prove
that the set of such transformation matrices corresponding to a group of sym-
metry operations is also a group. This group of matrices is said to form a rep-
resentation of the group. There are actually an infinite number of such groups
of matrices for a given group. The correspondence between a group and its
representation is not, in general, an isomorphism but rather a homomorphism.
A representation of a group G is defined as any group of matrices onto which
G is homomorphic. Since representations of a group are not unique, we will
be interested only in those of their properties that are common to all the rep-
resentations of this group.

One way to generate a representation for a group is to choose some func-
tion f (x, y, z) and then generate a set of functions {fi} by applying the symme-
try operations Oi of the group to f (x, y, z) so that fi � Oi[f ].1 By definition a
group has to satisfy the closure requirement. This means that when the opera-
tion O is applied to fi the resultant function O[fi] can be expressed as a linear
combination of the functions fi:

O[fi] �
∑

j

fjaji . (2.10a)

The coefficients aji form a square matrix, which will be referred to as a trans-
formation matrix. The set of transformation matrices of the form {aji} cor-
responding to all the operations in the group now forms a representation of
the group. The functions {fi} used to generate this representation are said to
form a set of basis functions for this representation. Clearly the choice of basis
functions for generating a given representation is not unique.

If one uses the above method to generate a representation, then the di-
mension of the resulting transformation matrices will always be equal to the
number of elements in the group (known as the order of a group). Some of
the matrices will, however, be equal. Also many of the elements in these ma-
trices will be zero. If the matrices in a given representation for all the opera-
tions in a group can be expressed in the following block form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
· 0 0 . . . 0

0 0 . . . 0
0 0 0 ‚ 0 . . . 0
0 0 0 Á . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 0 0 . . . Ù

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.10b)

1 In our applications {fi} will usually be a set of degenerate eigenfunctions corresponding
to a given eigenvalue.
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where ·, ‚, . . ., Ù are square matrices, obviously the symmetry operations in
this group can also be represented by the smaller matrices · and ‚, etc. While
the matrices ·i and ‚i for an operation i may not necessarily have the same
dimension, the matrices ·i for all the operations i in the group must have
the same dimension. A representation of the form of (2.10b) is said to be re-
ducible otherwise the representation may be irreducible. As pointed out ear-
lier, the choice of matrices to form a representation for a given group is not
unique. Given one set of transformation matrices {Ai}, we can generate an-
other set {A′

i} by a similarity transformation: A′
i � TAiT�1, where T is an

arbitrary nonsingular matrix with the same dimensionality as Ai. The trans-
formed set of matrices {A′

i} will also form a representation. The two sets of
matrices {Ai} and {A′

i} are then said to be equivalent. Often the matrices of
a representation may not appear to have the form given by (2.10b) and hence
be regarded as irreducible. However, if by applying similarity transformation
it is possible to express these matrices in the form of (2.10b) then this repre-
sentation is also called reducible. Otherwise it is called irreducible.

Two axes of rotation or two reflection planes which transform into each
other under a symmetry operation of a point group are said to be equivalent.
It can be shown that the matrices of a representation which correspond to
such equivalent rotations have identical traces (the trace of a matrix is the sum
of the diagonal elements). Although the choice of irreducible representations
for a group is not unique, the set of traces of these irreducible representations
is unique since unitary transformations preserve the trace. This suggests that
the set of all equivalent irreducible representations of a given group can be
specified uniquely by their traces. For this reason the traces of the matrices in
a representation are called its characters. The representations obviously con-
tain more information than their characters; however, to utilize the symmetry
of a given group it often suffices to determine the number of inequivalent irre-
ducible representations and their characters.

The determination of the characters of an irreducible representation is
simplified by these properties of a group:

• Elements in a group can be grouped into classes. A set of elements T in
a group is said to form a class if for any element a in the group, aT � Ta.
In a given representation all the elements in a class have the same charac-
ter.

• The number of inequivalent irreducible representations of a group is equal
to the number of classes.

These two properties suggest that if the elements of a group can be divided
into j classes the characters of its j irreducible representations can be tabu-
lated to form a table with j columns and j rows, which is known as a character
table. Assume that a group has N elements and these elements are divided
into j classes denoted by C1, C2, . . . , Cj. The number of elements in each class
will be denoted by N1, N2, . . . , Nj. The identity operation E forms a class with
only one element and, by convention, it is labeled C1. This group also has
j inequivalent irreducible representations (from now on the set of irreducible
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Table 2.1. The character table of a group

R1 ¯1(E) ¯1(2) · · ¯1(j)
R2 ¯2(E) ¯2(2) · · ¯2(j)
· · · · · ·
· · · · · ·

Rj ¯j(E) ¯j(2) · · ¯j(j)

Classes

Representations {E} {N2C2} · · {NjCj}

·
·
·
·
·

·

representations of a group will be understood to contain only inequivalent
ones), which will be denoted by R1, R2, . . . , Rj. The character of Ck in Ri will
be denoted by ¯i(k). Since the identity operation E leaves any basis function
invariant, its representations always consist of unit matrices (that is, diagonal
matrices with unity as the diagonal elements). As a result, the character ¯i(E)
is equal to the dimension of the representation Ri. Thus the character table of
this group will have the form of Table 2.1.

In principle, the character table for the point group of a crystal can be
calculated from the transformation matrices using a suitable set of basis func-
tions. In practice, the character table can be obtained, in most cases, by in-
spection using the following two orthogonality relations:∑

k

¯i(Ck)∗¯j(Ck)Nk � h‰ij (2.11)

∑
i

¯i(Ck)∗¯i(Cl) � (h/Nl)‰kl (2.12),

where ∗ denotes the complex conjugate of a character, h is the order of the
group, Nk is the number of elements of class Ck, and ‰ij is the Kronecker
delta.

As an illustration of the procedure used to obtain character tables we will
consider two examples.

EXAMPLE 1 Character Table of the Point Group Td

As we showed in Sect. 2.3.1, the point group Td consists of 24 elements rep-
resenting the proper and improper rotational symmetry operations of a tetra-
hedral methane molecule. In Sect. 2.3.2 we showed that this group is also the
point group of the zinc-blende crystal. The 24 elements of this group can be
divided into five classes

{E}, {8C3}, {3C2}, {6S4} and {6Û}
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by noting that:

• rotations by the same angle with respect to equivalent axes belong to the
same class and

• reflections on equivalent planes also belong to the same class.

Since the number of irreducible representations is equal to the number of
classes, Td has five irreducible representations, which are usually denoted by
A1, A2, E, T1 and T2. Notice that the capital letter E has been used in the
literature to denote a large number of entities varying from energy, electric
field, the identity operation in group theory to an irreducible representation
in the Td group! To avoid confusion we will always specify what E stands for.

The next step is to construct the 5×5 character table using (2.11) and
(2.12). First, we note again that the character of the class containing the iden-
tity operation {E} is equal to the dimension of the representation. Substituting
this result into (2.12) we find∑

i

|¯i(E)|2 � h. (2.13)

Since the number of classes is usually small, this equation can often be solved
by inspection. For Td it is easily shown that the only possible combination
of five squares which add up to 24 is: 2 × 12 � 22 � 2 × 32. This result
means that the group Td has two irreducible representations of dimension one
(denoted by A1 and A2), one irreducible representation of dimension two (de-
noted by E), and two irreducible representations of dimension three (denoted
by T1 and T2). Next we note that a scalar will be invariant under all opera-
tions, so there is always a trivial identity representation whose characters are
all unity. By convention this representation is labeled by the subscript 1, A1 in
the present case. So without much effort we have already determined one row
and one column of the character table for Td (Table 2.2).

The remaining characters can also be determined by inspection with the
application of (2.12). For the classes other than {E} the characters can be
either positive or negative. The sign can be determined by inspection with
some practice. For example, for the class {6Û} the only combination of sums
of squares satisfying (2.12) is 4 × 12 � 02 � 24/6 � 4. Applying (2.12) to the
characters of {E} and {6Û} it can be easily seen that A2(6Û) � � 1, E(6Û) � 0

Table 2.2. Determining the character table for the Td group by inspection

A1 1 1 1 1 1
A2 1 · · · ·
E 2 · · · ·
T1 3 · · · ·
T2 3 · · · ·

{E} {3C2} {6S4} {6Û} {8C3}
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Table 2.3. Character table and basis functions of the Td group

A1 1 1 1 1 1 xyz
A2 1 1 �1 �1 1 x4(y2 � z2) � y4(z2 � x2) � z4(x2 � y2)
E 2 2 0 0 �1 {(x2 � y2), z2 � 1

2 (x2 � y2)}
T1 3 �1 1 �1 0 {x(y2 � z2), y(z2 � x2), z(x2 � y2)}
T2 3 �1 �1 1 0 {x, y, z}

{E} {3C2} {6S4} {6Û} {8C3} Basis functions

while the two remaining characters for T1 and T2 contain 1 and �1. The final
result for the character table of Td is given in Table 2.3.

It is instructive to examine some possible basis functions for the irre-
ducible representations of Td. One choice of basis functions for the A1 rep-
resentation is a constant, as we have mentioned earlier. Another possibility
would be the function xyz, which is also invariant under all symmetry oper-
ations of Td. A2 is very similar to A1 except that under the operations S4
and Û the character of A2 is �1 rather than 1. This implies that the basis
function for A2 must change sign under interchange of any two coordinate
axes, such as interchanging x and y. One choice of basis function for A2 is
x4(y2 �z2)�y4(z2 �x2)�z4(x2 �y2). Similarly, the three-dimensional represen-
tations T1 and T2 differ only in the sign of their characters under interchange
of any two coordinates. It can be shown that the three components x, y, and
z of a vector transform as T2. A corresponding set of basis functions for the
T1 representation would be x(y2 � z2), y(z2 � x2), and z(x2 � y2). The reader
should verify these results by calculating the characters directly from the basis
functions (Problem 2.2).

At the beginning of this chapter we pointed out the importance of nota-
tion in group theory. The notation we have used so far to label the irreducible
representations of the Td group: A1, E, T1, etc. is more commonly found in
literature on molecular physics. We now introduce another notation used fre-
quently in articles on semiconductor physics. The wave functions of a crystal
with wave vector k at the center of the Brillouin zone (° point) always trans-
form in the way specified by the irreducible representations of the point group of
the crystal. Hence the Bloch functions at ° of a zinc-blende crystal can be clas-
sified according to these irreducible representations. In semiconductor physics
literature it is customary to use ° plus a subscript i to label these irreducible
representations of Td. Unfortunately there are two different conventions in
the choice of the subscript i for labeling the same irreducible representation.
One of these conventions is due to Koster (more commonly used in recent re-
search articles) while the other was proposed by Bouckaert, Smoluchowski and
Wigner (BSW) and tends to be found in older articles. The correspondence be-
tween the different notations for the Td point group is shown in Table 2.4.
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Table 2.4. Commonly used notations for the irreducible representations of the Td point
group

°1 °1 A1

°2 °2 A2

°3 °12 E
°4 °15 T2

°5 °25 T1

Koster notationa BSW notation Molecular notation

a Note that °4 and °5 are sometimes reversed in the literature. We recommend the stu-
dent to check it whenever he encounters this notation [2.4].

EXAMPLE 2 Character Table of Oh

We mentioned earlier in this section that the factor group of the diamond
structure is Oh and that it is isomorphic to the point group derived from the
Td group by including the inversion operation i. It has therefore 48 elements:
the 24 symmetry operations of Td plus those of Td followed by i. These include
all 48 symmetry operations of a cube. From the properties of the group Td,
one can deduce that Oh has ten classes:

{E}: identity;
{3C2}: C2 rotation about each of the three equivalent [100] axes;
{6S4}: two four-fold improper rotations about each of the three equivalent

[100] axes;
{6Ûd}: reflection on each of the six equivalent (110) planes;
{8C3}: two C3 rotations about each of the four equivalent [111] axes;
{i}: inversion;
{3Ûh}: reflection on each of the three equivalent (100) planes;
{6C4}: two C4 rotations about each of the three equivalent [100] axes;
{6C′

2}: C2 rotation about each of the six equivalent [110] axes;
{8S6}: two three-fold improper rotations about each of the four equivalent

[111] axes.

The first five classes are the same as those of Td while the remaining five are
obtained from the first five by multiplication with the inversion.

Correspondingly, there are ten irreducible representations. Five of them
correspond to even transformations under those operations obtained from the
Td group operation followed by inversion, while the other five correspond to
odd ones. Similarly, the basis functions of the irreducible representations of Oh

are either even or odd under those operations. In the terminology of quantum
mechanics, these basis functions are said to have even or odd parity. The char-
acters for the Oh group are listed in Table 2.5, while a set of basis functions for
its irreducible representations is given in Table 2.6. Table 2.5 has been purpos-
edly presented in a way to show the similarity between the “unprimed” rep-
resentations in the Oh group and those of the Td group. For example, a scalar
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Table 2.5. Character table of the Oh group presented in a way to highlight the similarity
with Table 2.3 for the Td group. BSW notation

°1 1 1 1 1 1 1 1 1 1 1
°2 1 1 �1 �1 1 1 1 �1 �1 1
°12 2 2 0 0 �1 2 2 0 0 �1
°25 3 �1 1 �1 0 �3 1 �1 1 0
°15 3 �1 �1 1 0 �3 1 1 �1 0
° ′1 1 1 �1 �1 1 �1 �1 1 1 1
° ′2 1 1 1 1 1 �1 �1 �1 �1 �1
° ′12 2 2 0 0 �1 �2 �2 0 0 1
° ′25 3 �1 �1 1 0 3 �1 �1 1 0
° ′15 3 �1 1 �1 0 3 �1 1 �1 0

{E} {C2} {S4} {Ûd} {C3} {i} {Ûh} {C4} {C ′
2} {S6}

Table 2.6. Basis functions for the irreducible representations of the Oh group

°1 : 1
°2 : x4(y2 � z2) � y4(z2 � x2) � z4(x2 � y2)
°12 : {[z2 � (x2 � y2)/2], x2 � y2}
°25 : {x(y2 � z2), y(z2 � x2), z(x2 � y2)}
°15 : {x, y, z}
° ′1 : xzy[x4(y2 � z2) � y4(z2 � x2) � z4(x2 � y2)]
° ′2 : xyz
° ′12 : {xyz[z2 � (x2 � y2)/2], xyz(x2 � y2)}
° ′25 : {xy, yz, zx}
° ′15 : {yz(y2 � z2), zx(z2 � x2), xy(x2 � y2)}

Representation Basis functions

still belongs to the °1 representation while a vector belongs to the °15 repre-
sentation in the Oh group. However, the relation between the “primed” and
“unprimed” representations is not so clear. For example, a pseudo-scalar be-
longs to the °2′ representation, while a pseudo-vector belongs to the °15′ rep-
resentation. Furthermore, some of the primed representations, e. g. °15′ and
°25′ , are even while others are odd under inversion.

When Table 2.5 is rearranged into Table 2.7, the correlations between the
first five representations and the remaining five become clear. Note that some-
times a hybrid of the K and BSW notations is used: the primes are omitted
and replaced by �, � superscripts to denote the parity. The student will find
this notation in Chaps. 6 and 7.



40 2. Electronic Band Structures

Table 2.7. Character table of the Oh group rearranged to show the relationship between
the even and odd parity representations. Both the Koster (K) and BSW notations are given
[2.6]

°�
1 °1 1 1 1 1 1 1 1 1 1 1

°�
2 °2 1 1 �1 �1 1 1 1 �1 �1 1

°�
3 °12 2 2 0 0 �1 2 2 0 0 �1

°�
4 ° ′15 3 �1 1 �1 0 3 �1 1 �1 0

°�
5 ° ′25 3 �1 �1 1 0 3 �1 �1 1 0

°�
1 ° ′1 1 1 1 1 1 �1 �1 �1 �1 �1

°�
2 ° ′2 1 1 �1 �1 1 �1 �1 1 1 �1

°�
3 ° ′12 2 2 0 0 �1 �2 �2 0 0 1

°�
4 °15 3 �1 1 �1 0 �3 1 �1 1 0

°�
5 °25 3 �1 �1 1 0 �3 1 1 �1 0

K BSW {E} {C2} {C4} {C ′
2} {C3} {i} {Ûh} {S4} {Ûd} {S6}

2.3.4 Some Applications of Character Tables

We will now describe some of the applications of character tables. Further
applications will be found throughout this book.

a) Decomposition of Representation into Irreducible Components

A problem one often faces is this: when given a group G and a representation
Ù, how does one determine whether Ù is reducible? If Ù is reducible then how
can it be decomposed into its irreducible components? These questions can
be answered with the help of the character table of G. Suppose ¯Ù(i) is the
character of the given representation Ù corresponding to the class {i}. If Ù is
an irreducible representation, the set of characters ¯Ù(i) must be equal to the
characters of one of the irreducible representations of G. If this is not the case
then Ù is reducible. Suppose Ù is reducible into two irreducible representations
· and ‚ and ¯·(i) and ¯‚(i) are the characters of · and ‚, respectively. By
definition ¯·(i) and ¯‚(i) must satisfy

¯Ù(i) � ¯·(i) � ¯‚(i) (2.14)

for all classes {i} in the group G. The representation Ù is said to be the direct
sum of the two irreducible representations · and ‚. The direct sum will be
represented by the symbol ⊕ as in Ù � · ⊕ ‚.

When the dimension of a reducible representation is not very large, it can
often be reduced into a direct sum of irreducible representations by inspec-
tion. As an example, let us consider the group Td with its character table given
in Table 2.3 and a second-rank tensor {Tij} with components Txx, Txy, Txz, Tyx,
Tyy, Tyz, Tzx, Tzy, and Tzz. Using these components as basis functions we can
generate a nine-dimensional representation of Td, which we will denote as ° .
Obviously ° must be reducible since no irreducible representation in Td has
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dimensions larger than three. The way to decompose ° into irreducible rep-
resentations of Td is to first determine the characters of ° for all the classes
in Td. In principle this can be accomplished by applying the symmetry opera-
tions of Td to the nine basis functions to produce the 9 × 9 matrices forming
the representation ° . A simpler and more direct approach is possible for this
second-rank tensor. We note that a vector with three components x, y, and z
forms a set of basis functions for the three-dimensional irreducible represen-
tation T2 of Td. Therefore, the 3 × 3 transformation matrices of a vector form
a T2 representation. By taking the matrix product of two such 3 × 3 transfor-
mation matrices we obtain a set of 9 × 9 matrices forming a representation
for ° . This suggests that the characters of ° are equal to the squares of the
characters for T2:

{E} {3C2} {6S4} {6Û} {8C3}
¯° : 9 1 1 1 0

When the matrices of a representation Ù are equal to the matrix product of
the matrices of two representations · and ‚, Ù is said to be the direct product
of · and ‚. Direct products are represented by the symbol ⊗ as in

° � T2 ⊗ T2. (2.15)

After determining the characters of ° , the next step is to find the irre-
ducible representations of Td whose characters will add up to those of ° . The
systematic way of doing this is to apply the orthogonality relation (2.11). It is
left as an exercise (Problem 2.3) to show that

T2 ⊗ T2 � T1 ⊕ T2 ⊕ E ⊕ A1 (2.16)

With practice this result can also be derived quickly by inspection. In the
present example, one starts by writing down various combinations of repre-
sentations with total dimensions equal to nine. Next one eliminates those com-
binations whose characters for the other classes do not add up to ¯° . Very
soon it is found that the only direct sum with characters equal to that of °
for all five classes of Td is the one in (2.16). Once we realize that ° can be
decomposed into the direct sum of these four irreducible representations, we
can use the basis functions for these representations given in Table 2.3 as a
guide to deduce the correct linear combinations of the nine components of
the second-rank tensor which transform according to these four irreducible
representations:

A1 : Txx � Tyy � Tzz

E : {Txx � Tyy, Tzz � (Txx � Tyy)/2}
T1 : {(Txy � Tyx)/2, (Tzx � Txz)/2, (Tyz � Tzy)/2}
T2 : {(Txy � Tyx)/2, (Txz � Tzx)/2, (Tyz � Tzy)/2}.

b) Symmetrization of Long Wavelength Vibrations
in Zinc-Blende and Diamond Crystals

The process we have described above is known as the symmetrization of the
nine components of the second-rank tensor. This method can also be applied
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to symmetrize wave functions. When a Hamiltonian is invariant under the
symmetry operations of a group, its wave functions can be symmetrized so
as to belong to irreducible representations of this group. Just as atomic wave
functions are labeled s, p, and d according to their symmetry under rotation,
it is convenient to label the electronic and vibrational wave functions of a
crystal at the point k in reciprocal space by the irreducible representations of
the group of symmetry operations appropriate for k. We will now explain this
statement with an example drawn from the vibrational modes of zinc-blende
and diamond crystals.

