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Abstract—DARWIN is a tool that is able to synthesize need of sizingnany topologiesHowever, dot of expert de-

CMOS opamps, on the basis of a genetic algorithm. A ran- sjgn knowledge isrequired to generate the essential design
domly generated initial set ofopamps evolves to &et in which equations.

the topologies as well as the transistor sizes of tlopamps are

adapted to the required performance specifications. Several In this paper, we presentpaototype synthesis tool DAR-
design examples illustrate the behavior of DARWIN. WIN, which is based on a genetityorithm [7, 8]. The ge-
netic algorithm maintains a populationpa¥ssible solutions,
of which thetopologies as well athe parameters gradually

. . . evolve tothe final solution. Thenain characteristics of
The analog part of a complex mixed-sigagstem is often DARWIN are:

small compared to the digitplart. However,the design of
the analog part isftenthe most time consumingart in the * Simultaneous topology selection and circuit sizing.
entire design. The reasdor this is that analodjbrary cells « Topologiesare build up fronbasic buildingblocks by the

|l. INTRODUCTION

areusuallynot suitable foall required analofunctions [1]. program itself.
The remaining analog circuits have to be designetldmd « Topology selectionand circuit sizing are performed by
or preferable with the help of analog synthesis tools. means of a genetic algorithm.

Analog circuit synthesisan bedivided intotwo strongly ¢ Only a little amount of expert desighnowledge is re-
related tasks: The selection of a suitable ciragblogy and ~ duired in the program.
circuit sizing. During theopologyselection, it isvery useful * At the beginning of the synthesis, a set of constraints is
if the topologiesarealready sizedThe sizedopologies, with solved foreach buildingblock toensurethat all interme-
known bias currents, capacitor valssl transistodimen- diate generated circuits behave properly.
sions carthen beevaluatedand thebestcan beselected. An The organization of the rest of the paper isfa®ws.
example of this approach IBAC [2]. IDAC sizes several gection 2 describebe circuit descriptiothat isused in the
topologiesand theuser selectthe sized circuit with theest  genetic algorithm. Section @scribeshe genetic algorithm
performance. Thenaindrawback othis approach is thiact jiself. Section 4 illustrates the behavimd performance of

that alot of topologies have to be sized completely, of whichARwWIN by means of several design examples. Concluding

other tools, likeOASYS [3] and OPASYN [4], select on
forehand oneopology, based oheuristics. If thetool can Il CIRCUIT REPRESENTATION
not size theselected topology correctlpther heuristics are
used to redathe topology selection. Unfortunately, these
heuristics are very difficult to creadmd there is a risk that a

Genetic algorithms arbased on evaluatioand genera-
tion processes, applied oncartain problem representation.

non-optimaltopology isselected. In SEAS [5the knowl- When a sized netlist of a circuit is available, the evaluation
of that circuit can be performed by means of simulations.

edge intensivaopology selection heuristicare avoided by The generation afiew circuits however, will benuch more

using an evolution algorithm tmodify the topology. How- comblicated. For example in the domain of opamos. hun-
ever, the several intermediate topologies still have to be sizgrdezz of suifable topolo piese Kknown. but the nuﬁqbe?o'f to-
completely in SEASusing a time consuming simulated an- polog ’

nealing algorithm. The firshethodologythat handlesopol- pologiesthat will not be able tbehave as an opamp is

- Lo ; countless. Furthermore, amlucky chosen set dfansistor
ogy selection and circuit sizing simultaneoustyspresented dimensionsand bias currents can make a circugeless as
by P. Maulik [6]. In this approachgpologyselection is em-

bedded inthe circuit sizing problem. Therefore the risk of; Esﬁfe?rr?aa.a-:—lhiigr?rrli d?gtmznr:;[t”ecc}l(lrilracj[itsbigﬁg\llqee?istoan
selecting a non-optimailopology is reduced, without the 9

opamp. In section A, th&opology aspects othis problem
will be discussed, whiléhe sizingaspects will be discussed
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stageand anoptional output buffer. Several different to-posed out of multiplicationandsquare roots of thparame-

pologies are possible for each building block.

