
A Delegation Framework for Access Control in WfMS based on Tasks and
Roles

P., Jian, H.-J., Hsu, and F.-J. Wang
Department of Computer Science

National Chiao-Tung University, Taiwan
{pjian, hjhsu, fjwang}@cs.nctu.edu.tw

Abstract

Access control is important for protecting the
information integrities in WfMS’s. Compared to
conventional access control models such as
discretionary, mandatory, and role-based access
control models, an access-control model based on both
tasks and roles meets more requirements for modern
enterprise environments. However, there are no
discussions on delegation mechanisms for such a
model. In this paper, we propose a new delegation
framework to support the access control associated
with the model. Among various delegations, two
typical cases and their solution algorithms are
presented to indicate the usability of the framework.

Keywords: Workflow Management System (WfMS),

task, role-based access control, delegation

1. Introduction

Workflow Management Systems (WfMSs)
coordinate resources and business processes
systematically for modern enterprises [8]. During
operation of business processes, activities performed
by employees are regulated by access control systems.
Role-based access control (RBAC) model groups users
with similar permissions into roles and is known as a
suitable access control mechanism for enterprise
organizations [1][2]. However, business processes
operate based on not only roles but also tasks. Instead
of RBAC, TRBAC [1] manages access control with
both tasks and roles and thoroughly meets the
requirements of modern enterprises. However, the
delegation mechanisms for TRBAC are still left un-
discussed, and the frameworks for such mechanisms
would be constructed in this paper.

When an employee meets accidents on business or

in privacy, the tasks operated by him might be halt or

be delegated. In case a task is delegated, the
mechanism(s) for delegation are required for the access
control system to protect important information and to
assure the process operation normally. Delegation
approaches are often built based on access control. For
example, RBDM0 [10], RBDM1 [4], and the methods
in [5], [6] and [13] work for all delegation models
constructed based on RBAC96 [2]. Therefore, it is also
necessary to construct delegation approaches for
TRBAC.

In this paper, based on the TRBAC model, we

present a delegation framework which makes
delegations to systematically operate in WfMS’s. To
indicate the usability of the framework, we discuss two
typical cases of delegation, and their solution.

The rest part of this paper is organized as follows.

RBDM’s and TRBAC models are introduced in section
2. Our delegation framework for tasks and roles is
described in section 3. In section 4, two typical
delegation cases under the framework and their
solution approaches are presented. Finally, the
conclusions and future works are presented in section
5.

2 Backgrounds

2.1 RBAC-based Delegation Approaches

Based on RBAC96, RBDM0 [10] provides a

flexible way for granting and revoking permissions
between roles. RBDM1 [4], an extension of RBDM0,
is more realistic since it organizes the roles with
hierarchy instead of the latter's flat model. On the other
hand, by identifying "can-delegate" relationships
between roles, both techniques are focused on role-to-
role delegations.

In [5], the user-to-user delegation is considered. The

essence of this delegation model is that a user

12th IEEE International Workshop on Future Trends of Distributed Computing Systems

1071-0485/08 $25.00 © 2008 IEEE

DOI 10.1109/FTDCS.2008.13

165

delegates a particular right to another user.
Nevertheless, unlike RBDM1, this model allows partial
delegations, i.e., a user might delegate part of his
permissions to another user rather than the whole role.
Depending on the delegator's knowledge and
experiences, this model may prevent unnecessary
authorization from happening.

Osborn separates users in organization, role

hierarchies, and relationships among privileges into
different graph models in [6][7]. The role graph model
gives a visualization presentation about the permission
and role assignments. The delegation adopted in [6][7]
shows a simple way to delegate privileges to users by
creating a delegatee role. This special role provides a
convenient way to delegate total or partial permissions
of a role.

In RBAC based delegation approaches summarized

above, privileges are delegated among users, and it is
important for users to acquire appropriate permissions
to execute the delegated work. Security problems may
arise if the delegatee acquires too much permission; on
the contrary, the delegated work may not be
accomplished without enough privileges. The
approaches may allow delegator to decide how much
authority is required for the delegatee; however, the
decision which reduces troubles is based on the
delegator's wisdom.