Although we will not discuss lattice vibrations in semiconductors until the
next chapter, it is easier to demonstrate their symmetry properties than those
of electrons. First, we can argue that vibrations of atoms in a crystal can be
described by waves based on its translational symmetry, just as its electrons
can be described by Bloch functions. For example, sound is a form of such
vibration. Thus atomic motions in a crystal can be characterized by their dis-
placement vectors (in real space) plus their wave vectors k (in reciprocal lat-
tice space). The symmetry of a vibration is therefore determined by the effects
of symmetry operations of the crystal on both vectors. Due to the discrete lo-
cation of atoms in a crystal, a wave with wave vector equal to k or k plus
a reciprocal lattice vector are indistinguishable (this point will be discussed
further in Chap. 3). Thus an operation which transforms k into another wave
vector k′ differing from k by a reciprocal lattice vector also belongs to the
group of symmetry operations of k. This group is known as the group of the
wave vector k. In particular, the group of the ° point or zone center is always
the same as the point group of the crystal.

A long wavelength (that is, k near the Brillouin zone center) vibration in
a crystal involves nearly uniform displacements of identical atoms in different
unit cells. For a zinc-blende crystal with two atoms per primitive unit cell, a
zone-center vibrational mode can be specified by two vectors representing the
displacements of these two atoms. We have already pointed out that the three
components of a vector transform under the symmetry operations of Td ac-
cording to the T2, also called °4 representation (see Tables 2.3 and 2.4). To
discuss properties in the zinc-blende crystal we will switch to the Koster no-
tation. For brevity we will refer to the vector as “belonging” to the °4 rep-
resentation. Two vectors, one associated with each atom in the primitive cell,
give rise to a six-dimensional representation. Since irreducible representations
in Td have at most three dimensions, this representation is reducible. To re-
duce it one can calculate its characters by applying the symmetry operations
of Td to the two vectors. An alternative method is to consider the two atoms
as the basis of a two-dimensional representation R. The characters of R are
obtained by counting the number of atoms which are unchanged by the sym-
metry operations of Td (since each atom satisfying this condition contributes
one unity diagonal element to the representation matrix). The two atoms in
the zinc-blende lattice are not interchanged by the operations of Td, therefore
all the characters of R are simply two. Thus R is reducible to two °1 repre-
sentations. The representations of the two displacement vectors in the unit cell
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of the zinc-blende crystal are equal to the direct product of R and °4, which
is equal to 2°4. These two °4 representations correspond to the acoustic and
optical phonon modes (see Chap. 3 for further details). In the acoustic mode
the two atoms in the primitive cell move in phase while in the optical mode
they move 180˚ out of phase.

As pointed out in Sect. 2.3.2, the factor group of the diamond crystal is iso-
morphic to the point group Oh. We should remember that the origin has been
chosen to be one of the carbon atoms. The space group operation which cor-
responds to inversion in Oh is inversion about the origin plus a translation by
(a/4)(1, 1, 1) (for brevity this operation will be denoted here by i′). From Table
2.6 one finds that a vector belongs to the °15 representation of the Oh point
group. As in the case of the zinc-blende crystal, we can obtain the characters of
the six-dimensional representation by determining the characters of R and then
calculating the direct product of R and °15. The characters of R now depend on
whether the symmetry operations include i′. For all symmetry operations which
already exist for the zinc-blende structure and therefore do not involve i′, the
characters are equal to two, as in the zinc-blende crystal. For all other opera-
tions, the two atoms inside the primitive unit cell are interchanged by i′, so their
characters are zero. By inspection of Table 2.5 one concludes that R reduces to
°1⊕°2′ . Thus the displacement vectors of the two atoms in the primitive unit cell
of diamond transform as °15 and °25′ . The displacement vectors of the acoustic
phonon change sign (the parity is said to be odd) under i′ and therefore have
symmetry °15. On the other hand the optical phonon parity is even and has sym-
metry °25′ . The effects of i′ on the long-wavelength acoustic and optical phonons
propagating along the body diagonal of the diamond crystal are shown in Fig. 2.7.

c) Symmetrization of Nearly Free Electron Wave Functions
in Zinc-Blende Crystals

As an example of application of character tables in symmetrizing electronic
wave functions, we will consider a nearly free electron in a zinc-blende crystal.
By nearly free we mean that the electron is moving inside a crystal with a
vanishingly small periodic potential of Td symmetry, so that its energy E and
wave function º are essentially those of a free particle:

º(x, y, z) � exp [i(kxx � kyy � kzz)] (2.17)

and

E � �2k2/2m. (2.18)

However, because of the periodic lattice, its wave vector k can be restricted to
the first Brillouin zone in the reduced zone scheme.

We will assume that the crystal has the zinc-blende structure and that
k � (2/a)(1, 1, 1), where a is the length of an edge of the unit cube in the
zinc-blende lattice. By applying the C3 symmetry operations of zinc-blende we
can show that all the eight points (2/a)(±1,±1,±1) in the Brillouin zone are
equivalent. Furthermore, from the definition of the primitive reciprocal lat-
tice vectors given in Sect. 2.2 all eight points differ from the zone center by
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Fig. 2.7. Schematic diagrams of the transformation of (a) the acoustic phonon and (b) the
zone-center optical phonon in diamond under inversion plus translation by (a/4)(1, 1, 1)
where a is the size of the unit cube of diamond

a primitive reciprocal lattice vector. Hence all eight points will map onto the
zone center in the reduced zone scheme. The group of the wave vector k �
(2/a)(1, 1, 1) is therefore Td. To simplify the notation we will represent the
electronic wave functions exp [i(kxx � kyy � kzz)] as {kxkykz}. The eight wave
functions {111}, {111}, {111}, {111}, {111}, {111}, {111} and {111} are degen-
erate but the degeneracy will be lifted by perturbations such as a nonzero
crystal potential. Our goal now is to form symmetrized linear combinations
of these eight wave functions with the aid of the character table of Td in
Table 2.3.

We note first that these eight wave functions form the basis functions of an
eight-dimensional representation. Obviously this representation is reducible.
Unlike the cases given in (a) and (b), there are no shortcuts in determining
the characters of this eight-dimensional representation. Since characters are
the sums of the diagonal elements, they can be deduced by determining the
number of wave functions unchanged by the symmetry operations. The char-
acters calculated in this way are given in Table 2.8.
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Table 2.8. Characters of the representations formed by the nearly free electron wave
functions with wave vectors equal to (2/a)(1, 1, 1) and (2/a)(2, 0, 0) in a zinc-blende
crystal

E xyz 8 6
3C2 xyz 0 2
6S4 xzy 0 0
6Û yxz 4 2
8C3 yzx 2 0

Class Transformation Characters

[111] [200]

Table 2.9. Symmetrized nearly free electron wave functions in a zinc-blende crystal with
wave vectors equal to (2/a)(±1,±1,±1)

°1 (1/
√

8)({111} � {111} � {111} � {111} � {111} � {111} � {111}
� {111}) � (

√
8) cos (2x/a) cos (2y/a) cos (2z/a)

°1 (
√

8) sin (2x/a) sin (2y/a) sin (2z/a)

°4 (
√

8){sin (2x/a) sin (2y/a) cos (2z/a);
sin (2x/a) cos (2y/a) sin (2z/a);
cos (2x/a) sin (2y/a) sin (2z/a)}

°4 (
√

8){sin (2x/a) cos (2y/a) cos (2z/a);
cos (2x/a) sin (2y/a) cos (2z/a);
cos (2x/a) cos (2y/a) sin (2z/a)}.

Representation Wave function

By using the orthogonality relations or the method of “inspection”, we
found from Table 2.3 (using Table 2.4 to convert to the Koster notation)
that the only combination of irreducible representations giving rise to the
set of characters in Table 2.8 is the direct sum 2°1 ⊕ 2°4. Thus the eight
{(±)1(±)1(±)1} free electron wave functions can be expressed as two wave
functions belonging to the one-dimensional °1 representation and two wave
functions belonging to the three-dimensional °4 representation. The proper
linear combinations of wave functions which transform according to these ir-
reducible representations can be obtained systematically by using projection
operators (see any one of the references on group theory for further details).
In many simple cases this can be done by inspection also. The proper linear
combinations of the [111] wave functions can be shown to be (see Problem
2.4) those in Table 2.9.

Similarly one can show that the six degenerate {(±)200}, {0(±)20} and
{00(±)2} wave functions form a six-dimensional representation whose charac-
ters are given in Table 2.8. Using these characters one can decompose this six-
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Table 2.10. Symmetrized nearly free electron wave functions in a zinc-blende crystal
with wave vectors equal to (2/a)(±2, 0, 0), (2/a)(0,±2, 0), and (2/a)(0, 0,±2)

°1 cos (4x/a) � cos (4y/a) � cos (4z/a)

°3 cos (4y/a) � cos (4z/a);
cos (4x/a) � (1/2)[cos (4y/a) � cos (4z/a)]

°4 sin (4x/a); sin (4y/a); sin (4z/a)

Representation Wave function

dimensional representation into the direct sum °1 ⊕ °3 ⊕ °4. The symmetrized
wave functions are given in Table 2.10, while the proof is left as an exercise
(Problem 2.4).

d) Selection Rules

In atomic physics one learns that optical transitions obey selection rules such
as: in an electric-dipole transition the orbital angular momentum can change
only by ±1. These selection rules result from restrictions imposed on matrix
elements of the electric-dipole operator [see (6.29,30)] by the rotational sym-
metry of the atomic potential. One may expect similar selection rules to result
from the symmetry of potentials in crystals. To see how such selection rules
can be derived, we will consider the following example.

Let p be the electron momentum operator and æ1 be a wave function in a
zinc-blende-type crystal with the point group Td. Since p is a vector its three
components px, py, and pz belong to the irreducible representation T2 (°15 or
°4 according to Table 2.4). Let us assume that æ1 is a triply degenerate wave
function belonging to T2 also. Operating with p on æ1 results in a set of nine
wave functions, which we will label æ3. These nine wave functions generate a
nine-dimensional reducible representation which can be reduced to the direct
sum T1 ⊕ T2 ⊕ E ⊕ A1 as shown in (2.16). Next we form the matrix element
M � 〈æ2|p|æ1〉� 〈æ2|æ3〉 between æ3 and another wave function æ2. Suppose
æ2 belongs to an irreducible representation B which is not one of the irre-
ducible representations in the direct sum T1 ⊕ T2 ⊕ E ⊕ A1 of the wave func-
tion æ3. From the orthogonality of the basis functions for different irreducible
representations one concludes that the matrix element M is zero. In general,
it can be proved that the matrix element between an operator p and two wave
functions æ1 and æ2 can differ from zero only when the direct product of the
representations of p and æ1 contains an irreducible representation of æ2. This
important group theoretical result is known as the matrix-element theorem.

When applied to atoms the matrix-element theorem leads to the familiar se-
lection rules for electric-dipole transitions. For instance, if æ1 and æ2 are atomic
wave functions they will have definite parities under inversion, and the parity
of their direct product is simply the product of their parities. The electric-dipole
operator has odd parity so its matrix element is zero between two states of the
same parity according to the matrix-element theorem. If æ1 and æ2 both have
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s symmetry then their direct product also has s symmetry. Since the dipole op-
erator has p-symmetry its matrix element between two s states is zero. On the
other hand if one of these two wave functions has p symmetry its direct product
will contain a component with p symmetry, and the electric-dipole transition will
be nonzero. Thus, application of the matrix-element theorem leads to selection
rules for optical transitions in systems with spherical symmetry.

Using the matrix-element theorem we can also obtain very general selec-
tion rules for optical transitions in zinc-blende-type and diamond-type crystals.
In Chap. 6 we will show that electric-dipole transitions in a crystal are deter-
mined by the matrix element of the electron momentum operator p. In a zinc-
blende-type crystal p belongs to the °4 irreducible representations. To derive
the selection rules for optical transitions involving zone-center wave functions
we need to know the direct product between °4 and all the irreducible repre-
sentations of Td. The results are summarized in Table 2.11.

From this table we can easily determine whether or not electric-dipole tran-
sitions between any two bands at the zone center of the zinc-blende crystal are
allowed. For example, dipole transitions from a °4 valence band to conduction
bands with °1, °3, °4, and °5 symmetries are all allowed. Using Table 2.11 one
can derive selection rules for optical excitation of phonons by photons in the
infrared (to be discussed further in Chap. 6). The ground state of the crystal
with no phonons should have °1 symmetry. In zinc-blende crystals only °4 opti-
cal phonons can be directly excited by an infrared photon via an electric-dipole
transition. Such phonons are said to be infrared-active. On the other hand the
°25′ optical phonon of the diamond structure is not infrared-active because of
the parity selection rule (Ge, Si, and diamond are highly transparent in the in-
frared!). The ionic momentum operator has symmetry °15 for the Oh group and
odd parity under the operation i′ of the diamond crystal. Hence electric-dipole
transitions can only connect states with opposite parity.

Selection rules for higher order optical processes, such as Raman scatter-
ing can also be obtained from Table 2.11. As will be shown in Chap. 7, Ra-
man scattering involves the excitation of a phonon via two optical transitions.
If both optical transitions are of the electric-dipole type in a zinc-blende crys-
tal, the excited phonon must belong to one of the irreducible representations
of the direct product °4 ⊗ °4 � °4 ⊕ °5 ⊕ °3 ⊕ °1. Phonons which can be ex-
cited optically in Raman scattering are said to be Raman-active. Thus the °4
optical phonon in the zinc-blende crystal is Raman-active in addition to being

Table 2.11. Direct products of the °4 representation with all the representations of Td

°4 ⊗ °1 °4

°4 ⊗ °2 °5

°4 ⊗ °3 °4 ⊕ °5

°4 ⊗ °4 °4 ⊕ °5 ⊕ °3 ⊕ °1

°4 ⊗ °5 °4 ⊕ °5 ⊕ °3 ⊕ °2

Direct product Direct sum
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infrared-active. Similarly, the symmetries of Raman-active phonons in crystals
with the Oh point group can be shown to be °25′ , °12, and °1 (see Chap. 7
for further details). Hence the °25′ optical phonon of the diamond structure,
while not infrared-active, is Raman-active. In crystals with inversion symmetry
(said to be centrosymmetric), an infrared-active phonon must be odd while
a Raman-active phonon must be even under inversion, therefore a phonon
cannot be both infrared-active and Raman-active in such crystals.

2.4 Empty Lattice or Nearly Free Electron Energy Bands

We now apply the group theoretical notations to the electron energy band
structure of the diamond- and zinc-blende-type semiconductors. Since the elec-
trons move in the presence of a crystal potential, their wave functions can
be symmetrized to reflect the crystal symmetry, i. e., written in a form such
that they belong to irreducible representations of the space group of the crys-
tal. However, in order to highlight the symmetry properties of the electron
wave function, we will assume that the crystal potential is vanishingly small.
In this empty lattice or nearly free electron model, the energy and wave func-
tions of the electron are those of a free particle as given by (2.18) and (2.17),
respectively. The electron energy band is simply a parabola when plotted in
the extended zone scheme. This parabola looks much more complicated when
replotted in the reduced zone scheme. It looks especially intimidating when
the wave functions are labeled according to the irreducible representations of
the point group of the crystal. Such complications have resulted from using
the crystal symmetry which was supposed to simplify the problem! The sim-
plification, however, occurs when we consider the band structure of electrons
in a non-empty lattice in the remaining sections of this chapter. In this section
we will use group theory to analyze the symmetry properties of nearly free
electron band structures in both zinc-blende- and diamond-type crystals.

2.4.1 Nearly Free Electron Band Structure in a Zinc-Blende Crystal

Figure 2.8 shows the energy band of a nearly free electron plotted in the re-
duced zone scheme for wave vectors along the [111] and [100] directions only.
To analyze this band diagram we will consider the symmetry and wave func-
tions at a few special high-symmetry points in reciprocal space.

k � (0, 0, 0)

As pointed out in Sect. 2.3.4, the group of the k vector at the ° point is al-
ways isomorphic to the point group of the lattice. Since the wave function is a
constant for k � 0, it has the symmetry °1.
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Fig. 2.8. Band structure of nearly free electrons in a zinc-blende-type crystal in the re-
duced zone scheme. The numbers in square brackets denote corresponding reciprocal lat-
tice vectors in the extended zone scheme in units of (2/a), a being the size of the unit
cube. Note: To conform to notations used in the literature, we will use � instead of ⊕ to
represent the direct sum of two representations in all figures

k � (b, b, b), b 
� (/a)

In the eight equivalent [111] directions the bands are labeled §, according to
the Brillouin zone notations in Fig. 2.2c. The wave functions for k 
� 0 are
classified according to the group of the wave vector k. The group of a wave
vector along the [111] direction inside the Brillouin zone is C3v and contains
six elements divided into three classes:

{E}: identity;
{C3, C�1

3 }: two three-fold rotations about the [111] direction;
{m1, m2, m3}: three reflections in the three equivalent (110) planes containing

the [111] axis.

The characters and basis functions for the irreducible representations of § are
summarized in Table 2.12.

The free-electron wave function given by exp [(i˙/a)(x � y � z)], where
0 � ˙ � 1, is invariant under all the symmetry operations of the group of §
so it belongs to the §1 representation. We can also obtain this symmetry of
the electron wave function by using the so-called compatibility relations. The
symmetry of the endpoints of an axis in the Brillouin zone is higher than or
equal to that of a point on the axis. Therefore the group of a point on an axis
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Table 2.12. Characters and basis functions of the irreducible representations of the group
of (C3v) in a zinc-blende-type crystal§

§1 1 1 1 1 or x � y � z
§2 1 1 �1 xy(x � y) � yz(y � z) � zx(z � x)

§3 2 �1 0 {(x � y); (z � [x � y])}

{E} {2C3} {3m} Basis functions

1
2

2
3

is either equal to or constitutes a subgroup of the group of the endpoints. In
the latter case, a representation belonging to the group of the endpoints of an
axis can be reduced to irreducible representations of the group of the axis. The
procedure for this reduction is the same as that described in Sect. 2.3.4. The
difference is that only symmetry operations common to both groups need be
considered now. When a representation of the group of an axis is contained in
a representation of one of the group’s endpoints, the two representations are
said to be compatible. For points lying on the [111] axis of a zinc-blende-type
crystal, the group of § is a subgroup of ° but is identical to the group of L.
From the character tables for ° and § it is clear that °1 is compatible with
§1 only. Thus when the band starts out at the zone center with symmetry °1,
the symmetry of the band along the [111] direction must be §1. This case illus-
trates a rather trivial application of the compatibility relations. Compatibility
relations provide very useful consistency checks on band-structure calculations.
Further applications of the compatibility relations can be found in Problem 2.6
at the end of this chapter.

k � (/a)(1, 1, 1)

In the zinc-blende structure the symmetry operations in the group of the L
point are identical to those of the § axis. So the §1 representation is compat-
ible with the L1 representation only. For free electrons the wave function is
doubly degenerate at (/a)(1, 1, 1) since (/a)(1, 1, 1) and (�/a)(1, 1, 1) differ
by (2/a)(1, 1, 1), a reciprocal lattice vector of the zinc-blende structure. Using
the compatibility relations one can show that the next higher energy band
along the § axis also has §1 symmetry.

k � (2/a)(1, 1, 1)

The point k � (2/a)(1, 1, 1) is equivalent to ° since it differs from ° by a
reciprocal lattice vector. As shown in Sect. 2.3.4, the eight degenerate wave
functions of the form exp [(i2/a)(±x ± y ± z)] can be symmetrized into
two wave functions with °1 symmetry and two sets of three wave functions
with °4 symmetry. The symmetries of the higher energy bands in the [111]
direction are given in Fig. 2.8. They can be deduced using Table 2.12 and
checked by the compatibility relations. The reader is urged to verify this as
an exercise.
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Table 2.13. Symmetry operations and classes of the group of (C2v) in the zinc-blende
structure

¢

{E} xyz
{C2

4} xyz
{md} xyz
{md} xzy

Class Symmetry operations

′

Table 2.14. Characters of the irreducible representations of the group of (C2v)¢

¢1 1 1 1 1
¢2 1 1 �1 �1
¢3 1 �1 1 �1
¢4 1 �1 �1 1

{E} {C2
4} {md} {md}′

k � (c, 0, 0), c 
� (2/a)

Wave vectors in the [100] and equivalent directions are denoted by ¢.
The group of ¢ (C2v) contains four elements divided into the four classes
listed in Table 2.13. The irreducible representations and characters of the
group of ¢ are summarized in Table 2.14. The symmetry of the wave func-
tion in the [100] direction is ¢1 since this is the only representation compat-
ible with °1. The ¢ axis ends at the X point on the surface of the Brillouin
zone.

k � (2/a)(1, 0, 0)

The group of X contains twice as many symmetry operations as the group
of ¢ since the wave vectors (2/a)(1, 0, 0) and (2/a)(�1, 0, 0) differ by the
reciprocal lattice vector (2/a)(2, 0, 0). The eight elements of the group of X
(D2d) are divided into five classes:

{E}: identity;
{C2

4(x)}: two-fold rotation about the x axis;
{2C2

4(y, z)}: two-fold rotations about the y and z axes;
{2S4}: two four-fold improper rotations about the x axis;
{2md}: two mirror reflections on the [011] and [011] planes.