On the basis of these thrsets of building blocks, kErge
variety of topologiescan be constructetiiowever, only a
limited set of these topologies will be useful as op&rppl-
ogy. Bymeans of the connectianatrix of Fig. 1, valid to-
pologiescan be recognized. éross in entryi( j) of the ma-
trix indicatesthat block i might besucceeded by blogk As
can be seen in the connectiomatrix, there arecurrently
available: fourinput stages (element 2. 5),four second

stages (element 6. 9), and threeutput buffers (element 10

... 12).Element 1 anctlement 13 represent the input con-
nectionrespectivelythe output connection of the opamp. To-DCgainz30dB-
gether, this results in 24 valid topologies, varying from just a

simple input stage {1-2-13} adepicted in Fig. 4, to an

opamp consisting of a folded cascadput stage, aecond

gain stageand aclass AB output buffer {1-4-8-12-13}. It is

obviousthat theconnectionmatrix is easily toextend with
new building blocks.

B. Building block description

In orderthat each buildingblock behaves correctly, a set
of simple constraints can be derived tloe separate building
block topologies, othe basis of therocess parameters and

ters. These constraints can therefore be writtedinesr
combinations of the logarithms of the parameters. ditig
problemsare combinations of producsd summations.
However,whenthe resultingpace is convexhis problem

can be overcome by approximating the (nonlinear) constraint
by a piecewise linear space.

The expressiorior the DC-gain of a simple differential
input stage with nMOS input transistors,depicted in Fig.
4, is derived as follows:
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As in (1), all constraintsvhich ensurethat a particular
building block operates correctly, can derivédis results in
a set oflinear constraint$or each buildinglock inthe for-

the required specifications. An example of such a constraint

is that all transistors in the inpstage have to operate in FA X<b

saturation mode. Furthermorgome simple buildindlock
constraints can bderived out of the overall opangpecifi-

cations. For example, if the overall DC-gdias to be at

least 80 dB, an input stage with a DC-gain of only 30.ilB

not likely be part of an optimal desigherefore when we

require the DC-gain of the input stage to be at least 30

we will limit the designfreedom forthe circuit parameters
without loosing an optimal solution. Furthermore, since th)%_ k o p g kZOr
proposed constraints wibnly be defined forthe separate ™ " 0& 7 Viff &1

building blocks,the constraintsvill be much simplerthan
constraints for an entire opamp, as used in [6].

For the solution method we use, equatiomsy only be
linear. However,most of the equationthat map thecircuit
parameters on the buildinglock specificationsare com-
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1 =input

2 = nMOS diff. pair (simple)
3 = pMOS diff. pair (simple)
4 = nMOS folded cascode

5 = pMOS folded cascode

6 = nMOS Com. Source (CS)
7 =pMOS CS

8 = nMOS CS with level shift
9 = pMOS CS with level shift
10 = nMOS-source follower
11 = pMOS-source follower
12 = class AB output buffer
13 = output
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Fig. 1. Connection matrix
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The solution othis set of constraints is @nvex space of
which the corner pointp; can be calculated with the algo-

dr'thm of Tschernikow [9, 10]. Theonvex space given by (2)

n then completely be described in the format:

=0 3)

Expression (3) statethat any k-dimensional vectoro
without negative entrieg; results in a vectox thatmeet all
the requirements of (2). IRARWIN, buildingblocksare de-
scribed bytheir name and aon-negative k-dimensional
vectoro.. On behalf of computational simplicity, tivalues
for the elements; are restricted to the values&bid '1'. Due
to this restriction, only2points out of the solution space can
be reached for each stage. In most cases howbienum-

ber will belarge enough fosatisfactory synthesis results. An
example of this description is depicted in (4):
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[Il. GENETIC ALGORITHM can still be far away from the required specifications.