2.2 Task-role based access control (TRBAC)

Task-Role-Based Access Control Model (T-RBAC)

[1] is proposed by adapting RBAC96 to modern
enterprise environments. TRBAC binds permissions on
tasks and groups users operating the same tasks into
roles. In a WfMS, tasks are the fundamental units of
business processes. Restricting the access rights of
business objects on tasks helps permission
management and reduces risks in inappropriate
permission authority made by users. For example, the
project budget data are not allowed to be accessed by
an engineer. However, an engineer may get these data
through the budget request task. This scenario
expresses a security fraud in RBAC model, where a
user can access an unauthorized datum through the
authorized task. TRBAC eases these conditions by
binding permissions on tasks.

In TRBAC, there are responsible tasks for each role

and the permissions of business objects are bound with
specific tasks. In other words, TRBAC supports the
active access control through binding the permissions

on tasks and sustains the passive access control by
grouping users into roles.

In TRBAC model [1], a business process can be

viewed as an executing sequence of tasks and the tasks
within business processes are offered or allocated to
users according to the process schema. Therefore, the
tasks coordinated by business processes are under
active access control. On the contrary, there are also
tasks not belonging to any business processes. These
tasks are routine works irrelative to business processes
such as private tasks or supervision tasks, and therefore
the tasks are classified as under passive access control.

Organization structure gives a view of authority

hierarchies. Authorities assigned to descendent job
positions or business roles might be inherited by its
ancestor roles. In other words, besides the tasks
assigned to the corresponding roles, a user may obtain
tasks inherited from its descendent roles. Thus, the
tasks in TRBAC model can be categorized into four
classes in Table 1:

Table 1 Classes of tasks in TRBAC model

 Non-inheritable Inheritable

Passive access P (private) S (supervision)
Active access W (workflow) A (approval)

The tasks in class P and S are personal and not

related to any business processes and are not delegated.
Therefore, in this paper, only are the delegations of the
tasks in class W and A considered in our framework.

3 The Delegation Framework for Tasks
and Roles

In this section, our delegation framework, based on

both tasks and roles, is constructed. Then, the
components and their relationships in the framework
are introduced.

Conventionally, the one who delegates his

privileges or tasks to others is called the delegator, and
the one who accepts the delegated objects is called the
delegatee. There might be multiple delegatees in one
delegation; such a condition is defined as the multiple
delegations in [4]. On the other hand, the level of a
delegation is also defined to restrict the times a work
can be further delegated. These definitions are used in
RBDM related researches such as [5] and [10], and our
works also.

166

Figure 1 The life cycle of a work item

Tasks define how business works are accomplished,

and work items are the run-time instances of tasks. A
work item is generally executed by a user playing one
of the roles assigned to the instantiation task. Figure 1
[11] illustrates the life cycle of a work item from
initiation, offering, allocation, operation to completion.
The work items currently executed by a user are
recorded in his/her work list. Figure 2 shows the
relationships between components in our frameworks.
Roles are assigned to tasks and played by users. Work
items are instantiated from tasks and executed by
users. Permissions constraining access to business
objects are bound on tasks and followed by the
corresponding work items instantiated. Role
hierarchies indicate inheritance relationships between
roles to reflect organization lines of authority or
responsibility [2].

Similar to an activity defined in [14], a task is the

basic component which describes a piece of work
forming a logical step within a process. However, in
TRBAC model, a task is assigned to roles and
describes the required permissions. Each role can be
viewed as a collection of users with similar
responsibilities, i.e., a collection of users who can
execute the same kind of tasks. A user can play
multiple roles for business, and a role can also be
played by multiple users. On the other hand, the
Permission records the access constraints for tasks to
business objects.

Since a task can be assigned to multiple roles, a

work item is active with one of the roles assigned to its
instantiation task, and is executed by the user playing
the active role. Therefore the active role of a work item
is defined as the role played by the user when he/she
executes the work item.

Figure 2: The relationships between
components

Let T, R, U, I and P be the sets for tasks, roles,

users, work items, and permissions. The relationships
between the components are defined in Definition 1.