The irreducible representations of the group of X and their characters are
given in Table 2.15. The wave functions at the X point with k � (2/a)(±1, 0, 0)
are doubly degenerate in the nearly-free electron model. From the compatibility
relations it can be found that these wave functions belong to either the X1 or
X3 representations.
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Table 2.15. Characters of the irreducible representations of the group of X (D2d) in the
zinc-blende structure

X1 1 1 1 1 1
X2 1 1 1 �1 �1
X3 1 1 �1 �1 1
X4 1 1 1 1 1
X5 2 �2 0 0 0

{E} {C2
4(x)} {2C2

4(y, z)} {2S4} {2md}

� �

k � (2/a)(0, 0, 2)

The points k � (2/a)(±2, 0, 0), (2/a)(0,±2, 0), and (2/a)(0, 0,±2) differ
from the zone center by reciprocal lattice vectors. As already shown in ex-
ample (c) in Sect. 2.3.4, the six degenerate wave functions

exp [±i4x/a]; exp [±i4y/a]; and exp [±i4z/a]

can be symmetrized to transform like the °1, °3, and °4 irreducible represen-
tations.

2.4.2 Nearly Free Electron Energy Bands in Diamond Crystals

Obviously, the band structure of a free electron is the same whether it is in
a zinc-blende or a diamond crystal. Therefore, in order to obtain the sym-
metrized wave functions specific to the diamond structure, we have to assume
first that the diamond crystal potential is nonzero and symmetrize the elec-
tron wave functions accordingly. Afterwards the crystal potential is made to
approach zero. The band structure of nearly free electrons in a diamond-type
crystal obtained in this way is shown in Fig. 2.9. It serves as an important
guide to the band structure of Si (shown in Fig. 2.10 for comparison) calcu-
lated by more sophisticated techniques to be discussed later in this chapter.

The symmetries of the bands in diamond are very similar to those of zinc-
blende because both crystals have a fcc lattice and tetrahedral symmetry. How-
ever, there are also important differences resulting from the existence of glide
planes in the diamond structure as discussed in Sect. 2.3.2. We pointed out in
that section that, if we choose the origin at one of the carbon atoms in dia-
mond, the crystal is invariant under all the symmetry operations of the point
group Td plus three “glide-like” operations: T(1/4, 1/4, 1/4)Ûx, T(1/4, 1/4, 1/4)Ûy,
and T(1/4, 1/4, 1/4)Ûz (for brevity, we will now denote these three operations
as TÛx, TÛy, and TÛz, respectively). However, the factor group of the space
group of diamond is isomorphic to the point group Oh. In symmetrizing the
electronic wave functions in the diamond structure, one has to consider the
effect of TÛx on the Bloch functions. In this subsection we shall pay special
attention to the electron wave functions at the points °, L, and X of the Bril-
louin zone of the diamond crystal.
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Fig. 2.9. Band structure of nearly free electrons for a diamond-type crystal in the reduced
zone scheme
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Fig. 2.10. Electronic band structure of Si calculated by the pseudopotential technique. The
solid and the dotted lines represent calculations with a nonlocal and a local pseudopoten-
tial, respectively. [Ref. 2.8, p. 81]
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k � (0, 0, 0)

From (2.8) the Bloch functions at the zone center can be written as u(r),
where u has the periodicity of the lattice. We define C as a set formed from
the group Td plus all the operations obtained by multiplying each element of
Td by TÛx. C defined this way is not a group because operations involving the
glide, such as (TÛx)2 � T(0, 1/2, 1/2) are not a member of C [for brevity, we
will denote the operation T(0, 1/2, 1/2) by Q]. Let us now generate a set {Cu}
consisting of 48 functions by applying the operations of C to u(r). For any two
symmetry operations, a and b of C we define the operation multiplication be-
tween the corresponding two elements au and bu in {Cu} as (au)(bu) � (ab)u.
The set of operations in {Cu}, defined by their effect on the function u, can
be easily shown to form a group. In particular, Qu(r) � u(r) because u(r)
has the translational symmetry of the crystal and hence Qu is now an element
of {Cu}. In this group, it is convenient to introduce the element i′u where
i′ � T(1/4, 1/4, 1/4)i was introduced in Sect. 2.3.4 (i is the inversion operation
with respect to the origin). As pointed out in Sect. 2.3.4, the diamond crystal
is not invariant under inversion with respect to one of the carbon atoms; it is
however invariant under the combined operation of inversion followed by the
translation T(1/4, 1/4, 1/4). One can show that the 48 operations in {Cu} are
isomorphic to the Oh group. The character table of the group of wave func-
tions of ° is given in Table 2.16. It can be compared with the character table
for the Oh group (Table 2.5). Note that the classes are listed in different orders
in Tables 2.5 and 2.16. In Table 2.16 the five classes of symmetry operations in
the point group Td are listed first. The remaining five classes are obtained by
multiplying the Td operations by i′.

The effects of i′ on the symmetry of wave functions at different high-
symmetry points of the diamond crystal are not the same. For example, points
along § are not invariant under i′, so their symmetries are the same as in
the zinc-blende crystal. On the other hand, the L point is invariant under i′,
therefore the wave functions at L have definite parity under i′.

Table 2.16. Characters of the irreducible representations of the group of ° in the diamond
structure. The notation is that of Koster (BSW notation in parentheses)

°�
1 (°1) 1 1 1 1 1 1 1 1 1 1

°�
2 (°2) 1 1 �1 �1 1 1 1 �1 �1 1

°�
3 (°12) 2 2 0 0 �1 2 2 0 0 �1

°�
4 (°15′ ) 3 �1 1 �1 0 3 �1 1 �1 0

°�
5 (°25′ ) 3 �1 �1 1 0 3 �1 �1 1 0

°�
1 (° ′1) 1 1 �1 �1 1 �1 �1 1 1 �1

°�
2 (° ′2) 1 1 1 1 1 �1 �1 �1 �1 �1

°�
3 (° ′12 ) 2 2 0 0 �1 �2 �2 0 0 1

°�
4 (°15) 3 �1 �1 1 0 �3 1 1 �1 0

°�
5 (°25) 3 �1 1 �1 0 �3 1 �1 1 0

{E} {C2} {S4} {Ûd} {C3} {i′} {i′C2} {i′S4} {i′Ûd} {i′C3}
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k � (/a)(1, 1, 1)

The group of the L point in the diamond structure is isomorphic to the group
of L in the fcc Bravais lattice (that is, a crystal formed by putting only one
atom at each lattice point of a fcc lattice). The characters and basis functions
for the irreducible representations in the group of L (D3d) are shown in Table
2.17.

k � (2/a)(1, 1, 1)

It has been pointed out already in the case of the zinc-blende crystal that
k � (2/a)(1, 1, 1) is equivalent to °. This is, of course, also true for the dia-
mond crystal. From the eight symmetrized wave functions for the zinc-blende
crystal given in Table 2.9 it can be shown readily that, for the diamond crys-
tal, the eight equivalent (111) wave functions are symmetrized to transform
according to the irreducible representations in Table 2.18.

The symmetry of the wave functions in the diamond structure along the
[001] directions are quite different from those of zinc-blende. We will first con-
sider the X point since it presents an especially interesting case.

Table 2.17. Characters and basis functions for the irreducible representations of the group
of L in the diamond structure

L1 1 1 1 1 1 1 1
L2 1 1 �1 1 1 1 xy(x2 � y2) � yz(y2 � z2) � zx(z2 � x2)
L3 2 �1 0 2 �1 0 {z2 � 1/2(x2 � y2); (x2 � y2)}
L ′1 1 1 1 �1 �1 �1 (x � y)(y � z)(z � x)
L ′2 1 1 �1 �1 �1

�

1 x � y � z
L ′3 2 �1 0 �2 1 0 {(x � z); (y � 1/2[x � z])}

{E} {2C3} {3C2} {i′} {2i′C3} {3i′C2} Basis functions

Table 2.18. Symmetrized nearly free electron wave functions in the diamond crystal with

coincide with an atomic site.
wave vectors equal to . The origin of coordinates has been taken to(2/a)(±1, ±1, ±1)

°�
1 1 cos (2(° x/a))

2'(° )

25'(° )

15(° )

cos (2y/a) cos (2z/a)
�sin (2x/a) sin (2y/a) sin (2z/a)

°2 cos (2x/a) cos (2y/a) cos (2z/a)
�sin (2x/a) sin (2y/a) sin (2z/a)

°�
5 sin (2x/a) cos (2y/a) cos (2z/a)

�cos (2x/a) sin (2y/a) sin (2z/a); plus two cyclic permutations

°�
4 sin (2x/a) cos (2y/a) cos (2z /a)

�cos (2x/a) sin (2y/a) sin (2z/a); plus two cyclic permutations

Representation Wave function

�
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k � (2/a)(0, 0, 1)

A very special property of the wave functions at the X point of the diamond
structure is that all relevant irreducible representations of the group of the X
point are doubly degenerate, but they do not have definite parity under i′.
To understand this peculiar property, let us first enumerate all the symmetry
operations of the group of the X point. We will start with the eight symmetry
operations of the group of the point (2/a)(0, 0, 1) in the Brillouin zone of the
zinc-blende structure:

{E, C2
4(z), 2C2

4(x, y), 2S4, 2md}.

Next we will consider the combined effect of these operations and the opera-
tion TÛz on a wave function at the X point:

ˇ � exp (i2z/a)u(r). (2.19)

At first we may expect that we can construct a group for the X point by taking
the above eight elements and adding to them their products with the operation
TÛz. This should result in a set of sixteen elements. It turns out that these
sixteen elements do not form a group because translation and rotation do not
necessarily commute. For example, consider the combined effect of C2

4(x)TÛz

on a vector (x, y, z):

(x, y, z)
Ûz→ (x, y, z)

T(1/4,1/4,1/4)→ (x � 1/4a, y � 1/4a, �z � 1/4a)

C2
4(x)→ (x � 1/4a, �y � 1/4a, z � 1/4a).

If we interchange the order of C2
4(x) and TÛz we find that

[TÛzC2
4(x)](x, y, z) � (x � 1/4a, �y � 1/4a, z � 1/4a), (2.20a)

so the operation C2
4 does not commute with TÛz. In particular,

[TÛzC2
4(x)]ˇ � T(0, 1/2, 1/2)[C2

4]TÛzˇ � Q[C2
4]TÛzˇ. (2.20b)

In order that the set {Eˇ, C2
4(z)ˇ, . . . , 2mdˇ, TÛzˇ, . . . , TÛz2mdˇ} forms a

group, the operation Q has to be included also. Taking the 16 operations men-
tioned above and their products with Q, a group with 32 elements is obtained.
This group can be divided into 14 classes:

C1 � {E}
C2 � {C2

4(x), C2
4(y), QC2

4(x), QC2
4(y)}

C3 � {C2
4(z)}

C4 � {QTÛzÛx, TÛzÛy}
C5 � {TÛzS4, TÛzS�1

4 , QTÛzS4, QTÛzS�1
4 }

C6 � {TÛz, QTÛz}
C7 � {TÛzC2

4(x), TÛzC2
4(y), QTÛzC2

4(x), QTÛzC2
4(y)}

C8 � {TÛzC2
4(z), QTÛzC2

4(z)}
C9 � {Ûx, Ûy}
C10 � {S4, S�1

4 , QS4, QS�1
4 }

C11 � {QÛx, QÛy}
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C12 � {QTÛzÛy, TÛzÛx}
C13 � {QC2

4(z)}
C14 � {Q}

The characters of the corresponding 14 irreducible representations are
given in Table 2.19. However, not all of these representations are acceptable
for wave functions at the X point of the Brillouin zone in the diamond crys-
tal. Since (a/2)(0, 1, 1) is a lattice vector of the fcc lattice the operation Q will
leave the periodic part of the X-point wave function invariant. The sinusoidal
envelope exp (i2z/a) of the Bloch function changes sign under the transla-
tion Q, so overall the X-point wave functions must be odd under Q. Of the
14 irreducible representations only four are odd under the translation Q (or
C14). These are labeled X1, X2, X3, and X4 in Table 2.19. The interesting point
is that these four representations are all doubly degenerate. This degeneracy
results from the glide reflection and the fact that the two atoms in the unit
cell of the diamond structure are identical. The degeneracy in the X1 and X2
states is lifted in the zinc-blende structure, where the two atoms in the primi-
tive cell are different (see Problem 2.8). Some examples of symmetrized wave
functions at the X point are

k � (2/a)(0, 0, 1):
X1 : {cos (2z/a); sin (2z/a)}

k � (2/a)(±1,±1, 0):
X1 : {cos (2x/a) cos (2y/a); sin (2x/a)sin (2y/a)}
X4 : {sin (2x/a) cos (2y/a); cos (2x/a)sin (2y/a)}

k � (Í/a)(0, 0, 1) where 0 � Í � 2.

Table 2.19. Irreducible representations and characters of the group of symmetry opera-
tions on the wave functions at the X point (2/a)(0, 0, 1) of the Brillouin zone of the
diamond structure [Ref. 2.7, p. 162]

C1 4C2 C3 2C4 4C5 2C6 4C7 2C8 2C9 4C10 2C11 2C12 C13 C14

M1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M2 1 1 1 �1 �1 1 1 1 �1 �1 �1 �1 1 1
M3 1 �1 1 �1 1 1 �1 1 �1 1 �1 �1 1 1
M4 1 �1 1 1 �1 1 �1 1 1 �1 1 1 1 1
M5 2 0 �2 0 0 2 0 �2 0 0 0 0 �2 2
M′

1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 1 1 1
M′

2 1 1 1 �1 �1 �1 �1 �1 1 1 1 �1 1 1
M′

3 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 1
M′

4 1 �1 1 1 �1 �1 1 �1 �1 1 �1 1 1 1
M′

5 2 0 �2 0 0 �2 0 2 0 0 0 0 �2 2
X1 2 0 2 0 0 0 0 0 2 0 �2 0 �2 �2
X2 2 0 2 0 0 0 0 0 �2 0 2 0 �2 �2
X3 2 0 �2 2 0 0 0 0 0 0 0 �2 2 �2
X4 2 0 �2 �2 0 0 0 0 0 0 0 2a 2 �2

a An error in [2.7] has been corrected.



58 2. Electronic Band Structures

We will denote the Bloch function along the ¢ direction as „ � exp (iÍz/a)u(r)
as in (2.19). It is invariant under the following space group operations of the
diamond structure:

{E, Ûx, C2
x(z), Ûy, TÛzC2

4(x), TÛzS4, TÛzC2
4(y), TÛzS�1

4 },

which can be divided into 5 classes:

C1 � {E}
C2 � {C2

4(z)}
C3 � {TÛzS4, TÛzS�1

4 }
C4 � {Ûx, Ûy}
C5 � {TÛzC2

4(x), TÛzC2
4(y)}

The representations generated by these operations acting on „ are isomor-
phic with the group of ¢ for a cubic lattice. The corresponding characters are
shown in Table 2.20.

Table 2.20. Irreducible representations and characters of the group of symmetry opera-
tions on the wave functions at the ¢ point of the Brillouin zone of the diamond structure
[Ref. 2.7, p. 158]

¢1 1 1 1 1 1
¢2 1 1 �1 1 �1
¢ ′2 1 1 �1 �1 1
¢ ′1 1 1 1 �1 �1
¢5 2 �2 0 0 0

C1 C2 2C3 2C4 2C5

2.5 Band Structure Calculations by Pseudopotential Methods

In Fig. 2.10 we have shown the electronic band structure of Si. It has been
calculated with a sophisticated method known as the pseudopotential tech-
nique, which will be discussed in this section. Comparing these results with
the nearly free electron band structure in Fig. 2.9 we notice that there are
many similarities between the two. The nearly free electron band structure is
basically a parabola redrawn in the reduced zone scheme. In the other case
the band structure is computed by large-scale numerical calculations using su-
percomputers. The question is now: why do the two band structures, obtained
by completely different methods, look so similar qualitatively? The answer to
this question lies in the concept of pseudopotentials.

The electronic configuration of a Si atom is 1s22s22p63s23p2. When Si
atoms form a crystal we can divide their electrons into core electrons and va-
lence electrons as pointed out in Sect. 2.1. In crystalline Si the 1s, 2s, and 2p
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orbitals are completely occupied and form the core shells. The outer 3s and
3p shells are only partially filled. Electrons in these shells are called valence
electrons because they are involved in bonding with neighboring Si atoms.
The crystal structure of Si at ambient pressure is similar to that of diamond.
The tetrahedral arrangement of bonds between a Si atom and its four nearest
neighbors can be understood if one of the electrons in the 3s shell is “pro-
moted” to the 3p shell so that the four valence electrons form hybridized
sp3 orbitals. This sp3 hybridization is well known from the bonding of car-
bon atoms and is responsible for the tetrahedral structure found in many or-
ganic molecules. But carbon atoms are more versatile than silicon atoms in
that they can form double and triple bonds also. As a result, carbon atoms are
crucial to all known forms of life while silicon atoms are important only to the
highest form of life, namely human beings. It is these valence electrons in the
outermost shells of a Si atom that are nearly free. These electrons are not af-
fected by the full nuclear charge as a result of screening of the nucleus by the
filled core shells. In the core region the valence electron wave functions must
be orthogonal to those of the core. Thus the true wave functions may have
strong spatial oscillations near the core, which make it difficult to solve the
wave equation. One way to overcome this difficulty is to divide the wave func-
tions into a smooth part (the pseudo-wave function) and an oscillatory part.
The kinetic energy from the latter provides an “effective repulsion” for the
valence electrons near the core (alternatively one can regard the valence elec-
trons as being expelled from the core due to Pauli’s exclusion principle). Thus
we can approximate the strong true potential by a weaker “effective poten-
tial” or pseudopotential for the valence electrons. Since the “smooth” parts
of the valence electron wave functions have little weight in the core region,
they are not very sensitive to the shape of the pseudopotential there. Figure
2.11 shows qualitatively how the pseudopotential in Si varies with distance
r from the nucleus. At large values of r the pseudopotential approaches the
unscreened Coulomb potential of the Si4� ion. This concept of replacing the
true potential with a pseudopotential can be justified mathematically. It can

V(r)

~ 1/2 -Bond length

Core
region

Ion potential ~ –1/r

r

Fig. 2.11. Schematic plot of the atomic
pseudopotential of Si in real space [Ref. 2.8,
p. 17]. The solid curve in which V(r) → 0 in
the core region is said to be a “soft core”
pseudopotential. The broken curve in which
V(r) → constant is a “hard core” pseudopo-
tential



60 2. Electronic Band Structures

be shown to reproduce correctly both the conduction and valence band states
while eliminating the cumbersome, and in many cases irrelevant, core states
[Ref. 2.8, p. 16].