It is now easy talerive the sized netligbr each opamp
used to find anear optimalsolution for awide variety of out of fche circuit description. The performapce qf each
opamp isthenevaluated by means of a small sigagliva-

problems. Genetic algorithmmaintain apopulation of in- lent circuitand tical ) A it lue i
dividuals P(t) for iteration t.Each individual is an abstract ent circuitandanalytical Xpressions. A NINESS vajue 1S as-

representation of a potential solution of the problermaaud. Z'Qned :0 eacthﬂ?pamp. _When tZ' speuﬂ&:aqon of ant_ opamp
During each generation, all individuals @&aluated to give oesnot meet the requirements)s results in anegatve
some measure dheir fitness. On the basis ohis fitness, contribution to the fl_tne_ss “’“atopa”_‘p’ proportional to the
part of thepopulation is selected tmaintain for the next gap between spec!flc_anorand _requirement, _When all re-
generation. In thiselection, the more fit individuals haveduirements are satisfied, the fitness functioddBined by an

more chance to survive. The vacant places in genergtion ©Ptimization function based on power dissipation.

are filled up bynew individuals, generated by means of When allopamps are evaluatetheir fitness values are
cross-over applied othe selected individuals. After a num- linearly scaled in a way that the maximal fitness is equal to 1
ber of generations, the populatioanverges to a population and the minimafitness is equal to 0. Several of theamps

in which thebestindividual hopefully represents the optimal are thenremoved out othe population. The number of re-
solution. This flow is depicted in Fig. 2. moved opamps isqual to the population size, multiplied by
the cross-overate. For each opamp, the chancsuovive is

implemented as follows. To ensuhat the initialpopulation proportion_al to its fitnessNewa generated opamps fill up
the resulting vacant places in the population. Each new

and each following populatiorcontain at least consistent ; .
g bop opamp is generated out tfio ‘parent’ opamps which are

solutions to the problem (but nall of them arenecessarily > . X . o
the best in context tdhe fitness function), a set of Simpleselected with a chandkat is agairproportional to their fit-

constraints isolved whichensurethat all transistorsperate nestg. The nedw o_p:irgp_ IS fF'?adeg byTr;;;anstaErﬂlms over op-
in their proper regiorand that the transistsizes are be- eration, as depicted in rig. . W topoiogy 1S con-

tweenmaximal and minimavalues. The solution if®r each structed by mixi_ng th? parents’ buildirtgocks. The f_irst
building block a set of vectorg, as discussed in section B.bIOCk of parenf is copied tdhe new topologylf, according

. ; e ; to the connection matrix of Fig. 1, the secduatck of parent
This prevents the algorithm twme up withcircuits which : ; , B
are not behaving as opamps. B might beplaced behind the firdblock of A, this will be

done. Finally, the last buildiniglock will be copied from the
In the initial populatiorP(ty), thetopology foreach of the parentwho did not deliver the second buildimdock, if al-
opamps is picked randomly out of the @sible opamp to- lowed bythe connectiomatrix. Furthermore, the circuit pa-
pologies The entries in theectorsa for each opampre set fameters of théwo parents are mixed if the parents contain
randomly to the valu®' or '1' (eactentry inthe vectorsa  Similar bundlngb_lock_(s).Thls is thecase forthe inputstage
corresponds to a vectpr as discussed in section B). A cir-Of the example in Fig. 3. Ithat case, thax-vectors of the
cuit description for each opangan be obtained bylmear two parents are mixed. Ttee-vectorsare cut atwo random
combination of thevectors p. All circuits in the initial pointsand theseparate parts atese inthe new a-vector. In
population will now behave aspampsand theseparate the casethat thetwo parents have three stagesciommon
stages in each opamp will meetranimum set of require- (the sameype ofinput stage, econd stagandbuffer stage),
ments. Nevertheless, the overall specifications obgizanps