Definition 1 (Relationships between the
components)
1. TA ⊆ T×R is a set of many-to-many relationships

for assigning tasks to roles.
2. TI ⊆ T× I is a set of one-to-many relationships for

instantiating a task to work items.
3. UP ⊆ U×R is a set of many-to-many relationships

for users playing roles.
4. UEA ⊆ U × I × R is a set containing elements

167

indicating that a user u who is now playing a role r
on executing a work item i. ∀ (u, i, r)∈UEA, (u,
r)∈UP

5. TP ⊆ P×T is a set of many-to-many relationships
assigning permissions to tasks.

6. IP ⊆ P× I is a set of many-to-many relationships
assigning permissions to work items. The
permissions assigned to any work item must be the
same as its corresponding relationship in TI.

7. RH ⊆ R × R is a set of role hierarchies. ∀ (r1,
r2) ∈ RH, (r1, r2) shows a partial order that all
inheritable tasks assigned to r1 are also assigned to
r2.

As the relationships between components are

described, the attributes within each component such
as status and timing features are described in
Definition 2.

Definition 2 (Attributes of components)
1. ∀ t∈T, t.d and t.D represent the minimum and

the maximum predicted working duration of the
task t. t.type = {TS, TW, TP, TA} is defined as in
TRBAC model [11].

2. ∀ i ∈ I, i.st shows the instantiated time of the
work item. i.status = {SI, SO, SA, SE, SC, SS}
shows the status of the work item that is initiated,
offered, allocated, being executed, completed, or
suspended [11]. i.ar = {r | r∈R, (t, i)∈TI, (t,
r)∈TA} is the active role of i.

3. ∀ u∈U, u.wl = {i | (u, i)∈UE, i.status = {SA, SE,
SS}} is the work list of the user. u.status = {UR,
UU} shows the status of the user is ready or
unavailable.

The role hierarchies describe role-to-role

relationships as described in Definition 1. To facilitate
our discussion, the relationships between roles can be
defined in more detail with the role hierarchies
indicated in Definition 3.

Definition 3 (Relationships in role hierarchies)
∀ r, r’∈R, r’ >r r or r <r r’ if and only if there exists
roles r1, … rk that (r, r1), (r1, r2), … , (rk, r’)∈RH.
DisRH() is defined as a function showing the
distances between roles in role hierarchies:

1) IF r’ >r r DisRH (r’, r) = k+1, and DisRH (r,

r’) = -(k+1)
2) If (r, r’)∈RH, DisRH (r’, r) = 1 and DisRH

(r’, r) = -1
3) If neither r’ >r r nor r’ <r r, DisRH (r, r’) and

DisRH (r’, r) are undefined
4) Otherwise, DisRH(r, r) = 0

4 Delegation Approaches in the Framework

In this section, the approaches for delegations and

revocations are constructed based on the framework.
The properties for a delegation are discussed, and the
algorithms are described.

The rest of this section is organized as follows:
Section 4.1 describes the algorithm for committing a
delegation in our framework. On the other hand, the
algorithm for revoking a delegation is discussed in
section 4.2.

4.1 The properties and the algorithm for
delegation in the framework

Information for delegations is basically defined in

tasks and roles; however, work items, the instances of
tasks, are actually delegated during run-time.
Therefore, in our discussion, the delegator is the user
who delegates a work item to another user, and the
delegatee of the delegation is the user who accepts the
delegated work item. The active role of the delegated
work item is called the delegation role.

The relationship for delegation in our framework is

formally defined in Definition 4.

Definition 4 (The relationship for delegation)
UDA ⊆ U × U × I is a set containing elements
showing the user delegation assignment, where the
former user, the delegator, delegates a work item to
the latter one, the delegatee.

There are various approaches to decide the

delegatee for each case of delegation. Assume that the
delegatee is decided through a delegatee selection
function. To facilitate revocation and other constraint
checking, a temporary role is defined. When a
delegation occurs, a temporary role is created and
assigned to the corresponding task of the delegated
work item. With the delegatee selection function, a
proper delegatee is selected to play the temporary role,
than the delegated work item is re-allocated to the
delegatee.

168

In Definition 15, a work item, the instance of a task,
is defined to be executed by one user; thus the case of
multiple delegations cannot occur. However,
delegation with multiple levels is allowed. Whenever a
delegated work item is further delegated, a new
delegatee is selected to replace the original delegatee to
play the temporary role. The replaced delegatee who is
now a delegator is added to the history delegator list
recorded in the temporary role. Not only records the
information about delegation with multiple levels, the
history delegator list also prevents loop assignment
from happening.