Using the pseudopotential concept, the one-electron Schrödinger equation
(2.4) can be replaced by the pseudo-wave-equation

[
p2

2m
� V(ri)

]
„k(ri) � Ek„k(ri), (2.21)

where „ is the pseudo-wave-function. This function is a good approximation
to the true wave function outside the core region and therefore can be used
to calculate the physical properties of the semiconductors which are dependent
on the valence and conduction electrons only. Since pseudopotentials are weak
perturbations on the free-electron band structure, a good starting point for
diagonalizing (2.21) is to expand „k as a sum of plane waves:

„k �
∑

g

ag|k � g〉, (2.22)

where the vectors g are the reciprocal lattice vectors and |k 〉 represents a
plane wave with wave vector k. The coefficients ag and the eigenvalues Ek
can be determined by solving the secular equation

det || [(�2k2/2m) � Ek]‰k, k�g � 〈k |V(r) |k � g〉 ||� 0, (2.23)

The matrix elements of the pseudopotential V(r) are given by

〈k |V(r) |k � g〉�

[
1
N

∑
R

exp (�ig · R)

]
1
ø

∫
ø

V(r)exp [�ig · r]dr, (2.24)

where R is a direct lattice vector and ø the volume of a primitive cell. As a
result of summation over all the lattice vectors inside the bracket, the pseu-
dopotential matrix element is zero unless g is a reciprocal lattice vector. In
other words, the matrix elements of the pseudopotential are determined by
Fourier components of the pseudopotential (Vg) defined by

Vg �
1
ø

∫
ø

V(r)exp [�ig · r]dr, (2.25)

where g is a reciprocal lattice vector.
If there is only one atom per primitive cell these Fourier components of

the pseudopotential are known as the pseudopotential form factors. When
there are several different atoms in the primitive cell, it is convenient to de-
fine for each kind of atom a pseudopotential form factor and a structure fac-
tor which depends only on the positions of one particular kind of atom in the
primitive cell. For example, let there be two kinds of atoms · and ‚ in the
crystal and let their positions inside the primitive cell be denoted by r·i and
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r‚i. The structure factor Sg· of atom · is defined as

Sg· �
1

N·

∑
i

exp (�ig · r·i), (2.26)

where N· is the number of · atoms in the primitive cell. The structure factor
of atom ‚ is defined similarly. The pseudopotential form factor Vg· for atom
· can be defined as in (2.25) except that V is now the potential of one · atom
and the integration is performed over ø·, which is the volume corresponding
to one · atom. The pseudopotential V(r) can be expressed in terms of the
structure and form factors by

V(r) �
∑

g

(Vg·Sg· � Vg‚Sg‚) exp (ig · r). (2.27)

From (2.24) we conclude that the pseudopotential mixes the free-electron
states whose k’s differ by a reciprocal lattice vector. If these states are de-
generate, the degeneracy may be split by the pseudopotential provided the
corresponding form factor is nonzero. For example, consider the free-electron
states with k � (2/a)(±1,±1,±1) at the ° point in the diamond structure.
The k’s of these eight-fold degenerate states differ by reciprocal lattice vec-
tors (2/a)(2, 0, 0), (2/a)(2, 2, 0), and (2/a)(2, 2, 2). These eight states are de-
generate when the electron is free. With the introduction of the pseudopo-
tential, they become coupled and their degeneracy is partly lifted, producing
energy gaps (compare Figs. 2.9 and 2.10). When an energy gap opens up at
the Fermi level (highest occupied energy level) a semiconductor is obtained.
This opening of energy gaps in the nearly-free-electron band structure by the
pseudopotential form factors can be explained by Bragg reflection of the free-
electron plane waves by the crystal potential with the formation of standing
waves. When the pseudopotential form factors are small, their effect on the
band structure is weak so the actual band structure is not too different from
the free-electron band structure. This is the reason why the nearly free elec-
tron bands drawn in the reduced zone scheme are a good starting point for
understanding the band structure of most semiconductors.

2.5.1 Pseudopotential Form Factors
in Zinc-Blende- and Diamond-Type Semiconductors

The main reason why pseudopotentials are so useful is because only a small
number of these form factors are sufficient for calculating a band structure.
In semiconductors with the diamond structure, such as Si and Ge, just three
pseudopotential form factors are sufficient. In semiconductors with the zinc-
blende structure the number of required pseudopotential form factors doubles
to six. To show this we first note that there are two atoms a and b in the
unit cell. We will denote the atomic pseudopotentials of these two atoms by
Va(r � ra) and Vb(r � rb), where ra and rb are the positions of the two atoms
in the unit cell. Substituting these potentials into (2.25) we obtain the Fourier
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components of the crystal pseudopotential

Vg �
1
ø

∫
[Va(r � ra) � Vb(r � rb)] exp [�ig · r]dr (2.28)

�
1
ø

∫
[Va(r) exp (�ig · ra) � Vb(r) exp (�ig · rb)]

× exp [�ig · r]dr. (2.29)

Without loss of generality we can take the midpoint between the two
atoms in the unit cell as the origin, so that ra � (a/8)(1, 1, 1) � s and rb �
(�a/8)(1, 1, 1) � �s. We can now write

Va(r) exp (�ig · ra) � Vb(r) exp (�ig · rb) � (Va � Vb) cos (g · s)

� i(Va � Vb) sin (g · s). (2.30)

Next we define the symmetric and antisymmetric components of the pseudo-
potential form factor by

Vs
g �

1
ø

∫
(Va � Vb) exp (�ig · r)dr (2.31)

and

Va
g �

1
ø

∫
(Va � Vb) exp (�ig · r)dr. (2.32)

Substituting the results in (2.30–32) back into (2.29) we arrive at

Vg � Vs
g cos (g · s) � iVa

g sin (g · s). (2.33)

By symmetrizing the pseudopotential form factors in this way, it is clear
that the antisymmetric form factors Va

g vanish in the diamond structure. The
factor cos (g · s) is just the structure factor of diamond defined in (2.26). In
the III–V semiconductor, where the difference in the potentials of the anion
and cation is small, Va

g is expected to be smaller than Vs
g and furthermore Vs

g
should be almost the same as in their neighboring group–IV semiconductors.
For example, consider the pseudopotential form factors in Ge and the III–V
semiconductor GaAs formed from its neighbors in the periodic table. In the
diamond and zinc-blende structures, the reciprocal lattice vectors in order of
increasing magnitude are (in units of 2/a):

g0 � (0, 0, 0);
g3 � (1, 1, 1), (1, �1, 1), . . . , (�1, �1, �1);
g4 � (2, 0, 0), (�2, 0, 0), . . . , ( 0, 0, �2);
g8 � (2, 2, 0), (2, �2, 0), . . . , ( 0, �2, �2);
g11 � (3, 1, 1), (�3, 1, 1), . . . , (�3, �1, �1).

We can neglect pseudopotential form factors with g2 � 11(2/a)2 because typ-
ically Vg decreases as g�2 for large g. Figure 2.12 shows a schematic plot of
a pseudopotential as a function of the magnitude of g (g is assumed to be
spherically symmetrical as in the case of a free atom).
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V(q)

~(1/2 Bond length)–1

V(r) ~ ∫ V(q) eiqrdq

~-1
   q2

V(q = g) for typical g's
–2/3 EF

Screened ion limit
for metals

q

Fig. 2.12. Schematic plot of
a pseudopotential form factor
in reciprocal space [Ref. 2.8,
p. 21]

The pseudopotential form factor V0 corresponding to g0 is a constant po-
tential, which merely shifts the entire energy scale: it can therefore be set
equal to zero or any other convenient value (see Fig. 2.12). The pseudopo-
tential form factors for all the equivalent reciprocal lattice vectors with the
form (±1,±1,±1) and magnitude 3(2/a) are equal by symmetry and will be
denoted by V3. The structure factor corresponding to g4 is zero because
cos (g · s) � 0 for g � (2/a)(2, 0, 0). Thus we conclude that there are only three
important pseudopotential form factors for Ge: Vs

3, Vs
8 and Vs

11. In GaAs,
Va

8 vanishes because sin (g · s) � 0, so only six pseudopotential form fac-
tors are required: Vs

3, Vs
8, Vs

11, Va
3 , Va

4 , and Va
11. The pseudopotential form

factors of Ge, GaAs, and a few other semiconductors are listed in Table
2.21. One should keep in mind that the sign of the antisymmetric form fac-
tors depends on whether the anion or cation is designated as atom a. The
sign of the antisymmetric form factors in Table 2.21 are all positive because
the cation has been chosen to be atom a and the anion (which has a more
negative atomic pseudopotential) to be atom b. Note also that the magni-
tude of the form factor Vs

3 is the largest and furthermore it is negative in
sign, as shown schematically in Fig. 2.12. In the III–V and II–VI compounds,
Vs

3 is comparable to the corresponding Vs
3 in the group-IV semiconductors

Si �0.211 0.04 0.08 0 0 0
Ge �0.269 0.038 0.035 0 0 0
GaAs �0.252 0 0.08 0.068 0.066 0.012
GaP �0.249 0.017 0.083 0.081 0.055 0.003
InAs �0.27 0.02 0.041 0.078 0.038 0.036
InSb �0.25 0.01 0.044 0.049 0.038 0.01
ZnSe �0.23 0.01 0.06 0.18 0.12 0.03
CdTe �0.245 �0.015 0.073 0.089 0.084 0.006

V s
3 V s

8 V s
11 V a

3 V a
4 V a

11

i

Table 2.21. Pseudopotential form factors of several group-IV, III–V and II–VI semicon-
ductors (in units of Rydbergs = 13.6 eV) [2.9,10]. Note that the sign of V a depends on the
positions chosen for the anion and the cation (see text).
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and always larger than Va
3 in magnitude. Nevertheless, as the ionicity increases

in going from the III–V semiconductors to the II–VI semiconductors, the anti-
symmetric pseudopotential form factors become larger. Some band structures
of diamond- and zinc-blende-type semiconductors calculated by the pseudopo-
tential method are shown in Figs. 2.13–15. These band structure calculations
include the effect of spin–orbit coupling, which will be discussed in Sect. 2.6.
As a result of this coupling, the irreducible representations of the electron
wave functions must include the effects of symmetry operations on the spin
wave function. (For example, a rotation by 2 will change the sign of the
wave function of a spin-1/2 particle). The notations used in Figs. 2.13–15, in-
cluding this feature, are known as the double group notations and will be dis-
cussed in Sect. 2.6.

The effect of ionicity on the band structures of the compound semicon-
ductors can be seen by comparing the band structure of Ge with those of
GaAs and ZnSe as shown in Figs. 2.13–15. Some of the differences in the three
band structures result from spin–orbit coupling. Otherwise most of these dif-
ferences can be explained by the increase in the antisymmetric components of
the pseudopotential form factors as the ionicity increases along the sequence
Ge, GaAs, ZnSe. One consequence of this increase in ionicity is that the en-
ergy gap between the top of the valence band and the bottom of the conduc-
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Fig. 2.13. Electronic band structure of Ge calculated by the pseudopotential technique.
The energy at the top of the filled valence bands has been taken to be zero. Note that,
unlike in Fig. 2.10, the double group symmetry notation is used [Ref. 2.8, p. 92]
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tion band at ° increases monotonically in going from Ge to ZnSe. Another
consequence is that some of the doubly degenerate states in Ge at the X point
of the Brillouin zone are split in the III–V and II–VI compounds, as pointed
out in Sect. 2.4.2. For example, the lowest energy X1 conduction band state in
Ge is split into two spin doublets of X6 and X7 symmetry (X1 and X3 without
spin–orbit coupling) in GaAs and ZnSe. The explicit dependence of this split-
ting on the antisymmetric pseudopotential form factors is calculated in Prob-
lem 2.8.

2.5.2 Empirical and Self-Consistent Pseudopotential Methods

There are two approaches to calculating pseudopotential form factors. Since
the number of relevant pseudopotential form factors is small, they can be de-
termined by fitting a small number of experimental data, such as the position
of peaks in optical reflectivity spectra (Chap. 6) or features in the photoelec-
tron spectra (Chap. 8). This approach is known as the Empirical Pseudopoten-
tial Method (EPM). The flow diagram for calculating the band structure with
the EPM is as follows:

Vg
↓

V(r) �
∑

g

Vg exp (�ig · r)

↓
H � (p2/2m) � V(r)
Solve H„k(r) � Ek„k(r) to obtain „k(r) and Ek

↓
Calculate reflectivity, density of states, etc., and compare with
experiments

↓
Alter Vg if agreement between theory and experiment is not
satisfactory.

The disadvantage of the EPM is that it requires experimental inputs. How-
ever, this is not a major disadvantage since atomic pseudopotential form fac-
tors are often “transferable” in the sense that once they are determined in
one compound they can be used (sometimes after suitable interpolation) in
other compounds containing the same atom. For example, the atomic pseu-
dopotential form factors for Ga determined empirically from GaAs can be
used to calculate the band structure of other Ga compounds such as GaSb
and GaP. With the availability of high-speed computers, however, it is pos-
sible to determine the pseudopotential form factors from first principles with-
out any experimental input. These first-principles pseudopotential methods are
known as self-consistent or ab initio pseudopotential methods. These meth-
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ods use atomic pseudopotentials and a model for the crystal structure (from
which an ionic potential Vion can be constructed) as the starting point of the
calculation. After the wave functions have been obtained the contribution of
the valence electrons to the potential is calculated. It is then used to evaluate
the total one-electron potential, which is compared with the starting potential.
Self-consistency is achieved when the calculated one-electron potential agrees
with the starting potential. The flow diagram for such a calculation is shown
below. The exchange and correlation term Vxc, which takes into account
the many-body effects, is usually calculated with approximations such as the
Local Density Approximation (LDA)2. In this approximation, Vxc is assumed
to be a function of the local charge density only. The LDA gives good re-
sults for the ground state properties such as the cohesive energies and charge
density of the valence electrons. However, it gives poor results for the exci-
tation energies. For instance, it typically underestimates the fundamental en-
ergy gap by about 1 eV. Thus it predicts semiconductors like Ge to be semi-
metals. The band structures shown in Figs. 2.10 and 2.13–15 have been calcu-
lated with the EPM since this method gives better overall agreement with ex-
periments. This shortcoming of the LDA can be overcome by many-body tech-
niques such as the quasiparticle approach [2.13].

Choose V(r)
↓

Solve (H � V)„ � E„
↓

Calculate charge density Ú � „∗„
↓

Solve ∇2VHartree � 4Ú
↓

Calculate Vxc � f [Ú(r)]
↓

Vsc � VHartree � Vxc

↓
Model structure Vion → V � Vsc � Vion

4
1
Â0

(    )

In recent years the ab initio pseudopotential method has been refined so as
to be able to handle semicore electrons such as the 3d electrons of the copper
halides. The pseudopotentials used are very smooth near the core (ultrasoft
pseudopotentials) and reduce the number of plane waves required for the ex-
pansion of the wavefunctions to converge. The method is particularly useful
for CuCl and diamond [2.14].

2 For his development of the local density functional method of calculating electronic
structures W. Kohn was awarded the Nobel prize for Chemistry in 1998 [2.11, 12].
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2.6 The k·p Method of Band-Structure Calculations

The pseudopotential method is not the only method of band structure cal-
culation which requires a small number of input parameters obtainable from
experimental results. In the empirical pseudopotential method the inputs are
usually energy gaps. In optical experiments one typically determines both en-
ergy gaps and oscillator strengths of the transitions. Thus it can be an advan-
tage if the optical matrix elements can also be used as inputs in the band struc-
ture calculation. In the k·p method the band structure over the entire Brillouin
zone can be extrapolated from the zone center energy gaps and optical ma-
trix elements. The k · p method is, therefore, particularly convenient for inter-
preting optical spectra. In addition, using this method one can obtain analytic
expressions for band dispersion and effective masses around high-symmetry
points.

The k · p method can be derived from the one-electron Schrödinger equa-
tion given in (2.4). Using the Bloch theorem the solutions of (2.4) are ex-
pressed, in the reduced zone scheme, as

ºnk � exp (ik · r)unk(r), (2.34)

where n is the band index, k lies within the first Brillouin zone, and unk has
the periodicity of the lattice. When ºnk is substituted into (2.4) we obtain an
equation in unk of the form3

(
p2

2m
�

�k · p
m

�
�2k2

2m
� V

)
unk � Enkunk. (2.35)

At k0 � (0, 0, 0), (2.35) reduces to(
p2

2m
� V

)
un0 � En0un0 (n � 1, 2, 3, . . .). (2.36)

Similar equations can also be obtained for k equal to any point k0. Equa-
tion (2.36) is much easier to solve than (2.4) since the functions un0 are pe-
riodic. The solutions of (2.36) form a complete and orthonormal set of basis
functions. Once En0 and un0 are known, we can treat the terms �k · p/m and
�2k2/(2m) as perturbations in (2.35) using either degenerate or nondegenerate
perturbation theory. This method for calculating the band dispersion is known
as the k · p method. Since the perturbation terms are proportional to k, the
method works best for small values of k [2.15]. In general, the method can be
applied to calculate the band dispersion near any point k0 by expanding (2.35)
around k0 provided the wave functions (or the matrix elements of p between
these wave functions) and the energies at k0 are known. Furthermore, by us-
ing a sufficiently large number of un0 to approximate a complete set of basis

3 Equation (2.35) is rigorously valid only if V is a local potential, i.e., it depends only on
one spatial coordinate r. This is not strictly true in the case of pseudopotential [2.8]
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functions, (2.35) can be diagonalized with the help of computers to calculate
the band structure over the entire Brillouin zone [2.16]. Only a limited num-
ber of energy gaps and matrix elements of p determined experimentally are
used as input in the calculation.

As examples of application of the k · p method we will derive the band
dispersion and effective mass for a nondegenerate band and for a three-fold
degenerate (or nearly degenerate) p-like band. The nondegenerate band case
is applicable to the conduction band minimum in direct-bandgap semiconduc-
tors with the zinc-blende and wurtzite structures (examples of the latter semi-
conductor are CdS and CdSe). The nearly degenerate band is a model for the
top valence bands in many semiconductors with the diamond, zinc-blende, or
wurtzite structures.

2.6.1 Effective Mass of a Nondegenerate Band Using the k·p Method

Let us assume that the band structure has an extremum at the energy En0
and the band is nondegenerate at this energy. Using standard nondegenerate
perturbation theory, the eigenfunctions unk and eigenvalues Enk at a neighbor-
ing point k can be expanded to second order in k in terms of the unperturbed
wave functions un0 and energies En0 by treating the terms involving k in (2.35)
as perturbations.

unk � un0 �
�

m

∑
n′ 
�n

〈un0 |k · p |un′0〉
En0 � En′0

un′0 (2.37)

and

Enk � En0 �
�2k2

2m
�

�2

m2

∑
n′ 
�n

|〈un0 |k · p |un′0〉|2
En0 � En′0

. (2.38)

The linear terms in k vanish because En0 has been assumed to be an extremum.
It is conventional to express the energy Enk, for small values of k, as

Enk � En0 �
�2k2

2m∗ , (2.39)

where m∗ is defined as the effective mass of the band. Comparing (2.38) and
(2.39) we obtain an expression for this effective mass:

1
m∗ �

1
m

�
2

m2k2

∑
n′ 
�n

|〈un0 |k · p |un′0〉|2
En0 � En′0

. (2.40)

Formula (2.40) can be used to calculate the effective mass of a nondengener-
ate band. Also it shows that an electron in a solid has a mass different from
that of a free electron because of coupling between electronic states in differ-
ent bands via the k · p term. The effect of neighboring bands on the effective
mass of a band depends on two factors.
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• A wave function un′0 can couple to un0 only if the matrix element
〈un′0 |p |un0〉 is nonzero. In Sect 2.3.4 we pointed out that, using the matrix
element theorem and group theory, it is possible to enumerate all the sym-
metries un′0 can have. For example, p has °4 symmetry in the zinc-blende
structure. If the conduction band has °1 symmetry, as in GaAs, its effective
mass will be determined only by coupling with bands having °4 symmetry.
On the other hand a valence band with °4 symmetry can be coupled via p
to bands with °1, °3, °4, and °5 symmetries.

• The energy separation En′0 � En0 between the two bands n and n′ de-
termines the relative importance of the contribution of n′ to the effective
mass of n. Furthermore, bands with energies less than En0 will contribute
a positive term to 1/m∗, making m∗ smaller than the free electron mass.
Conversely, bands with energies higher than En0 tend to increase m∗ or
even cause m∗ to become negative as in the case of the top valence bands
in the diamond- and zinc-blende-type semiconductors.