Genetic algorithms or evolution programs [7,d8n be

In the synthesis tool DARWINthis basic algorithm is

parent A n-diff.pair n-SF
procedure evolution program{
(1111010]

t=0; 1101011001] | \
initialize P(t); ‘ ‘ class AB

parentB | ‘ n-diff.pair p-CS amp
evaluate P(t); \ T
while (not finished){ \ ]S b

t=t+1; : :
select P(t) from P(t-1): o |o;1101‘0101||00110101110 llo1101]
make new members with cross-over; cross-over. -~ - - U
insert new members in P(t); points
mutate P(t); child n-diff. pair p-CS amp n-SF
evaluate P(t); ‘

} } 1111011001 |[00110101110][12111010]

Fig. 2. Genetic algorithm Fig. 3. Cross-over operation



this cross-over operation is performed on eachhef three picted in Fig. 4, fand 6respectivelyThe paracitic capacitor
pairs ofa-vectors. in Fig. 5 and Gepresent the paracitic capacitance due to the

The last modificationprocess ismutation. Thisprocess miller capacitor.

changes the value of a small number of the entities of eachAs can be seen in table I, thgnthesized opamps meet all
a-vector.Eachentity (a ‘0’ or a ‘1’ in Fig. 3)has a chance specifications according to the estimation®&RWIN and
equal to the mutation rate to be changed in value. most of the specifications according to the SPICE simula-
It . ant h ¢ ticthat b | tions. Thedifferences betweethe results as predicted by
'S veryimportant nere to notictnat because we apply paARwIN and theSPICE simulation results are mainly due
the genetic operatorsross-over'and ‘mutation’ on the- 5 the simplified transistomodelsthat areused by DAR-
vectors, wealwaysgenerate correct opamps in terms_of thevIN. The operloop transfer function of example B, as de-
design constraints. Therefore, we do not havevedly jyed by DARWIN and by SPICE, is plotted in Fig. 7. In Fig.
whether a certain mutation is legal or not, this in contrast 0 gjqy ‘typical’ and ‘fast’ refer to SPICE simulations
genetic algorithms as in [11]. When weuld perform the \yhije ‘darwin’ refers to estimated transfer function by
genetic operators directly orthe  circuit parameterHaARwIN. The estimations argoodenough to be useful in
(transistor widthsand Iengths)meanmgless circuits can _beDARWIN, while atthe same time the evaluation of a single
generated, for example opamps of which the input transistqfsamp only requires ithe order of tens of milliseconds on a
are out of saturation. HP 700 workstation. Itthis way it ispossible to evaluate an
This evolution loop continuesintil a stop criterion has entire population of hundred opampsainly afew seconds,
reached. In DARWIN, we ustne number of generations agresulting in a complete opamp synthesis ifew minutes.
the stop criterion. When we should have used SPICEtl#s simulatoffor the
intermediate evaluations, a small improvementacuracy
would have been achieved the expense of an enormous in-
toverify that Creasein computation time.

IV. EXPERIMENTAL RESULTS

To illustrate thesynthesis processnd
DARWIN cansynthesize functional opamps, we will discuss We usedthe genetic algorithm with a population size of
several circuitsthat were generated by DARWIN. For all 100 opamps, a maximum of 150 generationgrass-over
opamps, we used the MIETEC Zuh n-well CMOS process rate of 0.2, and a mutation rate of 0.@ue tothe genetic
parameter set. The three design examples (AnB, C) dif- algorithm, the inintiapopulationsevolved topopulations in
fered inthe required specificatiofor the DC gain. The op- which all opampswere ofthe sameopology. This ‘topology
timization functionwas defined by thepower dissipation. selection’can be seen in the area charts of Figvi@&re the
Table | depicts the performance specifications, the obtain&gpologydistribution is depictedluring the first tens of gen-
results as simulated with the build in simulatmd the erations of thesynthesis proces3he abbreviationthat are
SPICE simulation results. The component area in table |ised inthe legend of Fig. 8 are explainedfafows: 1st =
the size of the transistors in addition to the size of the millenegain stage, 2st two gain stages, fc = folded cascode, sf
capacitance but without wiringnd component spacing. For = source follower, AB = class AB buffer, nMOS input
the SPICE simulations in table I, weedthe ‘typical’ tran- transistor, p = pMOS input transistor.