Definition 5 (Temporary role)
Let TR be the set of temporary roles. ∀ tr ∈ TR,

tr.i ∈ I is the delegated work item, tr.u is the
current delegatee, tr.ar is the original active role of
tr.i, and tr.hul is the user list recording past
delegators of the delegated work item.

For (t, tr.i) ∈ TI and (t, tr) ∈ TA, such that (tr.u,
tr)∈UP and (tr.u, tr.i, tr)∈UEA.
Let the size of tr.hul be k, (uk, tr.u, i)∈UDA, and if
k>1, ∀ 1<j<k, (uj, uj+1, i)∈UDA

Figure 3 shows a sample case of delegation in our

framework. Task1 is originally assigned to Role1 for
execution. Originally, WorkItem1 is instantiated from
Task1, and assigned to User1 who plays Role1. When
a delegation for WorkItem1 is requested,
TemporaryRole1 is created to accept Task1. Let User2
be decided as the delegatee, the WorkItem1 is re-
allocated to User2. In case, User2 requests a delegation
again, delegation in multiple levels happens. If User3
is selected as the new delegatee, User3 replaces User2
to play TemporaryRole1. WorkItem1 is than re-
allocated to User3, and the relationship between User2
and TemporaryRole1 is destroyed.

Figure 3: A sample delegation

Algorithm 1 indicates how to a delegation operating

in our approach. In this paper, the framework for
delegation in TRBAC is discussed, and therefore the
functions for delegatee selection are left for the future
works. In the following algorithm, we assume that
there exist delegatee selection functions for different
enterprises.

Algorithm 1 (Delegation)
Input: the delegating work item i, the original

executor u, and the active role r. (u, i, r)∈UEA
Output: a boolean indicating whether the delegation

is successful
Begin
 // too see if it is delegation with multiple levels

if (∀ tr∈TR, ∃ tr.i == i) ttr = tr
else {

create new temporary role ttr and add ttr to TR
ttr.i = i, ttr.u =φ , ttr.ar = r, ttr.hul =φ
for (t, i)∈TI, add (t, ttr) to TA

 }
set ttr.u to the user ud

ud is decided by some delegatee selection
function

if (ttr.u == NULL) return false
else {

// reallocate the work item to the delegatee
remove (u, i, r) from UEA
add (ttr.u, i, ttr) to UEA
remove i from u.wl and add i to ttr.u.wl
add (u, ttr.u, i) to UDA , add u to ttr.hul
i.status = SA

169

 }
 return true
End

Algorithm 1 first checks whether the delegation is

an existing one. If not, a new temporary role for the
new created delegation is initiated. With the presumed
delegatee selection function, a user would be
designated to execute the delegated work item. The
work item is re-allocated to the selected delegatee, and
the original executor is added to the history user list
recorded in the temporary role.

4.2 The algorithm for revocation of a
delegation

When the user is available for a work item

previously delegated by him, he may also revoke the
delegated work item back. The revocation of a
delegation can be discussed in several aspects. First, a
revocation may be requested by the original owner of
the work item or by one of the middle delegatees in
multiple levels delegation. In the former situation, the
work item is re-allocated to the original executer and
the temporary role is eliminated. In the latter situation,
the work item is re-allocated to the middle delegatee
who requests the revocation, and the other delegatees
after him in the history delegatee list are removed.

Second, the timing of revocation is considered. A

revocation may happen before or during the operation
of the delegated work item. In the latter circumstances,
the work item already started might be rolled back
before it is transferred to the requestor of revocation,
i.e. the work already done by the delegatee is discarded
and the work is restarted. On the other hand, the work
item may also be revoked directly and the requestor of
revocation continues the work unfinished by the
delegatee.

Algorithm 2 describes how to make a revocation in

our framework..