These two simple results can be used to understand the trend in the con-
duction band effective mass m∗

c in many of the group-III–V and II–VI semi-
conductors with direct bandgaps. In these semiconductors the lowest conduc-
tion band at the zone center has °1 symmetry. From the above considera-
tions, its effective mass will be determined mainly by its coupling, via the k · p
term, to the nearest bands with °4 symmetry. They include both valence and
conduction bands. As we will show in the next section, the conduction bands
in the group-IV, III–V, and II–VI semiconductors have antibonding character,
while the valence bands have bonding character. What this means is that in
the diamond-type structure the °2′ (or °�

2 ) conduction band and its nearest
°15 (or °�

4 ) conduction band both have odd parity and the momentum matrix
element between them vanishes because of the parity selection rule. In III–V
semiconductors, the antisymmetric pseudopotential breaks the inversion sym-
metry. As a result, the momentum matrix element between the °1 conduction
band and its nearest °4 conduction band in III–V semiconductors is nonzero,
but still much smaller than its momentum matrix element with the top °4 va-
lence bands [2.17]. The separation between the °1 conduction band and the °4
valence band is just the direct band gap E0, so m∗

c can be approximated by

1
m∗

c
�

1
m

�
2 |〈°1c |k · p |°4v〉|2

m2E0k2 . (2.41)

It is customary to represent the three °4 wave functions as |X〉, |Y〉, and |Z〉.
From the Td symmetry it can be shown that the only nonzero elements of
〈°1c |k · p |°4v〉 are

〈X |px |°1〉� 〈Y |py |°1〉� 〈Z |pz |°1〉� iP. (2.42)

Without loss of generality we can assume that the wave functions |X〉, |Y〉,
|Z〉, and |°1〉 are all real. Since the operator p is equal to �i�∇∇∇ the matrix
element in (2.42) is purely imaginary and P is real. With these results (2.41)
simplifies to
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m
m∗

c
≈ 1 �

2P2

mE0
. (2.43)

It turns out that the matrix element P2 is more or less constant for most
group-IV, III–V and II–VI semiconductors, with 2P2/m ≈ 20 eV. The reason
is that the values of P2 for these semiconductors are very close to those cal-
culated for nearly free electron wave functions: P � 2�/a0 (see Problem 2.9).
Since E0 is typically less than 2 eV, 2P2/(mE0) � 1 and (2.43) further simpli-
fies to

m
m∗

c
≈ 2P2

mE0
. (2.44)

In Table 2.22 we compare the values of m∗
c calculated from (2.44) with those

determined experimentally for several group-IV, III–V, and II–VI semiconduc-
tors. The values of E0 are from experiment.

Equation (2.44) can be extended to estimate the increase in m∗
c away from

the band minimum (non-parabolicity) which can be qualitatively described by
an increase in E0. See problem 6.15.

Table 2.22. Experimental values of the °1 conduction band effective masses in diamond-
and zinc-blende-type semicondutors compared with the values calculated from (2.44) us-
ing the values of E0 obtained from experiment [2.18]

Ge CdTe

E0 [eV] 0.89 1.59
m∗

c /m (exp ) 0.041 0.093
m∗

c /m ((2.44)) 0.04

GaN

3.44
0.17
0.17

GaAs

1.55
0.067
0.078

GaSb

0.81
0.047
0.04

InP

1.34
0.073
0.067

InAs

0.45
0.026
0.023

ZnS

3.80
0.20
0.16

ZnSe

2.82
0.134
0.14

ZnTe

2.39
0.124
0.12 0.08

2.6.2 Band Dispersion near a Degenerate Extremum:
Top Valence Bands in Diamond- and Zinc-Blende-Type Semiconductors

To apply the k · p method to calculate the band dispersion near a degener-
ate band extremum we consider the highest energy °25′ (°4) valence bands at
the zone center of semiconductors with the diamond (zinc-blende) structure.
As pointed out in the previous section, these valence band wave functions
are p-like, and they will be represented by the eigenstates |X〉, |Y〉, and |Z〉.
The electron spin is 1/2, so the spin states will be denoted by · and ‚ to cor-
respond to spin-up and spin-down states, respectively. In atomic physics it is
well-known that the electron spin can be coupled to the orbital angular mo-
mentum via the spin–orbit interaction. The spin–orbit coupling is a relativistic
effect (inversely proportional to c2) which scales with the atomic number of
the atom. Thus for semiconductors containing heavier elements, such as Ge,
Ga, As, and Sb, one expects the spin–orbit coupling to be significant and
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has to include it in the unperturbed Hamiltonian, in particular for states near
k � 0. The Hamiltonian for the spin–orbit interaction is given by

Hso �
�

4c2m2 (∇∇∇V × p) · ÛÛÛ, (2.45a)

where the components of ÛÛÛ are the Pauli spin matrices:

Ûx �

(
0 1
1 0

)
; Ûy �

(
0 �i
i 0

)
; Ûz �

(
1 0
0 �1

)
. (2.45b)

(In crystals with the diamond structure the “vector” ∇∇∇V × p is an example of
a pseudovector with symmetry °15′). The Hamiltonian Hso operates on the spin
wave functions so the symmetry of Hso should depend also on the symmetry
properties of the spin matrices. As is known from quantum mechanics, spin be-
haves differently than classical properties of particles such as the orbital angular
momentum. For example, a spatial wave function is invariant under a rotation
of 2 about any axis. However, under the same rotation the spin wave functions
of a spin-1/2 particle will change sign. Let us denote a rotation of 2 about a unit
vector n̂ as Ê (Problem 2.10). For a spinless particle Ê is equal to the identity
operation. For a spin-1/2 particle Ê is an additional symmetry operation in the
point group of its spin-dependent wave function. Thus, if G is the point group
of a crystal neglecting spin, then the corresponding point group including spin
effects will contain G plus ÊG and is therefore twice as large as G. Groups con-
taining symmetry operations of spin wave functions are known as double groups.
It is beyond the scope of this book to treat double groups in detail. Interested
readers should refer to references listed for this chapter at the end of the book
[Refs. 2.4, p. 103; 2.5; 2.7, p. 258].

Although many band diagrams in this book use the double group notation
(for example, Figs. 2.13–15), in most cases it is sufficient to know only the ir-
reducible representations for the double group at the zone center (° point)
of zinc-blende-type crystals. Since the single group of ° in zinc-blende-type
crystals contains 24 elements, one expects the double group to contain 48 el-
ements. However, the number of classes in a double group is not necessarily
twice that of the corresponding “single group”. The reason is that a class C
in the single group may or may not belong to the same class as ÊC in the
double group. For example, two sets of operations Ci and ÊCi belong to the
same class if the point group contains a two-fold rotation about an axis per-
pendicular to n̂i (the rotation axis of Ci). In the case of the group of ° of
a zinc-blende-type crystal, elements in {3C2} and {3ÊC2} belong to the same
class in the double group. This is also true for the elements in {6Û} and {6ÊÛ}.
As a result, the 48 elements in the double group of ° in zinc-blende-type crys-
tals are divided into eight classes. These eight classes and the eight irreducible
representations of the double group of ° are listed in Table 2.23.

Instead of using Table 2.23 to symmetrize the p-like valence band wave
functions in zinc-blende-type crystals including spin–orbit coupling, we will uti-
lize their similarity to the atomic p wave functions. We recall that, in atomic
physics, the orbital electronic wave functions are classified as s, p, d, etc., ac-
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Table 2.23. Character table of the double group of the point in zinc-blende-type semi-
conductors

{E} {3C2/ {6S4} {6Û/ {8C3} {Ê} {6ÊS4} {8ÊC3}
3ÊC2} 6ÊÛ}

°1 1 1 1 1 1 1 1 1
°2 1 1 �1 �1 1 1 �1 1
°3 2 2 0 0 �1 2 0 �1
°4 3 �1 �1 1 0 3 �1 0
°5 3 �1 1 �1 0 3 1 0
°6 2 0

√
2 0 1 �2 �

√
2 �1

°7 2 0 �
√

2 0 1 �2
√

2 �1
°8 4 0 0 0 �1 �4 0 1

°

cording to the orbital angular momentum l. The p states correspond to l � 1 and
are triply degenerate. The three degenerate states can be chosen to be eigen-
states of lz, the z component of l. The eigenvalues of lz are known as the mag-
netic quantum numbers (usually denoted as ml). For the p states ml � 1, 0, �1.
The wave functions of the orbital angular momentum operator are known as
spherical harmonics. The spherical harmonics corresponding to the l � 1 states
can be represented as (except for a trivial factor of (x2 � y2 � z2)�1/2):

| lml〉�

⎧⎨⎩ | 1 1〉 � �(x � iy)/
√

2,
| 1 0〉 � z,
| 1�1〉 � (x � iy)/

√
2.

(2.46)

The spin-orbit interaction in atomic physics is usually expressed in terms of l
and the spin s as

Hso � Ïl · s (2.47)

The constant Ï is referred to as the spin–orbit coupling. The eigenfunctions of
(2.47) are eigenstates of the total angular momentum j � l � s and its z com-
ponent jz. For l � 1 and s � 1/2 the eigenvalues of j can take on two possible
values: j � l � s � 3/2 and j � l � s � 1/2. The eigenvalues of jz (denoted by
mz) can take on the 2j � 1 values j, j � 1, . . . , �j � 1, �j. The eigenfunctions
of j and jz can be expressed as linear combinations of the eigenfunctions of
the orbital angular momentum and spin (· = spin-up, ‚ = spin-down):∣∣∣∣3/2, 3/2〉� | 1, 1〉·

3/2, 1/2〉� (1/
√

3)(| 1, 1〉‚ �
√

2 | 1, 0〉·)∣∣∣∣∣3/2, �1/2〉� (1/
√

3)(| 1, �1〉· �
√

2 | 1, 0〉‚)
3/2, �3/2〉� | 1, �1〉‚

| jmj〉�

| 1/2, 1/2〉� (1/
√

3)(| 1, 0〉· �
√

2 | 1, 1〉‚)

| 1/2, �1/2〉� (1/
√

3)(| 1, 0〉‚ �
√

2 | 1, �1〉·)

(2.48)

(2.49)
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The spin–orbit interaction in (2.47) splits the j � 3/2 states in (2.48) from the
j � 1/2 states in (2.49). This splitting ¢0 is known as the spin–orbit splitting
of the valence band at °, and in the case of the j � 3/2 and j � 1/2 states
¢0 � 3Ï/2.

Using the atomic physics results as a guideline we can similarly sym-
metrize the six electronic states |X〉·, |X〉‚, |Y〉·, |Y〉‚, |Z〉·, and |Z〉‚ in
the diamond- and zinc-blende-type semiconductors. First, we make use of the
similarity between the p-like °4 states and the atomic p states to define three
“(l � 1)-like” states in the zinc-blende-type crystals:

| 1, 1〉 � �(|X〉 � i |Y〉)
/√

2,

| 1, 0〉 � |Z〉,
| 1, �1〉 � (|X〉 � i |Y〉)

/√
2.

(2.50)

Next we define (j � 3/2)-like and (j � 1/2)-like states in the diamond- and
zinc-blende-type crystals by substituting the expressions in (2.50) into (2.48)
and (2.49). From now on we will refer to these (j � 3/2)-like and (j � 1/2)-like
states as the j � 3/2 states and j � 1/2 states in the case of semiconductors.

From the characters of the double group of ° in Table 2.23, one easily
concludes that the four-fold degenerate j � 3/2 states belong to the °8 repre-
sentation, since this is the only four-dimensional representation. The two-fold
degenerate j � 1/2 states must belong to either the °6 or °7 representations. A
way to decide between these two representations is to calculate the character
of the representation matrix generated by j � 1/2 states under an S4 operation.
Using the result of Problem 2.10 it can be shown that the j � 1/2 states belong
to the °7 representation. As in the atomic case, the °8 and °7 states are split
by the spin–orbit Hamiltonian in (2.45a). Typically, the magnitude of the spin–
orbit splitting ¢0 in a semiconductor is comparable to the ¢0 of its constituent
atoms. For example, semiconductors containing heavier atoms, such as InSb
and GaSb, have ¢0 ≈ 1 eV, which is as large as or larger than the bandgap.
When the anion and cation in the compound semiconductor have different ¢0
the anion contribution tends to be weighted more, reflecting its larger influ-
ence on the p-like valence bands. In semiconductors containing lighter atoms,
such as Si and AlP, ¢0(≈ 0.05 eV) is negligible for many purposes. The val-
ues of ¢0 in some diamond- and zinc-blende-type semiconductors are given in
Table 2.24. The values of ¢0 in Table 2.24 are all positive, and as a result the
j � 3/2 (°8) valence band has higher energy than the j � 1/2 (°7) valence band
states (Figs. 2.13–15). In some zinc-blende-type crystals, such as CuCl, where
there is a large contribution to the valence bands from the core d-electrons,
¢0 can be negative, leading to a reversal in the ordering of the °8 and °7 va-
lence bands.

In Sect. 2.3.4d it was shown that the operator p couples a state with °4
symmetry to states with °1, °3, °4, and °5 symmetries. By examining the
band structure of several semiconductors calculated by the pseudopotential
method (Figs. 2.10, 2.13–15) we find that the bands which have the above
symmetries and are close to the °4 valence bands are typically the lowest
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Sie �4.28 �0.68 24 0.044 0.54 0.50 0.15 0.15 0.23 0.24
Cb �2.5 0.2 4.6 0.013a 0.66e 0.29e

e

0.39b

Ge �13.38 �8.5 173 0.295 0.34 0.43 0.043 0.041 0.095 0.1
SiC c �2.8 �1.016 5.8 0.014 0.6 0.25 0.36
GaNd �5.05 �1.2 34 0.017 0.5e 0.13 0.2
GaPe �4.05 �0.98 16 0.08 0.57 0.51 0.18 0.16 0.25
GaAs �6.9 �4.4 43 0.341 0.53 0.73 0.08 0.08 0.15 0.17
GaSb �13.3 �8.8 230 0.75 0.8 0.98 0.05 0.04 0.15
InPe �5.15 �1.9 21 0.11 0.58 0.44 0.12 0.11 0.12 0.2

ZnSe �2.75 �1.0 7.5 0.43 1.09 0.145
ZnTe �3.8 �1.44 14.0 0.93
CdTe �4.14 �2.18 30.3 0.92

InAs �20.4 �16.6 167 0.38 0.4 0.4 0.026 0.026 0.14 0.10
InSb �36.41 �32.5 43 0.81 0.42 0.48 0.016 0.013 0.12
ZnS �2.54 �1.5 0.07

A B |C |2 ¢0 mhh/m0 mlh/m0 mso /m0

[eV] exp th exp th exp th

Table 2.24. Valence band parameters A and B in units of (�2/2m) and |C |2 in units of
(�2/2m)2. The spin–orbit splitting of the valence bands ¢0 is given in units of eV. The
averaged experimental [exp] and theoretical [th, obtained from A, B, C 2 with (2.69a,b)]
values of the effective masses of the heavy hole (hh), light hole (lh) and spin–orbit split-off
hole (so) valence bands [(2.59), p. 268] are in units of the free electron mass. [2.16, 18]

a See: J. Serrano, M. Cardona, and T. Ruf, Solid State Commun. 113, 411 (2000)
b See: M. Willatzen, M. Cardona, N. E. Christensen, Linear Muffin-tin-orbital and k · p
calculation of band structure of semiconducting diamond. Phys. Rev. B50, 18054 (1994)
c See: M. Willatzen, M. Cardona, N. E. Christensen: Relativistic electronic structure of 3C-
SiC. Phys. Rev. B51, 13150 (1995).
d See [1.1].
e The theoretical values of mhh/mo and mlh/mo in these materials are calculated with the
equations in Problem 4.4 on p. 201 since the assumption of small warping of the valence
bands is not valid for them.

conduction bands with symmetries °1 and °4. For the conduction band °1c
we have already shown that the only significant momentum matrix elements
are 〈X |px |°1〉 � 〈Y |py |°1〉 � 〈Z |pz |°1〉 � iP, see (2.42). One can also use
symmetry arguments to show that the nonzero matrix elements of p between
the °4 valence bands and the °4 conduction band states are

〈X |py |°4c(z)〉� 〈Y |pz |°4c(x)〉� 〈Z |px |°4c(y)〉� iQ,

〈X |pz |°4c(y)〉� 〈Y |px |°4c(z)〉� 〈Z |py |°4c(x)〉� iQ
(2.51)

(details of the proof are left for Problem 2.11).
The °4v valence bands together with the °1c and °4c conduction bands

now form a set of 14 unperturbed wave functions which are coupled together
by the k · p term of (2.35). The resultant 14×14 determinant can be diagonal-
ized either with the help of computers or by using approximations. Löwdin’s
perturbation method is most commonly used to obtain analytic expressions
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for the dispersion of the valence bands. In this method the 14×14 matrix is
divided into two parts: the wave functions of interest and their mutual inter-
actions are treated exactly while the interaction between this group of wave
functions and the remaining wave functions is treated by perturbation theory.
For example, in the present case the six °4v valence bands (including spin de-
generacy) are of interest and their mutual coupling via the k ·p and spin–orbit
interactions will be treated exactly. The coupling between these valence band
states and the conduction bands will be treated as a perturbation by defining
an effective matrix element between any two valence band wave function as

H′
ij � Hij �

∑
k
� the °4

valence bands

HikHkj

Ei � Ek
. (2.52)

Within this approximation the 14×14 matrix reduces to a 6×6 matrix of the
form {H′

ij}, where i and j run from 1 to 6. To simplify the notation we will
number the six °4v valence band wave functions as

º1 � | 3/2, 3/2〉
º2 � | 3/2, 1/2〉
º3 � | 3/2, �1/2〉
º4 � | 3/2, �3/2〉
º5 � | 1/2, 1/2〉
º6 � | 1/2, �1/2〉

and the doubly degenerate °1c and six-fold degenerate °4c conduction band
wave functions as º7 to º14.

The calculation of all the matrix elements H′
ij is left for Problem 2.14a.

Here we will calculate only the matrix element H′
11 as an example. According

to (2.52) the effective matrix element H′
11 is given by

H′
11 �

〈
º1

∣∣∣∣∣�2k2

2m
�

�k · p
m

∣∣∣∣∣ º1

〉

�
∑

j

∣∣∣∣∣
〈

º1

∣∣∣∣∣�2k2

2m
�

�k · p
m

∣∣∣∣∣ ºj

〉∣∣∣∣∣
2

1
(E1 � Ej)

. (2.53)

To simplify the notation again we introduce the following symbols: E0, energy
separation between °1c and the j � 3/2 valence bands; and E′

0, energy separa-
tion between °4c and the j � 3/2 valence bands. Using these symbols we can
express H′

11 as

H′
11 �

�2k2

2m
�

〈
º1

∣∣∣∣�k · p
m

∣∣∣∣ º1

〉
�

(∣∣∣∣〈º1

∣∣∣∣�k · p
m

∣∣∣∣ °1c

〉∣∣∣∣2 1
E0

)

�

(∣∣∣∣〈º1

∣∣∣∣�k · p
m

∣∣∣∣ °4c

〉∣∣∣∣2 1
E′

0

)
. (2.54)

In principle, the term �k · p/m can give rise to a term linear in k in the
band dispersion. In the diamond-type semiconductors this term vanishes ex-
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actly because of the parity selection rule. In zinc-blende-type crystals the lin-
ear k · p term can be shown to be zero within the basis used. While the k
linear term is strictly zero in diamond-type crystals because of the parity se-
lection rule, this is not true in crystals without a center of inversion symmetry.
In zinc-blende- and wurtzite-type crystals, it has been demonstrated [2.19, 20]
that both the conduction and valence bands can possess small k-linear terms.
However, these k-linear terms do not come from the k · p term alone, instead
they involve also spin-dependent terms which have been neglected here. Since
the k linear terms are relatively unimportant for the valence bands of most
semiconductors they will not be considered further here.

To simplify the notation we define

L �
��2P2

m2E0
;

M �
��2Q2

m2E′
0

;

N � L � M;

L′ �
��2P2

m2(E0 � ¢0)
;

M′ �
��2Q2

m2(E′
0 � ¢0)

.