sistor parameters for examples akd C and théslow’, In design example A, the nMOS differentizair (st_n,

‘t_ypi(cjal’ ﬁnd‘faf‘;t, tr?nﬁistgr parametefslr example B. Tdhe area marked with the number 1) dominated the population.
sized schematics of the design example Aaiitj C are de- This is not surprisingly, since thEMOS differentialpair is

TABLE I.
REQUIRED SPECIFICATIONS DARWIN ESTIMATIONS, AND SPICE SIMULATION RESULTS

Parameter example A (60 dB) example B (80 dB) example C (100 dB)
Spec darwin SPICE | Spec darwin SPICE SPICE SPICE ;| Spec darwin SPICE
(typ.) (slow) _ (typ) (fast) (typ.)
DC-gain [dB] > 60 60 54 | >80 93 75 87 96 =100 144 133
gain bandwidth [MHz] >3 4.8 43 | >3 3.0 4.4 47 3.7 >3 3.1 3.7
unity gain freq. [MHz] 23 3.8 5.3 >3 3.2 10.1 7.4 6.8 >3 3.1 6.8
phase margir’| >60 72 74 >60 72 30 63 67 > 60 60 47
slew rate [V} 23 32 GG =3 39 G0 00 0% =3 7T %
load capacitance [pF] 2 2 2 2 2 2 2 2 2 2 2
supply voltage [V] +25 £25 +25 i +25 +25 +25 25 25 { 25 125 +25
: -1.3 -1.2 -1.8 -2.2 -2.2 -2.2 -1.0 -1.0
nputvoltagerange [Vl +1 o9 455 | £l 415 407 410  +13 | *l 418 425
-1.9 -1.3 -2.2 -2.4 -2.4 -2.4 -2.2 -2.4
ouputvoltagerange [Vl - 1 55 5% 1 tl 50 424 +24 424 | 1 420 424
power dissip. JiW] low 31 52 low 89 157 124 96 low 251 308
component aregufn?] - 6500 - - 3600 - - - - 8100 -

technology MIETEC 2.4pm n-well CMOS
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not able to have a DC-gain of 60 dB combination with il
the other specificationsjnd all othetopologies have more -100 ~ -180
stages and are therefore likely to dissipate more power. 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8

In design example B, the required DC-gaiasincreased Frequency [Hz

to 8_0 dB. All One'Stage_ opamps died (_)Ut in the first 20 gen- Fig 7 Bode plot of the open loop transfer function of example B
erations, but several different topologies seemed tgobd

candidates after 20 generations. Frrat moment on, the all had anMOS folded cascodmput stagefollowed by a
two-stage opamp with pMOBput transistors (2st_n, areasecondgain stageThey only differed intheir output buffer.
marked with the number 2) appeared to be slightly fittan of those four topologieshe versiorwithout a buffer became
the other remainingopologiesand the number afpamps the eventual winner.

with that specmc to_pologyl_ncreased untithey dom'”ate_d Simultaneously wittthis topologyselection, the transistor
the p(_)pulatlon. Agalr_1 the final choice Qf tiapology IS logi- sizes change asell during thesynthesis proces3.he ge-
cal, since the DC-gain can not be achieved by a stiié-  qyic a1gorithmwill increasethe maximal asvell asthe av-
_entlal pair, while at the othdﬂand_afolded_cascod&)p_ology . erage fitness of the populatialuring thesynthesis process,
is not really required. Another interesting event in desigh icating that the transistsizes are adjusted inveay that
example B is the fact that some topologies disappeared out opamps in the populatidrecomemore suitable to meet
the populatiorand reappeared some generatidater. This the required specifications.
happened for example witthe topology, marked with the
number 6. Thdact that anew opamp can have different The three design examplsisowthatDARWIN is capable
topology than its two parents makes the algorithm robustto select suitable topologiesid tosize the transistor sizes,
since a died-outopologycan get a second chanceptove Without much design knowledge.
its suitability. V. CONCLUSIONS