Algorithm 2 (Revocation)
Input: tr∈TR, tr is the temporary role related to the
revoked work item
 u∈U, u is the user who requires the revocation
Output: a boolean indicating if the revocation is
successful
Begin

If (u∉ tr.hul) return false
Else {

let tr.hul = {u1, … , uk}, and u == ui
for j = i..k-1 {

remove (uj, uj+1, i) from UDA
remove uj from tr.hul

}
remove (uk, tr.u, tr.i) from UDA
if (roll back is required)

for (t, tr.i)∈TI, tr.i = new instance of t
remove i from tr.u.wl and add i to ui.wl
tr.i.status = A
if (ui == u1) {

 remove (tr, i) from TI
remove tr from TR, and destroy tr
remove (tr.u, i, tr) from UEA
add (ui, i, tr.ar) to UEA

 }
else {

remove (tr.u, i, tr) from UEA
add (ui, i, tr) to UEA
tr.u = ui

 }
 }
 return true
End

Only can the user who delegates the work item

revoke it back, and therefore, Algorithm 2 first checks
this constraint. If the user asking for revocation of the
work item is not recorded in the history delegator list
of the corresponding temporary role, the revocation
fails. Nevertheless, once the revoked work item was
delegated in multiple levels, the delegatees after the
revoking user are released from the delegation. Before
the work item is re-assigned to the revoking user, roll
back is invoked if necessary.

5. Conclusion and Future Work

In this paper, by observing the behaviors of

delegation, a framework for delegation based on tasks
and roles is proposed. The components for the
delegation are described, and the methodologies for
both delegation and revocation are constructed.

In the future, delegatee selection functions needs to

be constructed for usage of this framework. Besides the
approach described in [12], the delegatee might be
selected by delegator in the user-authorized style, or be
determined dynamically by a WfMS during run-time.

170

Constraints in delegation such as timing constraints
and SoD constraints can be discussed further and the
methods for detection need be constructed if the
candidates violating the constraints.

6 References
[1] Sejong Oh, Seog Park, "Task-role-based access
control model," Information Systems, Volume 28,
Issue 6, pp. 533-562, September 2003
[2] R. S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E.
Youman, "Role-Based Access Control Models," IEEE
Computer 29(2): 38-47, IEEE Press, 1996.
[3] Simon, R.T.; Zurko, M.E., "Separation of duty in
role-based environments," 10th Computer Security
Foundations Workshop, pp.183-195, 1997.
[4] Ezedin Barka, Ravi Sandhu, "Role-Based
Delegation Model/Hierarchical Roles (RBDM1)," 20th
Computer Security Applications Conference, pp. 396-
404, Dec. 2004
[5] Jacques Wainer, Akhil Kumar, "A Fine-grained,
Controllable, User-to-User Delegation Method in
RBAC," ACM symposium on Access control models
and technologies (SACMAT), pp. 59-65, 2005
[6] He Wang, Sylvia L. Osborn, "Delegation in the
Role Graph Model," ACM symposium on Access
control models and technologies, pp. 91-100, 2006
[7] Matunda Nyanchama, Sylvia Osborn, "The Role
Graph Model and Conflict of Interest,"ACM
Transactions on Information and System Security, Vol.
2, No. 1, pp. 3-33 1999
[8] Workflow Management Coalition Terminology &
Glossary, WFMC-TC-1011, 1994
[9] R. A. Botha, J. H. P. Eloff, “Separation of duties
for access control enforcement in workflow
environments,” IBM System Journal, Vol. 40, No.3,
pp. 666-683, 2001.
[10] E. Barka and R. Sandhu. “A role-based delegation
model and some extensions,” In 23rd National
Information Systems Security Conference, Baltimore,
MD, October 2000
[11] N. Russell, A.H.M. ter Hofstede, D. Edmond, and
W.M.P. van der Aalst, “Workflow Resource Patterns,”
BETA Working Paper Series, WP 127, Eindhoven
University of Technology, Eindhoven, 2004.
[12] J.W. Wang, C.H Chang, and F.J. Wang, “An
Analysis of Delegation Mechanism in Workflow
Management System,” in proceedings of 2003
National Computer Symposium.
[13] J. B. D. Joshi, and E. Bertino, “Fine-grained Role-
based Delegation in Presence of the Hybrid Role
Hierarchy,” in Proceedings of the 11th ACM
symposium on Access control model and technologies,
pp. 81-90, 2006

[14] Workflow Management Coalition, “Workflow
Management Coalition, Terminology & Glossary,”
Document Number WFMC0TC-1011, Document
Status – Issue 3.0, Feb. 99’

171