With these definitions, the term

�

(∣∣∣∣〈º1

∣∣∣∣�k · p
m

∣∣∣∣ °1c

〉∣∣∣∣2 1
E0

)

in (2.54) can easily be shown to be equal to

�

(∣∣∣∣〈º1

∣∣∣∣�k · p
m

∣∣∣∣ °1c

〉∣∣∣∣2 1
E0

)
�

1
2

L(k2
x � k2

y) (2.55)

while

�

(∣∣∣∣〈º1

∣∣∣∣�k · p
m

∣∣∣∣ °4c

〉∣∣∣∣2 1
E′

0

)
is given by

�

(∣∣∣∣〈º1

∣∣∣∣�k · p
m

∣∣∣∣ °4c

〉∣∣∣∣2 1
E′

0

)
�

1
2

M(k2
x � k2

y � 2k2
z). (2.56)

The result is

H′
11 �

�2k2

2m
�

1
2

N(k2
x � k2

y) � Mk2
z. (2.57)
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Similarly we can show that the remaining matrix elements are

H′
12 � �

N√
3

(kxkz � ikykz)

H′
13 � �

1

2
√

3
[(L � M)(k2

x � k2
y) � 2iNkxky]

H′
14 � 0

H′
15 �

1√
2

H′
12

H′
16 � �

√
2H′

13

H′
22 �

�2k2

2m
�

1
3

(M � 2L)k2 �
1
2

(L � M)(k2
x � k2

y)

H′
23 � 0

H′
24 � H′

13

H′
25 �

1√
2

(H′
22 � H′

11)

H′
26 �

√
3
2

H′
12

H′
33 � H′

22

H′
34 � �H′

12

H′
35 � �(H′

26)∗

H′
36 � H′

25

H′
44 � H′

11

H′
45 � �

√
2(H′

13)∗

H′
46 � �(H′

15)∗

H′
55 �

�2k2

2m
�

1
3

(2M′ � L′)k2 � ¢0

H′
56 � 0

H′
66 � H′

55.

The matrix {H′
ij} is Hermitian, i. e., H′

ij � [H′
ji]

∗. This 6×6 matrix can be di-
agonalized numerically without further simplification. Readers with access to
a personal computer and a matrix diagonalization program are encouraged to
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calculate the valence band structure of GaAs by diagonalizing this 6×6 matrix
{H′

ij} (Problem 2.14b).
The matrix {H′

ij} can be diagonalized analytically with some approxima-
tions. We will now restrict k to values small enough that the matrix elements
which couple the J � 3/2 and J � 1/2 bands, such as H′

15, H′
16, and H′

25, are
negligible compared with the spin–orbit coupling. With this assumption, and
limiting the expansion of the eigenvalue to terms of the order of k2 only, the
6×6 matrix reduces to a 4×4 and a 2×2 matrix. The 2×2 matrix gives the
energy of the doubly degenerate j � 1/2 °7 band as

Eso � H′
55 �

�2k2

2m
�

1
3

(2M′ � L′)k2 � ¢0

� �¢0 �
�2k2

2m

[
1 �

2
3

(
P2

m(E0 � ¢0)
�

2Q2

m(E′
0 � ¢0)

)]
. (2.58)

Thus, within the above approximation, the constant energy surface for the
j � 1/2 split-off valence band is spherical and the band dispersion parabolic.
In analogy with the conduction band we can define an effective mass mv,so for
the split-off valence band given by

m
mv, so

� 1 �
2
3

(
P2

m(E0 � ¢0)
�

2Q2

m(E′
0 � ¢0)

)
. (2.59)

The dispersion of the j � 3/2 bands is obtained by diagonalizing the 4×4 matrix∣∣∣∣∣∣∣∣
H′

11 H′
12 H′

13 0
(H′

12)∗ H′
22 0 H′

13
(H′

13)∗ 0 H′
22 �H′

12
0 (H′

13)∗ �(H′
12)∗ H′

11

∣∣∣∣∣∣∣∣ .

The secular equation for this matrix reduces to two identical equations of the
form

(H′
11 � E)(H′

22 � E) � |H ′

12|2 � |H ′

13|2 (2.60)

and their solutions are

E± � 1
2 (H′

11 �H′
22) ± 1

2 [(H′
11 �H′

22)2 �4(H′
11H′

22 �|H ′

12|2 �|H ′

13|2)]
1
2 . (2.61)

Substituting the matrix elements H′
ij as defined earlier into (2.61) E± can be

expressed as

E± � Ak2 ± [B2k4 � C2(k2
xk2

y � k2
yk2

z � k2
zk2

x)]
1
2 , (2.62)

an equation first derived by Dresselhaus et al. [2.21]. The constants A, B, and
C in (2.62) are related to the electron momentum matrix elements and energy
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gaps by

2m
�2 A � 1 �

2
3

[(
P2

mE0

)
�

(
2Q2

mE′
0

)]
(2.63)

2m
�2 B �

2
3

[(
�P2

mE0

)
�

(
Q2

mE′
0

)]
(2.64)

(
2m
�2 C

)2

�
16P2Q2

3mE0mE′
0

. (2.65)

Equations (2.63–65) show that it is more convenient to define the constants A,
B, and C in units of �2/2m. Note that in the literature [2.17] the definitions of
A, B, and C may contain a small additional term R, which is the matrix ele-
ment of the electron momentum operator between the °4v valence band and
a higher energy °3c conduction band. Inclusion of R is particularly important
for large bandgap materials such as diamond [2.22]

The dispersion of the °8(J � 3/2) bands near the zone center is given by
(2.62); this equation has been derived after much simplification and is valid only
for energies small compared to the spin–orbit splitting. We note that both A and
B are negative since the dominant term in both (2.63) and (2.64) is 2P2/(3mE0),
which is � 1. As a result, the effective masses of these bands, and of the splitt-off
valence band in (2.59), are negative. In many cases we have to consider the prop-
erties of a semiconductor in which a few electrons are missing from an otherwise
filled valence band. Instead of working with electrons with negative masses, it is
more convenient to introduce the idea of a hole. A filled valence band with one
electron missing can be regarded as a band (known as a hole band) containing
one hole. If the energy of the missing electron in the valence band is E (assuming
that E � 0 is the top of the valence band) then the energy of the corresponding
hole is �E and is positive. With this definition the effective mass of a hole in
the valence band is opposite to that of the corresponding missing electron and
is positive also. The hole mass of the split-off valence band mso � �mv,so is
positive with this definition (Table 2.24). Since the valence band represented by
E� has a smaller dispersion and hence larger mass, it is generally referred to as
the heavy hole band, while the band represented by E� is known as the light
hole band. From now on the energies of these two hole bands will be written
as Ehh and Elh with the corresponding hole energies defined as

Ehh � � Ak2 � [B2k4 � C2(k2
xk2

y � k2
yk2

z � k2
zk2

x)]
1
2 , (2.66a)

Elh � � Ak2 � [B2k4 � C2(k2
xk2

y � k2
yk2

z � k2
zk2

x)]
1
2 . (2.66b)

Constant energy surfaces represented by (2.66a) and (2.66b) are shown in Fig.
2.16. The shapes of these constant energy surfaces are referred to as “warped”
spheres. The warping occurs along the [100] and [111] directions because of the
cubic symmetry of the zinc-blende crystal. In fact one can argue that these warped
spheres are the only possible shapes for constant energy surfaces described by
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(010)

(100)

heavy hole

light
hole

Fig. 2.16. Constant energy surfaces of the
J � 3/2(°8) bands in diamond- and zinc-
blende-type semiconductors

a second-order equation in cubic crystals. Assuming that odd-order terms in k
are either zero or negligible, the lowest order terms even in k consistent with the
cubic symmetry are k2 and [·k4 � ‚(k2

xk2
y � k2

yk2
z � k2

zk2
x)]

1
2 . If we neglect higher

order terms, the most general expression for the k dependence of the energy
of the °8(j � 3/2) component of a °4 state in a cubic crystal is of the form of
(2.62), where A, B, and C are linearly independent parameters related to the
electron momentum matrix elements. One may notice from the definitions of
the coefficients A, B, and C in (2.63–65) that C can be expressed in terms of A
and B. This is a result of neglecting in our model the coupling between the °4v
bands and higher conduction bands (such as °3c), for the inclusion of the lowest
°3c state see Problem 2.15d.

The hole band dispersions along the [100] and [111] directions are
parabolic, but the hole effective masses are different along the two directions:

k‖(100)
1

mhh
�

2
�2 (�A � B),

1
mlh

�
2
�2 (�A � B),

(2.67a)

(2.67b)

k‖(111)
1

mhh
�

2
�2

⎡⎣�A � B

(
1 �

|C |2
3B2

)1
2

⎤⎦ ,

1
mlh

�
2
�2

⎡⎣�A � B

(
1 �

|C |2
3B2

)1
2

⎤⎦ .

(2.68a)

(2.68b)

From the above expressions we see that the warping of the valence bands is
caused by the term |C |2, which is proportional to Q2. If the term B2 is much
larger than |C |2/3 warping can be neglected and we can obtain the approxi-
mate result that mlh ≈ 3m∗

c /2 and mso ≈ 3m∗
c . Note that Q2 is crucial to mhh.

If we put Q2 � 0 we obtain the incorrect result mhh � � m0 (even the sign is
wrong!). Often, for simplicity, it is expedient to assume that the valence band
masses are isotropic. In such cases average heavy and light hole masses m∗

hh
and m∗

lh can be obtained by averaging (2.67) and (2.68) over all possible direc-
tions of k (Problem 4.4):
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1
m∗

hh
�

1
�2

[
�2A � 2B

(
1 �

2 |C |2
15B2

)]
, (2.69a)

1
m∗

lh
�

1
�2

[
�2A � 2B

(
1 �

2 |C |2
15B2

)]
. (2.69b)

In Table 2.24 we have listed what we judge to be reliable values of the
constants A, B, and |C |2 for several semiconductors obtained from data in
[2.18]. In this table the three valence band effective masses calculated from
(2.67–69) using these values of A, B, and |C |2 and experimental energy gaps
are compared with the experimentally determined effective masses.

We note that the constant energy surfaces for the valence bands as de-
scribed by (2.62) have inversion symmetry: E(k) � E(�k), even though the
crystal may not have such symmetry. This is a consequence of the electron
Hamiltonian we have used being invariant under time reversal (time-reversal
symmetry). A Bloch wave traveling with wave vector k is transformed into a
Bloch wave with wave vector �k under time reversal. If the Hamiltonian is
invariant under time reversal, these two Bloch waves will have the same en-
ergy.

Finally we point out that there is an alternate equivalent approach often
used in the literature to represent the valence band dispersion in diamond-
and zinc-blende-type semiconductors. Using group theory it is possible to de-
rive an effective k · p Hamiltonian which is appropriate for the °4 valence
bands. An example of such a Hamiltonian was proposed by Luttinger [2.23]:

HL �
�2

2m

[(
Á1 �

5
2

Á2

)
∇∇∇2 � 2Á3(∇∇∇ · J)2

�2(Á3 � Á2)(∇∇∇2
xJ2

x � c. p.)
]

, (2.70)

where the parameters Á1, Á2, and Á3 are known as the Kohn–Luttinger para-
meters; J � (Jx, Jy, Jz) is an operator whose effects on the °8 valence bands are
identical to those of the angular momentum operator on the J � 3/2 atomic
states, and c. p. stands for cyclic permutations. This approach facilitates the
diagonalization of HL together with additional perturbations applied to the
crystal. In Chap. 4 we will see an application of this Hamiltonian to calculate
the energies of acceptor states. The first two terms in (2.70) have spherical
symmetry while the last represents the effect of the lower, cubic symmetry.
It is thus clear that the warping of the valence band is directly proportional
to the difference between Á2 and Á3. The Kohn–Luttinger parameters can be
shown to be related to the coefficients A, B, and C in (2.62) by

(�2/2m)Á1 � � A (2.71a)

(�2/2m)Á2 � � B/2 (2.71b)

(�2/2m)Á3 �
[
(B2/4) � (C2/12)

]1/2
(2.71c)

The proof of these results is left as an exercise (Problem 2.15).
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2.7 Tight-Binding or LCAO Approach to the Band Structure
of Semiconductors

The pseudopotential approach to calculating the band structure of semicon-
ductors discussed in Sect. 2.5 starts with the assumption that electrons are
nearly free and their wave functions can be approximated by plane waves. In
this section we will approach the problem from the other extreme. We will as-
sume that the electrons are tightly bound to their nuclei as in the atoms. Next
we will bring the atoms together. When their separations become compara-
ble to the lattice constants in solids, their wave functions will overlap. We will
approximate the electronic wave functions in the solid by linear combinations
of the atomic wave functions. This approach is known as the tight-binding ap-
proximation or Linear Combination of Atomic Orbitals (LCAO) approach.
One may ask: how can two completely opposite approaches such as the pseu-
dopotential method and the tight-binding method both be good starting points
for understanding the electronic properties of the same solid? The answer is
that in a covalently bonded semiconductor there are really two kinds of elec-
tronic states. Electrons in the conduction bands are delocalized and so can be
approximated well by nearly free electrons. The valence electrons are concen-
trated mainly in the bonds and so they retain more of their atomic charac-
ter. The valence electron wave functions should be very similar to bonding
orbitals found in molecules. In addition to being a good approximation for
calculating the valence band structure, the LCAO method has the advantage
that the band structure can be defined in terms of a small number of over-
lap parameters. Unlike the pseudopotentials, these overlap parameters have a
simple physical interpretation as representing interactions between electrons
on adjacent atoms.

2.7.1 Molecular Orbitals and Overlap Parameters

To illustrate the tight-binding approach for calculating band structures, we will
restrict ourselves again to the case of tetrahedrally bonded semiconductors.
The valence electrons in the atoms of these semiconductors are in s and p or-
bitals. These orbitals in two identical and isolated atoms are shown schemat-
ically in Figs. 2.17a, 2.18a, and 2.19a. The pz orbitals are not shown since
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σ (bonding)

σ (antibonding)
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Fig. 2.17a,b. Overlap of two s orbitals to form bonding and antibonding Û orbitals
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Fig. 2.18a,b. Overlap of two px orbitals along the x axis to form bonding and antibonding
Û orbitals
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Fig. 2.19a,b. Overlap of two py orbitals to form bonding and antibonding  orbitals

their properties are similar to those of the py orbitals. Figures 2.17b, 2.18b,
and 2.19b show schematically what happens to the atomic orbitals when the
two atoms are brought together along the x direction until the atomic orbitals
overlap to form a diatomic molecule. The interaction between the two atomic
orbitals produces two new orbitals. One of the resultant orbitals is symmetric
with respect to the interchange of the two atoms and is known as the bond-
ing orbital while the other orbital, which is antisymmetric, is known as the
antibonding orbital. In the case of p orbitals there are two ways for them to
overlap. When they overlap along the direction of the p orbitals, as shown in
Fig. 2.18b, they are said to form Û bonds. When they overlap in a direction
perpendicular to the p orbitals they are said to form  bonds, as shown in Fig.
2.19b.

The interaction between the atomic orbitals changes their energies. Typi-
cally the antibonding orbital energy is raised by an amount determined by the
interaction Hamiltonian H. The energy of the bonding orbital is decreased by
the same amount. The changes in orbital energies are shown schematically in
Fig. 2.20a for a homopolar molecule and in Fig. 2.20b for a heteropolar one.
In both cases V is the matrix element of the interaction Hamiltonian between
the atomic orbitals and is usually referred to as the overlap parameter. For a
homopolar molecule containing only s and p valence electrons, there are four
nonzero overlap parameters. To derive this result we will denote the atomic
orbital on one of the atoms as |·〉 and that on the second atom as |‚〉. These
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Fig. 2.20. Effect of orbital overlap on the energy levels in (a) a diatomic homopolar
molecule and (b) a diatomic heteropolar molecule. V represents the matrix element of
the interaction Hamiltonian

orbitals can be expressed as products of a radial wave function and a spheri-
cal harmonic Ylm(ı, ˇ) with the atom chosen as the origin. We will denote the
vector going from the first atom (designated as A in Fig. 2.21) to the second
atom (B) as d. For both orbitals |·〉 and |‚〉 we will choose the coordinate
axes such that the z axes are parallel to d and the azimuthal angles ˇ are the
same (see Fig. 2.21). In these coordinate systems the spherical harmonic wave
functions of the two atoms A and B are Ylm(ı, ˇ) and Yl′m′(ı′, ˇ), respectively.
The Hamiltonian H has cylindrical symmetry with respect to d and therefore
cannot depend on ˇ. Thus the matrix element 〈· |H |‚〉 is proportional to the
integral of the azimuthal wave functions exp [i(m′ � m)ˇ]. This integral van-
ishes except when m � m′. As a result of this selection rule we conclude that

z

y

x

φ θ

x'

y'

z

φ

θ'

rB

rA

A Bd

Fig. 2.21. Choice of the polar coordinate systems for the two atoms A and B in a diatomic
molecule in order that the z axis be parallel to the vector joining the two atoms A and B
and the azimuthal angle ˇ be identical for both atoms
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there are four nonzero and linearly independent overlap parameters between
the s and p electrons:

〈s |H | s〉� VssÛ; 〈s |H |pz〉� VspÛ; 〈pz |H |pz〉� VppÛ;

and 〈px |H |px〉� Vpp.

We notice that 〈px |H |py〉 � 0 and 〈py |H |py〉 � 〈px |H |px〉 as a result of
symmetry. The overlap parameters are usually labeled Û,  and ‰ for (l � 2
wave functions), depending on whether m is 0, 1, or 2 (in analogy with the s,
p, and d atomic wave functions).

The concept of bonding and antibonding orbitals introduced for molecules
can be easily extended to crystals if one assumes that the orbitals of each atom
in the crystal overlap with those of its nearest neighbors only. This is a reason-
able approximation for most solids. The results of orbital overlap in a solid is
that the bonding and antibonding orbitals are broadened into bands. Those
occupied by electrons form valence bands while the empty ones form conduc-
tion bands. Figure 2.22 shows schematically how the s and p orbitals evolve
into bands in a tetrahedral semiconductor. In this case the bonding orbitals
are filled with electrons and become the valence bands while the antibond-
ing orbitals become the conduction bands. As may be expected, the crystal
structure affects the overlap between atomic orbitals. For example, in a tetra-
hedrally coordinated solid each atom is surrounded by four nearest neighbors.
The vectors d linking the central atom to each of its nearest neighbors are
different, so it is not convenient to choose the z axis parallel to d. Instead it
is more convenient to choose the crystallographic axes as the coordinate axes.
The spherical harmonics Ylm(ı, ˇ) of the atomic orbitals are then defined with
respect to this fixed coordinate system. In calculating the overlap parameter
for any pair of neighboring atoms, one expands the spherical harmonics de-
fined with respect to d in terms of Ylm(ı, ˇ). An example of this expansion is
shown schematically in Fig. 2.23.

p

s

Conduction bands 
from the p antibonding 
orbitals

Conduction bands from 
the s antibonding 
orbitals

Valence band from p 
bonding orbitals

Valence band from s 
bonding orbitals

EF

Fig. 2.22. Evolution of the atomic s and p orbitals into valence and conduction bands in
a semiconductor. EF is the Fermi energy



2.7 Tight-Binding or LCAO Approach to the Band Structure of Semiconductors 87

+-

+

Θ

s

d

s

=

A

B

py

A

B

+

-

A

B

+
- +

<s |H| py >                    = Vspσ cosΘ                  + 0 sinΘ

z

y

x

z

y

x

Θ-
+-

=
-

-
+

+

<py |H| py >               =

+
- +

Vppσ cos2Θ          + Vppπ sin2Θ

A

B
+

- A

B

A

Bpy

py

+-

Fig. 2.23. Projection of the overlap parameter between an s and a py orbital, and between
py orbitals, along the vector d joining the two atoms and perpendicular to d

2.7.2 Band Structure of Group-IV Elements by the Tight-Binding Method

After this introduction to the interaction between atomic orbitals we are ready
to perform a quantitative calculation of the electronic band structure using
the method of Linear Combination of Atomic Orbitals (LCAO). While the
method has been utilized by many authors [Ref. 2.25, p. 75], the approach we
will describe follows that of Chadi and Cohen [2.25].