In design example C, the required DC-gaas further . ) .
increased to 100 dB. An opamp with such a sepetifica- We described a way to synthes@#r®alog circuits, based on

tion requirements caanly beachieved by using eascoded genetic algo_rithms. Ar_initial popula_tion of circuitsevolves
gain stage. It igherefore logicathat theopamps with two © @ population in which the circuits are adapted to the re-
gain stages, of which the first is a nMOBIded cascode qwred performance specificatiori3uring each_ generation,
stage, appeared to be more suitabn theother opamps. all circuits are_evaluated _by means of rough _S|mula_1t|ons. On
The areas in Fig. 8, marked with the numbers 3, 4n8, 6 the basis ofthis evaluation, ditness value is assigned to
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Fig. 8. Topology distribution versus generation, for design example A (left), B (centre), and C (right)

each of the circuitsSome ofthe ill-suited circuits are re- for which it is difficult to capturethe topology selection
moved out ofthe populationwhile newcircuits aregener- knowledge in rules or equations.

ated out of well-suited circuits. Furthermotiee circuits are
slightly changed by means of a mutation operation. The ge-
netic algorithm does not require much design knowledge, butR. A. Ruthenbar, ‘Analodesignautomation: Where are we? Where are we
is nevertheless able to synthesize suitable circuits fade 9°i”19?';"'lplffiélfgzl'§§3'§ CICCSan Diego, CA1993, IEEE, NewYork,
range of performance specifications. 2. Fli/llj De.gréuwe,.e.t al., IDAC: An interactive design tooldoalog integrated

S ; ; ; ; . circuits’, IEEE J. Solid-State Circuit$C-22 1106-1116 (1987).
The circuit representatiothat isused inthe genetic al 3. R. Harjani, R. A. Rutenbar, and L. R. Carley, ‘OASYS: A framework for

gorithmallows us toput restrictions to the circuits’ building  analog circuit synthesiSEEE Trans. on Computer Aided DesigrAD-8,
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the circuit. Aprototype tool, DARWIN, which is based on 375207 500 ' puter Al IGLADS,
the proposedalgorithm, carsynthesize CMOS opamps froms. z. Ning, M. Kole, TMouthaan, and H. Wallinga, ‘Analog circuiesign
performance specificatiomndtechnologyparameters_ Sev- automatiorfor performance’Proc. 14 th IEEE CICCBoston, MA,1992,
eral divergent design examples, which eeefied by means . 'EEE: New York, pp. 8.2.1-8.2.4 (1992).
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. . L i 7. Z. Michalewicz,Genetic algorithms + data structures = evolution
Particularly in the beginning of theynthesis process, programs Springer Verlag, New York, 1992.

when a topology is selectadd the transistatimensions are 8. D. E. Goldbergienetic algorithms in search, optimization and machine
i i i _ learning Addison-Wesley, New York, 1989.

][O;“I%Ily Slzed’theb genfg%falgomhr?ho.wed to Se Ver?/ USde . D. M. W. Leenaerts, ‘Applications of interval analysis to circuit design’,

ul. A large number of differertopologiescan be explored, ~ \Egg Trans. on Circuits and SysterBS-37, 803-807 (1990).

without the need of time-consuming transistor sizing algae. D. M. Wleenaerts, and J. A. Hegt, ‘Finding all solutionspietewise
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approach isspecially suited fothe synthesis of circuits or ~ (1991).
systemghat canhave many differenlypes of topologies and
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