The position of an atom in the primitive cell denoted by j will be decom-
posed into rjl � Rj � rl, where Rj denotes the position of the jth primitive cell
of the Bravais lattice and rl is the position of the atom l within the primitive
cell. For the diamond and zinc-blende crystals l � 1 and 2 only. Let hl(r) de-
note the Hamiltonian for the isolated atom l with its nucleus chosen as the ori-
gin. The Hamiltonian for the atom located at rjl will be denoted by hl(r � rjl).
The wave equation for hl is given by

hlˇml(r � rjl) � Emlˇml(r � rjl), (2.72)

where Eml and ˇml are the eigenvalues and eigenfunctions of the state indexed
by m. The atomic orbitals ˇml(r � rjl) are known as Löwdin orbitals. They are
different from the usual atomic wave functions in that they have been con-
structed in such a way that wave functions centered at different atoms are
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orthogonal to each other. Next we assume that the Hamiltonian for the crys-
tal � is equal to the sum of the atomic Hamiltonians and a term �int which
describes the interaction between the different atoms. We further assume the
interaction between the atoms to be weak so that � can be diagonalized by
perturbation theory. In this approximation the unperturbed Hamiltonian �0 is
simply

�0 �
∑

j, l

hl(r � rjl) (2.73)

and we can construct the unperturbed wave functions as linear combinations
of the atomic wave functions. Because of the translational symmetry of the
crystal, these unperturbed wave functions can be expressed in the form of
Bloch functions:

ºmlk �
1√
N

∑
j

exp (irjl · k)ˇml(r � rjl), (2.74)

where N is the number of primitive unit cells in the crystal. The eigenfunctions
æk of � can then be written as linear combinations of ºmlk:

æk �
∑
m, l

Cmlºmlk. (2.75)

To calculate the eigenfunctions and eigenvalues of �, we operate on æk with
the Hamiltonian � � �0 � �int. From the orthogonality of the Bloch functions
we obtain a set of linear equations in Cml:∑

m, l

(
Hml, m′l′ � Ek‰mm′‰ll′

)
Cm′l′(k) � 0, (2.76)

where Hml, m′l′ stands for the matrix element 〈ºmlk |� |ºm′l′k〉 and Ek are the
eigenvalues of H. To simplify the solution of (2.76) we introduce the following
approximations.

• We include only the s2 and p6 electrons in the outermost partially filled
atomic shells. We neglect spin–orbit coupling (although it can be included
easily). The two atomic orbitals of s symmetry for the two atoms in the
unit cell will be denoted by S1 and S2, respectively. Correspondingly, the
atomic orbitals with p symmetry will be denoted by: X1, X2, Y1, Y2, Z1
and Z2, respectively. In the following equations the index m will represent
the s, px, py, and pz orbitals.

• When we substitute the wave functions ºmlk defined in (2.74) into (2.76)
we obtain

Hml, m′l′(k) �

N∑
j

N∑
j′

exp [i(rj′l′ � rjl) · k]
N

× 〈ˇml | (r � rjl) |H |ˇm′l′(r � rj′l′)〉 (2.77)

�

N∑
j

exp [i(Rj � rl′ � rl) · k]

× 〈ˇml(r � rjl) |H |ˇm′l′(r � rjl′)〉. (2.78)
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Instead of summing j over all the unit cells in the crystal, we will sum over the
nearest neighbors only. In the diamond and zinc-blende crystals this means j
will be summed over the atom itself plus four nearest neighbors. These atoms
will be denoted as j � 1, 2, 3, 4, 5. If needed, one can easily include second
neighbor or even further interactions.

Within the above approximation the collection of matrix elements of the
form in (2.77) constitutes an 8×8 matrix (note that the dimensions of the ma-
trix depend only on the number of basis functions, not the number of neigh-
bors included). Applying symmetry arguments allows the number of nonzero
and linearly independent matrix elements of �int to be greatly reduced. As an
example, we will consider the matrix element Hs1, s2. From (2.78) this matrix
element is given by

Hs1, s2 � [exp (ik · d1) � exp (ik · d2) � exp (ik · d3) � exp (ik · d4)]

× 〈S1 |�int |S2〉, (2.79)

where we have assumed that atom 1 is located at the origin and d· (· � 1 to
4) are the positions of its four nearest neighbors, with

d1 � (1, 1, 1)(a/4);

d2 � (1, �1, �1)(a/4);

d3 � (�1, 1, �1)(a/4);

and

d4 � (�1, �1, 1)(a/4).

The matrix element 〈S1 |�int |S2〉 is basically the same overlap parameter
VssÛ as we have defined for molecules. The other matrix elements Hs1, px2,
and Hpx1, px2, etc., can also be expressed in terms of the overlap parame-
ters VspÛ, VppÛ, and Vpp. For example Hs1, px2 can be shown to contain four
terms involving the four phase factors exp (ik · d·) and the matrix element
〈S1 |�int |X2〉. However, for each nearest neighbor 〈S1 |�int |X2〉 has to be
decomposed into Û and  components as shown in Fig. 2.23. This decompo-
sition introduces a factor of cos £ � ± (1/

√
3). The � or � sign depends

on whether the s orbital lies in the direction of the positive or negative lobe
of the px orbital. As a result, it is convenient to introduce a new set of four
overlap parameters appropriate for the diamond lattice:

Vss � 4VssÛ, (2.80a)

Vsp � 4VspÛ/
√

3, (2.80b)

Vxx � (4VppÛ/3) � (8Vpp/3), (2.80c)

Vxy � (4VppÛ/3) � (4Vpp/3), (2.80d)

With this notation the matrix element 〈S1(r) |�int |X2(r � d1)〉 is given
by (VspÛ)/

√
3 � Vsp/4. The remaining three matrix elements are related to

〈S1(r) |�int |X2(r � d1)〉 by symmetry. For example, a two-fold rotation about
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the y axis will transform (x, y, z) into (�x, y, �z), so d1 is transformed into
d3. The s-symmetry wave function |S1〉 is unchanged while the p-symmetry
wave function |X2〉 is transformed into � |X2〉 under this rotation. As a re-
sult, 〈S1(r) |�int |X2(r �d3)〉� �〈S1(r) |�int |X2(r �d1)〉. By applying similar
symmetry operations we can show that∑

·

exp [i(d· · k)]〈S1(r) |�int |X2(r � d·)〉� 1
4 Vsp{exp [i(d1 · k)]

� exp [i(d2 · k)] � exp [id3 · k)] � exp [i(d4 · k)]} (2.81)

In the zinc-blende structure, because the atoms 1 and 2 are different,
〈S1 |�int |X2〉 is, in principle, different from 〈S2 |�int |X1〉. They are, how-
ever, often assumed to be equal [Ref. 2.24, p. 77]. The case of the zinc-blende
crystal is left as an exercise in Problem 2.16. Here we will restrict ourselves to
the case of the diamond structure.

The 8×8 matrix for the eight s and p bands can be expressed as in Ta-
ble 2.25. Es and Ep represent the energies 〈S1 |�0 |S1〉 and 〈X1 |H0 |X1〉, re-
spectively. The four parameters g1 to g4 arise from summing over the factor
exp [i(k · d·)] as in (2.81). They are defined by

g1 � (1/4){exp [i(d1 · k)] � exp [i(d2 · k)] � exp [i(d3 · k)] � exp [i(d4 · k)]},

g2 � (1/4){exp [i(d1 · k)] � exp [i(d2 · k)] � exp [i(d3 · k)] � exp [i(d4 · k)]},

g3 � (1/4){exp [i(d1 · k)] � exp [i(d2 · k)] � exp [i(d3 · k)] � exp [i(d4 · k)]},

g4 � (1/4){exp [i(d1 · k)] � exp [i(d2 · k)] � exp [i(d3 · k)] � exp [i(d4 · k)]}.

If k � (2/a)(k1, k2, k3) the gj’s can also be expressed as

g1 � cos (k1/2) cos (k2/2) cos (k3/2)

� i sin (k1/2) sin (k2/2) sin (k3/2),. (2.82a)

g2 � �cos (k1/2) sin (k2/2) sin (k3/2)

� i sin (k1/2) cos (k2/2) cos (k3/2),. (2.82b)

S1 Es � Ek Vssg1 0 0 0 Vspg2 Vspg3 Vspg4

S2 Vssg∗1 Es � Ek �Vspg∗2 �Vspg∗3 �Vspg∗4 0 0 0
X1 0 �Vspg2 Ep � Ek 0 0 Vxxg1 Vxyg4 Vxyg3

Y1 0 �Vspg3 0 Ep � Ek 0 Vxyg4 Vxxg1 Vxyg2

Z1 0 �Vspg4 0 0 Ep � Ek Vxyg3 Vxyg2 Vxxg1

X2 Vspg∗2 0 Vxxg∗1 Vxyg∗4 Vxyg∗3 Ep � Ek 0 0
Y2 Vspg∗3 0 Vxyg∗4 Vxxg∗1 Vxyg∗2 0 Ep � Ek 0
Z2 Vspg∗4 0 Vxyg∗3 Vxyg∗2 Vxxg∗1 0 0 Ep � Ek

S1 S2 X 1 Y1 Z1 X 2 Y2 Z2

Table 2.25. Matrix for the eight s and p bands in the diamond structure within the tight
binding approximation
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g3 � �sin (k1/2) cos (k2/2) sin (k3/2)

� i cos (k1/2) sin (k2/2) cos (k3/2),. (2.82c)

g4 � �sin (k1/2) sin (k2/2) cos (k3/2)

� i cos (k1/2) cos (k2/2) sin (k3/2),.
(2.82d)

The valence and lowest conduction band energies of the diamond-type
crystals can be obtained by diagonalizing the 8×8 matrix of Table 2.25, pro-
vided the four parameters Vss, Vsp, Vxx, and Vxy are known. These four pa-
rameters can be determined by comparing the calculated band structure with a
first principles or empirical band structure calculation. For example Chadi and
Cohen [2.25] obtained the tight-binding parameters for C, Si, and Ge by com-
parison with empirical pseudopotential calculations. Their results are shown in
Table 2.26. Note that the signs of Vss etc. are, in part, arbitrary and are de-
termined by the choice of the relative phases of the two overlaping atomic
orbitals. The signs in Table 2.26 correspond to the choices shown in Figs. 2.17a
and 2.23. The magnitudes of the interaction parameters decrease in the se-
quence C to Ge. We will show later that this trend can be understood from the
increase in the lattice constant along this sequence. When the second-nearest
neighbor interactions are included, only Vxx decreases somewhat. Since Vxx is
the smallest interaction, the overall band structure is not significantly affected.

Table 2.26. Tight-binding interaction parameters (in eV) for C, Si, and Ge obtained by
Chadi and Cohen [2.25] when only nearest-neighbor interactions are included

C 7.40 �15.2 10.25 3.0 8.3
Si 7.20 �8.13 5.88 3.17 7.51
Ge 8.41 �6.78 5.31 2.62 6.82

Ep � Es Vss Vsp Vxx Vxy

To gain some insight into the band structure obtained with the tight-
binding approach, we will calculate the band energies at the k � 0 point. From
(2.82a–d) we find g2 � g3 � g4 � 0 and g1 � 1 at k � 0. Thus the 8×8 ma-
trix simplifies into a 2×2 matrix for the s electrons and three identical 2×2
matrices for the p levels:∣∣∣∣ Es � E(0) Vss

Vss Es � E(0)

∣∣∣∣ (2.83a)

and∣∣∣∣ Ep � E(0) Vxx

Vxx Ep � E(0)

∣∣∣∣ . (2.83b)

These two matrices can be easily diagonalized to yield four energies:

Es±(0) � Es ± |Vss | (2.84a)
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and

Ep±(0) � Ep ± |Vxx | (2.84b)

As a result of the overlap of the atomic orbitals the two s and p levels of
the two atoms inside the primitive cell are split by an amount equal to 2 |Vss |
and 2 |Vxx |, respectively. The level Es� is raised in energy and its wave func-
tion is antisymmetric with respect to the interchange of the two atoms. This
state corresponds to the antibonding s state in a diatomic molecule. The level
Es� corresponds to the bonding s state. From Table 2.5 we expect the anti-
symmetric antibonding state to have °2′ symmetry and the symmetric bonding
state to have °1 symmetry. Using a similar analogy, the triply degenerate anti-
symmetric °15 conduction band states correspond to the antibonding p orbitals
while the symmetric °25′ valence band states are identified with the bonding p
orbitals.

In Fig. 2.24 the valence band structure of Si calculated by the tight-binding
method is compared with that obtained by the empirical pseudopotential
method. Figure 2.24 also compares the valence band density of states obtained
by the two methods (We will define density of states of a band in Sect. 4.3.1
and also in Chap. 8, where this concept will be utilized). In this tight-binding
calculation one second-nearest-neighbor interaction has been included in ad-
dition to the nearest-neighbor interactions. The agreement between the two
methods is quite good for the valence bands. Figure 2.25 shows a comparison
between the band structure of Ge calculated by the tight-binding method, the
empirical pseudopotential method, and the nearly free electron model. While
the valence bands are well reproduced by the tight-binding method with the
simple sp3 base used here, this is not true for the conduction bands since the

ΓΣU,KXΓ ∆Λ0 L0.40.81.2
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conduction band electrons are more delocalized. The accuracy of the conduc-
tion bands in the tight-binding calculations can be improved by introducting
additional overlap parameters. However, there is another shortcoming in the
tight-binding model presented here. There are only four conduction bands in
this model because we have included only four s and p orbitals. To correct
this problem additional orbitals and overlap parameters are required; unfortu-
nately they destroy the simplicity of this model.

2.7.3 Overlap Parameters and Nearest-Neighbor Distances

So far we have shown that the advantage of the tight-binding approach is that
the valence band structures of semiconductors can be calculated in terms of a
small number of atomic energies and overlap parameters. Now we will demon-
strate that these overlap parameters in different semiconductors can be ex-
pressed as a simple function of the nearest-neighbor distance multiplied by a
geometric factor. These results combined make the tight-binding method very
powerful for predicting the properties of many compounds (not just semicon-
ductors) with only a small number of parameters [Ref. 2.24, p. 49].

One may expect some relationship between the overlap parameters and
the interatomic distance based on the following simple argument. Figures 2.20
and 2.22 show that the atomic energy levels broaden into bands due to over-
lap of the atomic orbitals. The width of the band is essentially 2V, where V
is the relevant overlap parameter. At the same time the electron wave func-
tions become delocalized over a distance given by the nearest-neighbor sep-
aration (i. e., the bond length) d as a result of this overlap. Using the uncer-
tainty principle the momentum of the delocalized electron is estimated to be
(�/d), so the electron kinetic energy is given by �22/(2md2). This result sug-
gests that the overlap parameters depend on d as d�2. This simple heuristic
argument can be made more rigorous by comparing the band structures cal-
culated by the tight-binding method and by the nearly free electron model.
As an example, we will consider the lowest energy valence band in a crystal
with the simple cubic structure. This band can be identified with the bonding s
orbitals and its dispersion along the [100] direction can be shown to be given
by Es � 4VssÛ � 2VssÛ cos kx (Problem 2.16). Thus the width of this band is
equal to 4VssÛ. On the other hand the nearly free electron model gives the
band width as �22/(2md2). Equating the band widths obtained by these two
different methods we get

4VssÛ �
�22

2md2 . (2.85)

In general, all four overlap parameters for the s and p orbitals can be
expressed in the form

Vll′m � Ùll′m
�2

md2 (2.86)
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where Ùll′m is a factor which depends on the crystal symmetry. From (2.85) we
see that ÙssÛ � 2/8 in crystals with the simple cubic structure. Table 2.27 lists
the values of Ùll′m for the simple cubic and diamond lattices.

For the diamond and zinc-blende crystals, Harrison [2.26] has treated the
factors Ùll′m as adjustable parameters in fitting the energy bands of Si and Ge.
He found excellent agreement between the calculated values and the adjusted
values for three of the parameters. The only exception is Ùpp, where the fitted
value of �0.81 is somewhat lower than the calculated one.

ÙssÛ �2/8 � �1.23 �92/64 � �1.39

ÙspÛ (/2)[(2/4) � 1]1/2 � 1.90 (92/32)[1 � (16/32)]1/2 � 1.88

ÙppÛ 2/8 � 3.70 212/64 � 3.24

Ùpp �2/8 � �1.23 �32/32 � �0.93

Simple cubic Diamond and zinc–blende

3

Adjusted values

1.40�

1.84

3.24

0.81�

Table 2.27. The geometric factor Ù relating the overlap parameters for the s and p bands
to the free electron band width �2/(md 2) as shown in (2.86). The last column represents the
adjusted values obtained by fitting the energy bands of Si and Ge [Ref. 2.24, p. 49]

Table 2.27 together with (2.86) and the lattice constants are all that is
needed to calculate the overlap parameters for computing the valence bands
and the lowest conduction bands in many zinc-blende- and diamond-type
semiconductors. Even without any detailed calculations,. we can understand
qualitatively the symmetries of the conduction and valence bands at the Bril-
louin zone center of the three group-IV elements Si, Ge, and gray tin (or ·-
Sn). The lattice constant increases from Si to ·-Sn. This results in a decrease in
the overlap parameters |Vss | and |Vxx | (the variation from C to Ge is shown
in Table 2.26). The decrease is larger for |Vss | than for |Vxx |. As a result,
the ordering of the s and p orbitals changes from Si to ·-Sn in the manner
shown in Fig. 2.26. The Fermi level is located by filling the bands with the
eight valence electrons available. In this way it is easily seen that the lowest
conduction band at zone center in Si is p-like while the corresponding band in
Ge is s-like. In this scheme ·-Sn turns out to be a semi-metal because of the
lower energies of the bands derived from the s orbitals. It was first shown by
Herman [2.27] that relativistic effects are responsible for this in gray tin (and
also in HgTe and HgSe. Note, however, that the s-p reversal for HgSe has
recently been the object of controversy; see [2.28]).
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Fig. 2.26. Evolution of s and p atomic orbitals into the conduction and valence bands
at zone center within the tight-binding approximation for Si, Ge, and ·-Sn. The band
ordering for diamond is similar to that of Si.

PROBLEMS

2.1 Template of an fcc Brillouin Zone
Construct a model of the Brillouin zone of the fcc lattice by pasting a copy of
the template shown in Fig. 2.27 on cardboard and cutting along the solid lines.
Score along the broken lines. Tape the edges together.

2.2 Group Theory Exercises
a) Verify the character table of the Td point group as given in Table 2.3.
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L

U
X

Z
W

K

Fig. 2.27. Template for constructing a model of the Brillouin zone of the fcc lattice. Paste
this sheet on thin cardboard and cut along solid lines. Score along broken lines and tape
the joints

b) By applying the symmetry operations of Td to the basis functions in Table
2.3 show that the functions transform according to their respective irreducible
representations.

2.3 Group Theory Exercises
a) By using the character table of Td show that T2 ⊗ T2 � T1 ⊕ T2 ⊕
E ⊕ A1.

b) Verify that the symmetrized linear combinations of the matrix elements of
a second-rank tensor given in Sect. 2.3.4 transform according to the irreducible
representations T1, T2, E, and A1.

2.4 Symmetrized Wave Functions: Transformation Properties
Verify that the symmetrized wave functions in Tables 2.9 and 2.10 transform
according to their respective irreducible representations.



98 2. Electronic Band Structures

2.5 Characters of C3v and C2v Point Groups
Deduce by inspection the characters for the C3v and C2v point groups in Ta-
bles 2.12 and 2.14, respectively.

2.6 Compatibility Relations
Use Tables 2.3, 2.4, 2.12 and 2.14 to verify the following compatibility rela-
tions:
°1 ¢1 §1
°2 ¢2 §2
°3 ¢1 ⊕ ¢2 §3
°4 ¢1 ⊕ ¢3 ⊕ ¢4 §1 ⊕ §3
°5 ¢2 ⊕ ¢3 ⊕ ¢4 §2 ⊕ §3.

2.7 Representations of Nonsymmorphic Groups
a) Using Tables 2.15 and 2.19 show that the doubly degenerate X1 and X2
states in the diamond crystal split into the X1 ⊕ X3 and X2 ⊕ X4 states, re-
spectively, when the diamond crystal (nonsymmorphic) is transformed into a
zinc-blende crystal (symmorphic) by making the two atoms in the primitive
cell different. Under the same transformation the X3 and X4 states remain
doubly degenerate and become the X5 state in the zinc-blende crystal.

b) Some Insight into the Doubly Degenerate Wavefunctions at the X point of
the Brillouin Zone in the Diamond Structure.
Within the free electron approximation, the wave functions at the X point of
the Brillouin Zone can be written as: exp [ik · r] where k � (2/a)(±1, 0, 0),
(2/a)(0,±1, 0), or (2/a)(0, 0,±1). Let us consider the wave functions
„1 � sin [(2/a)x] and „2 � cos [(2/a)x].

Assume that the crystal structure of diamond simply has inversion symme-
try I: (x, y, z) → (�x, �y, �z); then by applying this symmetry operation to „1
we obtain �„1. Since the crystal is invariant under I we expect „1 and I„1
to have the same energy. We find that this is trivially satisfied since „1 and
I„1 are linearly dependent. Thus we cannot conclude that the states „1 and
„2 should be degenerate.

Now we take into account that the inversion operation in the diamond lat-
tice is not simply I but rather I′: (x, y, z) → (�x � (a/4), �y � (a/4), �z � (a/4)).
Applying I′ to „1 we find that: I′„1 � sin [(2/a)(�x � (a/4)] �
sin [(2/a)(�x) � (/2)] � �cos [(2/a)(�x)] � �cos [(2/a)x] � �„2. Since
„1 and „2 are not linearly independent we have to conclude that „1 and „2
are degenerate from the fact that the crystal is invariant under I′. Similarly
one can show that all the other plane wave states at the X point are doubly
degenerate because of this symmetry operation I′.

2.8 Pseudopotential Band Structure Calculation by Hand
The purpose of this exercise is to show how pseudopotentials lift degeneracies
in the nearly-free-electron band structure and open up energy gaps. Since the
pseudopotentials are weak enough to be treated by perturbation theory, rather
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accurate band energies can be evaluated with a pocket calculator without re-
sorting to a large computer.

We will consider only the six lowest energy wave functions at the X point
of a zinc-blende-type semiconductor. In the nearly-free-electron model, the
electron wave functions are given by exp (ik · r), where k � (2/a)(±1, 0, 0)
and (2/a)(0,±1,±1). For brevity these six wave functions will be denoted by
| 100〉, | 100〉, | 011〉, | 011〉, | 011〉, and | 01 1〉.
a) Show that these six wave functions can be symmetrized according to the
following irreducible representations:

„1 � (1/
√

2)[| 011〉 � | 01 1〉] and „2 � (1/
√

2)[| 011〉 � | 01 1〉] ↔ X5
„3 � (1/2){[| 011〉 � | 01 1〉] � i[| 011〉 � | 011〉]} ↔ X3
„4 � (1/2){[| 011〉 � | 01 1〉] � i[| 011〉 � | 011〉]} ↔ X1
„5 � (1/2){[| 100〉 � | 1 00〉] � i[| 100〉 � | 100〉]} ↔ X1
„6 � (1/2){[| 100〉 � | 1 00〉] � i[| 100〉 � | 100〉]} ↔ X3

It should be noted that the pseudopotential form factors in Table 2.21 have
been defined with the origin chosen to be the midpoint between the two atoms
in the primitive cell. In order to conform with this coordinate system, the sym-
metry operations for the group of X have to be defined differently from those
in Sect. 2.3.2. Taking the axes and planes of the point group to intersect at the
midpoint some of the symmetry operations must involve a translation.

b) Calculate the matrix elements of the pseudopotential between these wave
functions. This task can be greatly simplified by using the matrix element the-
orem. Since the pseudopotential V has the full symmetry of the crystal, it has
°1 symmetry. The only states that are coupled by V are then the X3 states „3
and „6 and the X1 states „4 and „5. Show that the resulting 6×6 matrix {Vij}
is ∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

�vs
8 0 0 0 0 0

0 �vs
8 0 0 0 0

0 0 vs
8 � 2va

4 0 0 i
√

2(�va
3 � vs

3)
0 0 0 vs

8 � 2va
4 i

√
2(�va

3 � vs
3) 0

0 0 0 �i
√

2(�va
3 � vs

3) �va
4 0

0 0 �i
√

2(�va
3 � vs

3) 0 0 �va
4

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
c) Diagonalize the secular determinant∣∣∣∣∣

(
�2k2

2m
� E

)
‰ij � Vij

∣∣∣∣∣ � 0

by reducing it to three 2×2 determinants. Show that the resultant energy levels
are

E(X5) �
42�2

ma2 � vs
8,
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E(X1) �
1
2

(
62�2

ma2 � vs
8 � 3va

4

)

± 1
2

⎡⎣(
22�2

ma2 � vs
8 � va

4

)2

� 8(va
3 � vs

3)2

⎤⎦1/2

,

E(X3) �
1
2

(
62�2

ma2 � vs
8 � 3va

4

)

± 1
2

⎡⎣(
22�2

ma2 � vs
8 � va

4

)2

� 8(va
3 � vs

3)2

⎤⎦1/2

.

d) Calculate the energies of the X1, X3, and X5 levels in GaAs by substituting
into the expression in (c) the pseudopotential form factors for GaAs. Take the
lattice parameter a to be 5.642 Å. In Fig. 2.28 these results are compared with
the nearly free electron energies and with the energies obtained by the EPM.

e) If you want to improve on the present calculation, what are the plane wave
states and pseudopotential form factors you should include?

Note: Often in the literature, the origin of the coordinates adopted by the au-
thors is not specified.4 The symmetry of the band structure at the X point
of the zinc-blende-type crystal depends on the choice of origin and this has

Free electron
model

Empirical pseudopotential
model

Pseudopotential
by hand

X1, X3, X5

X1, X3

4.72 eV

1.0eV

4.3eV

4.3eV

4.7eV

X1

X3

X5

X3

X1

}
} Conduction

band

Valence
band

4.6eV

5.6eV

2.74eV

0.74eV
X3

X1

X5

X3

X1

Fig. 2.28. The lowest energy bands at the X point of GaAs computed by the nearly free
electron model, the EPM, and the perturbation approach of Problem 2.8. The X1–X3

notation corresponds to ˘a
j � 0, i. e., to placing the cation at (a/4)(111) and the anion at

the origin.

4 We assume, implicitly, that the origin is also the common point of the point group axes
which specify the symmetry.
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caused considerable confusion, see [2.29]. For example, if the origin is chosen
at the anion the conduction band with the X1 symmetry is mainly composed
of the anion s wave function and cation p wave function. On the other hand,
the X3 conduction band state is made up of the cation s wave function and
the anion p wave function. In all zinc-blende-type semiconductors with the
exception of GaSb [2.30, 31] the X1 state has lower energy than the X3 state.
If the origin is chosen at the cation, the signs of ˘a

j and, correspondingly, the
roles of X1 and X3 are reversed.

2.9 Wave Functions of the L-Point of Zinc-Blende
Using the symmetrized k � (2/a)(1, 1, 1) wave functions in the nearly free
electron model for zinc-blende-type crystals:

°1:
√

8 cos (2x/a) cos (2y/a) cos (2z/a);
°4(x):

√
8 sin (2x/a) cos (2y/a) cos (2z/a),

and similar wave functions for °4(y) and °4(z) in Table 2.9,

show that the matrix elements of the momentum operator p between the °1
and °4 functions are given by

|〈°1 |px |°4(x)〉|2 � |〈°1 |py |°4(y)〉|2 � |〈°1 |pz |°4(z)〉|2 � (2�/a)2

while all the other matrix elements of pi such as |〈°1 |px |°4(y)〉|2 are equal
to 0.

2.10 Double Group Representations
In many quantum mechanics textbooks one can find the following result. The
effect of a rotation by an infinitesimal amount ‰ı with respect to an axis de-
fined by the unit vector n̂ on an orbital wave function f (r) can be obtained
by applying the operator exp [�i‰£n · l/�] to f (r). For a spin s � 1/2 particle
the corresponding operator on the spin wave functions due to rotation by an
angle £ is given by exp [�i£n̂ · ÛÛÛ/2]. Using this operator,. show that:

a) The effect of a 2 rotation on the wave functions · and ‚ of a spin
1/2 particle is to change the sign of · and ‚, and hence the corresponding
trace of Ê is �2;

b) the traces corresponding to the symmetry operations in Table 2.23 within
the basis · and ‚ are

2 0
√

2 0 1 �2 �
√

2 �1

{E} {3C2} {6S4} {6Û} {8C3} {Ê} {6ÊS4} {8ÊC3}
{3ÊC2} {6ÊÛ}

c) The Double Group at the X Point of the Zinc-Blende Structure
As an additional exercise on the calculation of double group character table,
we shall consider the X point of the zinc-blende structure.



102 2. Electronic Band Structures

The first step is to decide what are the classes in the double group. In this
case we need only to compare the single group and double group classes at
the zone center since the classes of X form a subset of these classes. It should
not be difficult to see that there are now 7 classes:

{E}, {C2
4(x), ÊC2

4(x)}, {2C2
4(y, z), 2ÊC2

4(y, z)}, {2S4}, {2md}, {Ê} and {ÊS4}.

Using the results of Problem 2.10 one can show that the characters of these
operations on the two spin wavefunctions are:

E C2
4(x), ÊC2

4(x) 2C2
4(y, z), 2ÊC2

4(y, z) 2S4 2md Ê ÊS4

2 0 0
√

2 0 �2 �
√

2

Using this result we can show that the character table for the double group of
the X point in the zinc-blende crystal is:

E C2
4(x), ÊC2

4(x) 2C2
4(y, z), 2ÊC2

4(y, z) 2S4 2md Ê ÊS4

X1 1 1 1 1 1 1 1
X2 1 1 1 �1 �1 1 �1
X3 1 1 �1 �1 1 1 �1
X4 1 1 �1 1 �1 1 1
X5 2 �2 0 0 0 2 0
X6 2 0 0

√
2 0 �2 �

√
2

X7 2 0 0 �
√

2 0 �2
√

2

Using these characters the reader should show that the X1, X3, and X5 rep-
resentations in the zinc-blende structure (see Problem 2.10) go over to the
X6 ⊗ X1 � X6, X6 ⊗ X3 � X7 and X6 ⊗ X5 � X6 ⊕ X7 representations in the
double group (see, for example, the band structure of GaAs in Fig. 2.14).

2.11 The Structure Factor of Bond Charges in Si
The intensity of x-ray scattering peaks from a crystal depends on the structure
factor S of the crystal.

The structure factor of the Si crystal (face centered cubic or fcc lattice), in
particular, is discussed in many standard textbooks on solid state physics, such
as Kittel’s “Introduction to Solid State Physics” (Chap. 2 in 6th Edition). The
basis of the fcc structure is usually taken to be the cubic unit cell with four
atoms per unit cube. These four atoms can be chosen to have the locations
at (0, 0, 0); (0, 1/2, 1/2); (1/2, 0, 1/2) and (1/2, 1/2, 0) [in units of the size of the
cube: a]. The structure factor Sfcc(hkl) for a wave vector (h, k, l) in reciprocal
space then vanishes if the integers h, k and l contain a mixture of even and
odd numbers. In the case of the Si crystal there are now 8 atoms per unit cube
since there are two interpenetrating fcc sublattices displaced from each other
by the distance (1/4, 1/4, 1/4). As a result, the structure factor of the Si crystal
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SSi(hkl) is given by:

SSi(hkl) � Sfcc(hkl)[1 � exp (i/2)(k � k � l)].

This implies that SSi(hkl) will be zero if the sum (h � k � l) is equal to 2
times an odd integer. When combining the above two conditions one obtains
the result that SSi(hkl) will be non-zero only if (1) (k, k, l) contains only even
numbers and (2) the sum (h � k � l) is equal to 4 times an integer. See, for ex-
ample, Kittel’s “Introduction to Solid State Physics” (Chap. 2 in 6th Edition),
Problem 5 at the end of Chap. 2. Based on this result one expects that the
diffraction spot corresponding to (2, 2, 2) in the x-ray diffraction pattern of Si
will have zero intensity since h � k � l � 6.

It has been known since 1959 that the so-called forbidden (2, 2, 2) diffrac-
tion spot in diamond has non-zero intensity (see Ref. [3.23] or Kittel’s “Intro-
duction to Solid State Physics”, p. 73 in 3rd Edition). It is now well established
that the presence of this forbidden (2, 2, 2) diffraction spot can be explained
by the existence of bond charges located approximately mid-way between the
atoms in diamond or silicon. What is the structure factor of the bond charges
in the Si crystal if one assumes that they are located exactly mid-way between
two Si atoms?

2.12 Matrix Elements of p
a) Show that all matrix elements of p between the °4 valence bands and
the °4 conduction bands of zinc-blende-type semiconductors of the form
〈X |px |°4c(z)〉, 〈Z |py |°4c(z)〉, or 〈X |py |°4c(y)〉, where at least two of the
labels x, y, or z are identical, vanish as a result of the requirement that the
crystal is invariant under rotation by 180˚ with respect to one of the three
equivalent [100] axes.

b) As a result of (a), the only nonzero matrix elements of p are of the form
〈X |py |°4c(z)〉. Using the three-fold rotational symmetries of the zinc-blende
crystal, show that

〈X |py |°4c(z)〉� 〈Y |pz |°4c(x)〉� 〈Z |px |°4c(y)〉

and

〈X |pz |°4c(y)〉� 〈Y |px |°4c(z)〉� 〈Z |py |°4c(x)〉.

c) Finally, use the reflection symmetry with respect to the (110) planes to show
that

〈X |py |°4c(z)〉� 〈Y |px |°4c(z)〉.

2.13 Linear Terms in k
Show that the k linear term due to the k · p interaction is zero in the zinc-
blende crystal at the °-point.
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2.14 k · p Method
a) Use (2.52) to calculate the elements of the 6×6 matrix {H′

ij}.

b) Use a computer and a matrix diagonalization program to calculate the va-
lence band structure of GaAs from these parameters for GaAs:
P2/(m0) � 13 eV; Q2/(m0) � 6 eV; E0 � 1.519 eV; E′

0 � 4.488 eV; ¢ � 0.34 eV
and ¢′

0 � 0.171 eV.

2.15 Valence Bands; k · p Hamiltonian
a) Calculate the 4×4 matrix obtained by taking matrix elements of the Lut-
tinger Hamiltonian in (2.70) between the Jz � ± 3/2 and ±1/2 states of the
J � 3/2 manifold.

b) Diagonalize this 4×4 matrix to obtain two sets of doubly degenerate levels
with energies

E± �
�2

2m
{Á1k2 ± [4Á2

2k4 � 12(Á2
3 � Á2

2)(k2
xk2

y � k2
yk2

z � k2
zk2

x)]1/2}.

c) By comparing the results in (b) with (2.66) derive (2.71).

d) Calculate the contributions of the lowest °�
3 conduction band term to Á1,

Á2, and Á3. Show that it is not negligible for silicon and diamond [2.22].

2.16 Energy Bands of a Semiconductor in the Tight-Binding Model
a) Derive the 8×8 matrix for the s and p band energies in a zinc-blende-type
semiconductor using the tight-binding model.

b) Show that at k � 0 the energies of the s and p bands are given by

Es±(0) � 1
2 (Es1 � Es2) ± 1

2 [(Es1 � Es2)2 � 4 |Vss |2]1/2

and

Ep±(0) � 1
2 (Ep1 � Ep2) ± 1

2 [(Ep1 � Ep2)2 � 4 |Vxx |2]1/2

instead of (2.84a) and (2.84b). Es1 and Es2 are the atomic s level energies
〈S1 |�0 |S1〉 and 〈S2 |�0 |S2〉, respectively, while Ep1 and Ep2 are the corre-
sponding energies for the atomic p levels.

2.17 Tight Binding Overlap Integrals
Evaluate the geometric factors Ùll′m in Table 2.27.

2.18 Tight Binding Hamiltonian
Given two p orbitals, one located at the origin and the other at the point
d(cos £x, cos £y, cos £z), where d is the distance between the two p orbitals
and cos £x, cos £y, and cos £z are the directional cosines of the second p or-
bital, show that the overlap parameters Vxx and Vxy are given by

Vxx � VppÛ cos 2£x � Vpp sin 2£x,

Vxy � [VppÛ � Vpp] cos £x cos £y.

2.19 Conduction and Light Hole Bands in Small Band Gap Semiconductors
Write down the 2 × 2 Hamiltonian matrix which describes the conduction and
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the light hole band of a narrow gap semiconductor such as InSb. Diagonal-
ize it and discuss the similarity of the resulting expression with the relativistic
energy of free electrons and positrons [4.28]. Use that expression to estimate
non-parabolicity effects on the conduction band mass.

Comments on the Equivalence of the Brillouin Zone Edge Points U and K 3
In these figures the zone-edge points U and K are indicated to be equivalent.
This is true strictly only for Bloch waves indexed by these points which lie on the
Brillouin Zone (BZ) surface but not for for waves with wave vector along the
lines joining them to X nor to °. This is easily seen from the fcc lattice template
in Fig. 2.27. Both U and K lie on the hexagonal Brillouin zone face along the
[111] direction. However, the line X-U is in general not equivalent to the line X-
K. For the endpoints U and K which lie on the BZ boundary their Bloch waves
become equivalent in the diamond lattice as a result of the three-fold rotation
and the “inversion symmetry” operations of the lattice. Also only the line °-K
is along the [110] or ™ direction so the label for the horizontal axis °-™-U,K in
these figures refers to K only. In the zincblende structure without the “inversion
symmetry” U and K are no longer equivalent as can be seen from Fig. 2.14
and 2.15. In Figures 3.2, 3.10 and 3.11 this problem is avoided by not labeling
the symmetry points indicated by a broken vertical line in these figures. This
symmetry point is really K as we can conclude from the above discussion. We
are grateful to Dr. L.C. Andreani of the University of Pavia, Italy for pointing
out this ambiguity to us.

2.20 Parity of the s-like Electron Wavefunctions at the L point of Si and Ge
In discussing the valence and conduction band structures of diamond-type
semiconductors based on the tight-binding approximation, we point out that
the valence bands are formed from the bonding orbitals while the conduction
bands are formed from the anti-bonding orbitals. Furthermore, we note that
the bonding orbitals have even parity under inversion in order that the elec-
tron charge density be higher at the center of the bond. On the other hand,
the antibonding orbitals have odd parity under inversion. This result explains
why the valence bands at the zone center of Si (see Fig. 2.10) and Ge (see
Fig. 2.13) have even parity while the conduction bands at the zone center have
odd parity. This is not true at the L point of the Brillouin zone. [It should be
noted that along many high symmetry directions, such as ¢ and §, inversion
is not a symmetry operation since k and �k are not identical. However, at the
L point k and �k are the same in the reduced zone scheme and hence parity
is a good quantum number.].

The lowest energy valence band state at the L-point (which arises from
the bonding s-orbital) has odd parity (L�

6 in Ge and L2′ in Si) while the lowest
energy conduction band (which arises mainly from the anti-bonding s-orbital)
has even parity (L�

6 in Ge and L1 in Si) under the special inversion operator
I′ of the diamond lattice.



106 2. Electronic Band Structures

(a) Calculate the energy and wave functions of these bands at the L point di-
rectly by using the nearly-free electron model (use reasonable approximations
to simplify the problem as far as possible) and check the parity of the resulting
wave functions under the “inversion” operation I′.

(b) Repeat your calculation by using the tight-binding model and check again
the parity of the resulting wave functions under the operation I′.

(c) Why does the odd parity state have lower energy rather than the even par-
ity state at the L point? Does this result somehow violate the “compatibility
relation” in changing a bonding state at k � 0 into an anti-bonding state at
the L point?

SUMMARY

A semiconductor sample contains a very large number of atoms. Hence a
quantitative quantum mechanical calculation of its physical properties con-
stitutes a rather formidable task. This task can be enormously simplified by
bringing into play the symmetry properties of the crystal lattice, i. e., by us-
ing group theory. We have shown how wave functions of electrons and vibra-
tional modes (phonons) can be classified according to their behavior under
symmetry operations. These classifications involve irreducible representations
of the group of symmetry operations. The translational symmetry of crystals
led us to Bloch’s theorem and the introduction of Bloch functions for the
electrons. We have learnt that their eigenfunctions can be indexed by wave
vectors (Bloch vectors) which can be confined to a portion of the reciprocal
space called the first Brillouin zone. Similarly, their energy eigenvalues can
be represented as functions of wave vectors inside the first Brillouin zone,
the so-called electron energy bands. We have reviewed the following main
methods for calculating energy bands of semiconductors: the empirical pseu-
dopotential method, the tight-binding or linear combination of atomic orbitals
(LCAO) method and the k·p method. We have performed simplified versions
of these calculations in order to illustrate the main features of the energy
bands in diamond- and zinc-blende-type semiconductors.


